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Equidistribution of Point Sets for the Traveling Salesman and Related
Problems

Abstract
Given a set S of n points in the unit square [0, 1)2, an optimal traveling salesman tour of S is a tour of S that is
of minimum length. A worst-case point set for the Traveling Salesman Problem in the unit square is a point set
S(n) whose optimal traveling salesman tour achieves the maximum possible length among all point sets S C
[0, 1)2, where JSI = n. An open problem is to determine the structure of S(n). We show that for any rectangle
R contained in [0, 1 F, the number of points in S(n) n R is asymptotic to n times the area of R. One corollary
of this result is an 0( n log n) approximation algorithm for the worst-case Euclidean TSP. Analogous results are
proved for the minimum spanning tree, minimum-weight matching, and rectilinear Steiner minimum tree.
These equidistribution theorems are the first results concerning the structure of worst-case point sets like
S(n).
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Chapter 50 
Equidistribution of Point Sets for the 

Traveling Salesman and Related Problems 

Timothy Law Snyder* 

Abstract 

Given a set S of n points in the unit square [0, 1)2, 
an optimal traveling salesman tour of S is a tour of 
S that is of minimum length. A worst-case point set 
for the Traveling Salesman Problem in the unit square 
is a point set S(n) whose optimal traveling salesman 

tour achieves the maximum possible length among all 
point sets S C [0, 1)2, where JSI = n. An open problem 
is to determine the structure of S(n). We show that 

for any rectangle R contained in [0, 1 F, the number of 
points in S(n) n R is asymptotic to n times the area of 

R. One corollary of this result is an 0( n log n) approx
imation algorithm for the worst-case Euclidean TSP. 

Analogous results are proved for the minimum spanning 
tree, minimum-weight matching, and rectilinear Steiner 
minimum tree. These equidistribution theorems are the 
first results concerning the structure of worst-case point 
sets like S(n). 

1. Introduction 

This paper deals with worst-case arrangements of 
points for problems in combinatorial optimization; it is 

shown that these point sets are equidistributed. For 
specificity, we concentrate on the Traveling Salesman 
Problem. 

Given a set of points Sin the unit square [0, 1)2, an 
optimal traveling salesman tour of S is a tour consist

ing of edges from the complete graph on S and having 

total length minr{ I:eET Jel :Tis a tour of S }. Here, 
Jel denotes the Euclidean length of the edge e. We use 

J. Michael Steele** 

TSP(S) to denote the set of edges of an optimal travel

ing salesman tour of Sand JTSP(S)J to denote the sum 
of the Euclidean lengths of the edges in TSP(S). 

A worst-case optimal traveling salesman tour is a 

tour of total length 

PTsP(n) = max JTSP(S)J. (1.1) 
5C(0,1] 2 

ISJ=n 

In words, PTsP( n) is the maximum length, over all point 
sets in [0, 1)2 of size n, that an optimal traveling sales
man tour can attain. Such a tour attaining this length 
is called a worst-case TSP tour and its associated point 
set a worst-case TSP point set. 

The first works on the sequence PTsP( n) were 
the lower bounds of Fejes-T6th (1940) and the up

per bounds of Verblunsky (1951). Successive improve
ments to these bounds and their higher-dimensional 
analogues appeared in Few (1955), Supowit, Reingold, 
and Plaisted (1983), Moran (1984), Goldstein and Rein
gold (1988), Karloff (1989), and Goddyn (1990). One 
result we use later is that 

(1.2) 

where f3TsP > 0 is a constant (Steele and Snyder ( 1989)). 

All these results deal with the worst-case length 

PTsP(n). There are no results, however, concerning the 
locations of the points that give rise to a worst-case 
tour. Let S(n) be a worst-case TSP point set. An en
gaging open problem is to determine the structure of 
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S( n). It is generally believed that S(n) is asymptot- and label the cells Q;, where 1 :::; i :::; m2, then, for all 

ically a lattice; for example, Supowit, Reingold, and 1 :::; i :::; m2, 
Plaisted (1983) conjectured a hexagonal grid for S(n). 

Our main result is that any sequence of worst-case 
TSP point sets is asymptotically equidistributed: 

Theorem 1. If { S(n) : 1 :::; n < oo} is a sequence 

of worst-case TSP point sets, then, for any rectangle 

Rc [0,1)2, 

lim .!.lsCn) n R I = Area(R). (1.3) 
n-+oo n 

A corollary to Theorem 1 is that any worst-case Eu

clidean traveling salesman problem can be solved within 
a factor of 1 + E, for any E > 0, in 0( n log n) time us
ing the algorithm of Karp (1976). Even though Karp's 
algorithm is for points drawn uniformly from the unit 
square, we discuss in the concluding section how The
orem 1 and the limit (1.2) guarantee this performance 
for worst-case point sets. 

The proof of Theorem 1 rests on the limit ( 1.2) and 

a characterization of IS(n) n R I in probabilistic terms. 
Even though S(n) is deterministic, a simple probabilis

tic identity plays a useful role. We show in a later sec
tion that the method provides analogous theorems for 
other problems, including the minimum spanning tree, 
minimum weight matching, and rectilinear Steiner tree. 

In Section 2, we begin with two observations that 
simplify the proof of Theorem 1 in Section 3. Section 4 
contains results and proofs for problems other than the 

Traveling Salesman Problem, and Section 5 concludes 
with speculations on extensions and applications of our 
results, including algorithmic ones. 

2. Deviations from the Mean Number 
of Points per Cell 

To prove Theorem 1, it suffices to show that if we 
divide the unit square [0, 1)2 into m2 equally-sized par
allel subsquares or cells, each having side length 1/m, 

. IS(n) n Q;J 1 
lim = -. 

n-+oo n m2 (2.1) 

Let s(n, i) = IS(n) n Q;J; in words, s(n, i) is the 
number of points in the ith cell of a worst-case TSP 
point set. Points that lie on the boundaries of the Q; 

can be arbitrarily assigned. Furthermore, let 

2 2 
1 m 1 m 2 

Vn = - 2 L({s(n,i)}l/2- - 2 L{s(n,j)}l/2) . 
m i=l m i=l 

(2.2) 
One should note that if X is a random variable taking 
on the value {s(n,i)}1/2 with probability 1/m2, then 

Vn is the variance of X. Our first lemma estimates the 
expected value of X. 

Lemma 1. As n -+ oo, 

2 
1 m nl/2 

-2 L {s(n,j)}l/2 =-+ o(nl/2). (2.3) 
m i=l m 

Proof. 
First write (1.2) as 

PTsP(n) = /3n1/ 2 + r(n), where r(n) = o(n 1/2); (2.4) 

for convenience, we have dropped the "TSP" from f3TsP· 
Let W denote a closed walk on S(n) = {x1 , x2, ... , 

xn}, i.e, W is a sequence of edges (x;" X; 2 ), (x; 2 , X;3 ), 

... , (x;k-1> x;k ), (x;k, x; 1 ) that visits each point of S(n) 

at least once and begins and ends at the same point. 
Since W is feasible for the traveling salesman problem 
on S(n) even if W visits some points more than once 

and traverses some edges more than once, LeEW lei :::; 
ITSP(SCn))l. 

We now construct a closed walk W on S(n) as fol

lows. Label the cells Q; with the numbers 1 through 
m2 by traversing the cells row by row, proceeding left 
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to right in the first row, right to left in the second, and where h(n) = o(nl/2). This proves half of the 

so on, alternating the direction of traversal in each row 

until all cells have been labeled. Next, construct in each 

cell Q; an optimal traveling salesman tour of the points 

of S(n) that lie in Q;. These disjoint, within-cell tours 

are then connected by placing an edge e; between cell 

number i and cell number i + 1, for 1 ::; i ::; m 2 - 1. 

A closed walk W that traverses each of the within-cell 

tours once and each of thee; twice can then be obtained. 

To assess the length of W, let Q; and Qj be adja

cent cells. Since any pair of points in Q; U Qj can be 

connected by a line segment of length at most 51/2 Jm, 
PTsP(n) = jTSP(S(n))j 

:S 2::: Jej 
eEW 

lemma. To obtain the other half, we note from the 
m2 / Schwarz inequality that Li=l { s( n, i) p 2 ::; mnl/2 

2 

since I':~ 1 s(n,i) = n. 

0 

We now use Lemma 1 and the characterization of 

Vn as a variance to show that Vn/n goes to zero. 

Lemma 2. For Vn as defined in Equation (2.2), we 

bave 

Vn = o(n) (2.8) 

as n _,. oo. 

m 2 m 2 -1 

= 2::: jTSP(S(n) n Q;)j + 2 2::: je;j 
(2.5) Proof. 

m2 

:S 2::: jTSP(S(n) n Q;)l + 2 ·51/ 2 m. 
i=1 

We now use (2.4) in (2.5) along with the fact that 

ITSP(S(n) n Q;)l is at most PTsP(s(n, i)) scaled by the 

cell size 1 J m to get 

PTsP(n) = j3n 112 + r(n) 
m2 

:S ~ 2::: PTsP( s( n, i)) + 2 ·51 12m 
i=l 
m2 

::; ~ l:f3{s(n, i)} 1/ 2 
(2.6) 

i=l 
m2 

+ ...!_ 2::: r(s(n, i)) + 2. 51/2m, 
m i=1 

where, for all 1 ::; i ::; m2, the value r( s( n, i)) = 
o( { s( n, i)}l/2) = o( n 112). Since m is fixed, we cancel 

j3 to find 

m2 

2:{s(n,i)}112 2: mn1/2 + h(n), (2.7) 
i=l 

First note that Vn can be written as 

using the remark following definition (2.2) and the iden-
2 

tity Var( X) = EX2 (EX)2. Since I':~ 1 s( n, i) = n, 
applying Lemma 1 to the second term of (2.9) gives 

n (nl/2 )2 
Vn =-- -- +o(n112) . 

m 2 m 
(2.10) 

On expanding, we see that Vn = o(n). 

3. Equidistribution in the Worst
Case TSP 

0 

To prove Theorem 1, recall that it suffices to show 

that limn-.oo IS(n) n Q;lfn = 1/m2 , for all1::; i::; m2. 
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,:,From the definition (2.2) of Vn, we have that for all i 

satisfying 1 :::; i :::; m2, 

(3.1) 

Applying first Lemma 2 then Lemma 1 to (3.1) gives 

m2 

{s(n, i)} 1/2 =-; I.:{s(n,j)}l/2 + o(nl/2) 
m i=l (3.2) 
nl/2 

=-+ o(nl/2). 
m 

Squaring (3.2) yields Theorem 1. 

4. Equidistribution in the MST, 
Matching, and Steiner Problems 

0 

The method just used for the TSP can be applied 

to the minimum spanning tree, the minimum-length 

matching, and the rectilinear minimum Steiner tree. 

If L = L( S) denotes the length associated with any 

of these, then we can define Pr.(n) = supS:ISI=n L(S) 

and let s~n) be such that L(S~n)) = PTsP(n). To show 

that s~n) is asymptotically equidistributed boils down 

to checking that L satisfies two conditions: 

1. Pr.(n) = f3Ln112+o(nlf2), where j3L > 0 is constant; 

2. pr.,(n) :::; m- 1 I:Z::1 PL(sL(n, i)) + o(n112), where 
Sr.( n, i) is the number of points of S~n) contained 

in the cell Q;. 

Condition 1 has been proved for the minimum span

ning tree, minimum matching, and rectilinear Steiner 

tree problems ( cf., Steele and Snyder (1989) and Sny

der (1992)), and Condition 2 can be verified for these 

problems by the method used in the proof of Lemma 1. 

For example, if L( S) = MST( S) denotes the to
tal length of a minimum spanning tree of S, we first 

form minimum spanning trees MST( s~jT n Q;) on the 
points of sSnjT in the cells Q;, where 1 :::; i :::; m 2 . The 

trees within cells can then be interconnected at total 

cost O(m) = o(n112 ) by adding m2 - 1 edges, each 

costing no more than 51/2/m. This forms a heuris

tic tree on sSnjT. Since the lengths JMST( s8'jT n Q;) I 
are no greater than the worst-case (within-cell) lengths 

m-1PMsT(sMsT(n, i)), Condition 2 follows. 

Checking these conditions for each of the problems 
yields the following. 

Theorem 2. If { S~n) : 1 :::; n < oo} is a sequence 

of worst-case point sets for the function L, where L is 

the minimum spanning tree, the minimum matching, 

or the rectilinear minimum Steiner tree, then, for any 

rectangle R C [0, 1]2, 

lim .!_ IS~n) n R I= Area(R). (4.1) 
n-+-oo n 

5. Concluding Remarks 

The asymptotic equidistribution of worst-case point 

sets for the problems we have considered offers some 

support to the conjectures of Supowit, Reingold, and 

Plaisted (1983) that worst-case point sets are approxi

mated by lattices as n - oo. It is still a major open 

problem to resolve these conjectures. 

The results also prove that the worst-case travel
ing salesman problem on S(n) is amenable to Karp's 

probabilistic algorithm for the TSP, even though S(n) is 

entirely deterministic. For n points selected uniformly 

from [0, 1)2, Karp's algorithm runs in O(nlogn) time 

with probability one, and, for all c > 0, the tour formed 

by the algorithm is within a factor of 1 + E of optimum 

with probability one, as n - oo. 
Using Karp's algorithm, given c > 0, we can guar

antee the construction of a tour T of S(n) in O(nlogn) 

time such that the total length of T is at most 1 + E 
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times the optimal length PTsP(n), as n-+ oo. These re- Hence, this problem also remains open. 
suits are entirely deterministic, and they can be proved 
by observing that Karp's analysis uses a probabilistic 
counterpart to the limit theorem expressed by (1.2) 
along with asymptotic equidistribution of point sets 
uniformly selected from the unit square. Though the 
limit (1.2) for the worst-case length ofthe TSP has been 
known for several years, an equidistribution result for 
S(n) was required in order to guarantee both the time 

and performance bounds for Karp's algorithm applied 
to S(n). Until there are definitive tests for worst-case 

point sets, however, this result is only of theoretical in
terest; whether it can be used for point sets other than 
S(n) is an open problem. 

Several other open problems are motivated by our 
results. For any finite set of points S, the Steiner prob
lem is to find a minimum-length tree T = (V, E) such 
that V contains S. The added points Q = V - S are 
the Steiner points ofT. Though any metric can be used 
to assign costs to edges, two metrics of interest are the 
Euclidean and rectilinear (Ll). 

Let S( n) be a worst-case point set for the rectilin
ear Steiner problem, and let T be a rectilinear minimum 
Steiner tree of S(n). The asymptotic equidistribution in 

Theorem 2 applies only to S(n), and not to the set Q of 
Steiner points ofT; we conjecture that Q is asymptoti
cally equidistributed, as well. 

For the Euclidean Steiner problem, the limit result 
for Condition 1 in Section 4 has yet to be established. 
We believe such a result holds, and it would imply that a 

worst-case point set for the Euclidean Steiner problem is 
asymptotically equidistributed. It is also likely that the 

Steiner points in the Euclidean case are asymptotically 
equidistributed. 

A final open problem concerns the greedy matching. 
Though Condition 1 in Section 4 holds for this problem, 

the methods used here to verify Condition 2 fail since a 
greedy matching is not a matching of minimum length. 
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