6,900 research outputs found

    Payload-based anomaly detection in HTTP traffic

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Internet provides quality and convenience to human life but at the same time it provides a platform for network hackers and criminals. Intrusion Detection Systems (IDSs) have been proven to be powerful methods for detecting anomalies in the network. Traditional IDSs based on signatures are unable to detect new (zero days) attacks. Anomaly-based systems are alternative to signature based systems. However, present anomaly detection systems suffer from three major setbacks: (a) Large number of false alarms, (b) Very high volume of network traffic due to high data rates (Gbps), and (c) Inefficiency in operation. In this thesis, we address above issues and develop efficient intrusion detection frameworks and models which can be used in detecting a wide variety of attacks including web-based attacks. Our proposed methods are designed to have very few false alarms. We also address Intrusion Detection as a Pattern Recognition problem and discuss all aspects that are important in realizing an anomaly-based IDS. We present three payload-based anomaly detectors, including Geometrical Structure Anomaly Detection (GSAD), Two-Tier Intrusion Detection system using Linear Discriminant Analysis (LDA), and Real-time Payload-based Intrusion Detection System (RePIDS), for intrusion detection. These detectors perform deep-packet analysis and examine payload content using n-gram text categorization and Mahalanobis Distance Map (MDM) techniques. An MDM extracts hidden correlations between the features within each payload and among packet payloads. GSAD generates model of normal network payload as geometrical structure using MDMs in a fully automatic and unsupervised manner. We have implemented the GSAD model in HTTP environment for web-based applications. For efficient operation of IDSs, the detection speed is a key point. Current IDSs examine a large number of data features to detect intrusions and misuse patterns. Hence, for quickly and accurately identifying anomalies of Internet traffic, feature reduction becomes mandatory. We have proposed two models to address this issue, namely two-tier intrusion detection model and RePIDS. Two-tier intrusion detection model uses Linear Discriminant Analysis approach for feature reduction and optimal feature selection. It uses MDM technique to create a model of normal network payload using an extracted feature set. RePIDS uses a 3-tier Iterative Feature Selection Engine (IFSEng) to reduce dimensionality of the raw dataset using Principal Component Analysis (PCA) technique. IFSEng extracts the most significant features from the original feature set and uses mathematical and graphical methods for optimal feature subset selection. Like two-tier intrusion detection model, RePIDS then uses MDM technique to generate a model of normal network payload using extracted features. We test the proposed IDSs on two publicly available datasets of attacks and normal traffic. Experimental results confirm the effectiveness and validation of our proposed solutions in terms of detection rate, false alarm rate and computational complexity

    Anomaly-based Correlation of IDS Alarms

    Get PDF
    An Intrusion Detection System (IDS) is one of the major techniques for securing information systems and keeping pace with current and potential threats and vulnerabilities in computing systems. It is an indisputable fact that the art of detecting intrusions is still far from perfect, and IDSs tend to generate a large number of false IDS alarms. Hence human has to inevitably validate those alarms before any action can be taken. As IT infrastructure become larger and more complicated, the number of alarms that need to be reviewed can escalate rapidly, making this task very difficult to manage. The need for an automated correlation and reduction system is therefore very much evident. In addition, alarm correlation is valuable in providing the operators with a more condensed view of potential security issues within the network infrastructure. The thesis embraces a comprehensive evaluation of the problem of false alarms and a proposal for an automated alarm correlation system. A critical analysis of existing alarm correlation systems is presented along with a description of the need for an enhanced correlation system. The study concludes that whilst a large number of works had been carried out in improving correlation techniques, none of them were perfect. They either required an extensive level of domain knowledge from the human experts to effectively run the system or were unable to provide high level information of the false alerts for future tuning. The overall objective of the research has therefore been to establish an alarm correlation framework and system which enables the administrator to effectively group alerts from the same attack instance and subsequently reduce the volume of false alarms without the need of domain knowledge. The achievement of this aim has comprised the proposal of an attribute-based approach, which is used as a foundation to systematically develop an unsupervised-based two-stage correlation technique. From this formation, a novel SOM K-Means Alarm Reduction Tool (SMART) architecture has been modelled as the framework from which time and attribute-based aggregation technique is offered. The thesis describes the design and features of the proposed architecture, focusing upon the key components forming the underlying architecture, the alert attributes and the way they are processed and applied to correlate alerts. The architecture is strengthened by the development of a statistical tool, which offers a mean to perform results or alert analysis and comparison. The main concepts of the novel architecture are validated through the implementation of a prototype system. A series of experiments were conducted to assess the effectiveness of SMART in reducing false alarms. This aimed to prove the viability of implementing the system in a practical environment and that the study has provided appropriate contribution to knowledge in this field

    APHRODITE: an Anomaly-based Architecture for False Positive Reduction

    Get PDF
    We present APHRODITE, an architecture designed to reduce false positives in network intrusion detection systems. APHRODITE works by detecting anomalies in the output traffic, and by correlating them with the alerts raised by the NIDS working on the input traffic. Benchmarks show a substantial reduction of false positives and that APHRODITE is effective also after a "quick setup", i.e. in the realistic case in which it has not been "trained" and set up optimall

    Support Vector Machine for Network Intrusion and Cyber-Attack Detection

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Cyber-security threats are a growing concern in networked environments. The development of Intrusion Detection Systems (IDSs) is fundamental in order to provide extra level of security. We have developed an unsupervised anomaly-based IDS that uses statistical techniques to conduct the detection process. Despite providing many advantages, anomaly-based IDSs tend to generate a high number of false alarms. Machine Learning (ML) techniques have gained wide interest in tasks of intrusion detection. In this work, Support Vector Machine (SVM) is deemed as an ML technique that could complement the performance of our IDS, providing a second line of detection to reduce the number of false alarms, or as an alternative detection technique. We assess the performance of our IDS against one-class and two-class SVMs, using linear and non-linear forms. The results that we present show that linear two-class SVM generates highly accurate results, and the accuracy of the linear one-class SVM is very comparable, and it does not need training datasets associated with malicious data. Similarly, the results evidence that our IDS could benefit from the use of ML techniques to increase its accuracy when analysing datasets comprising of non-homogeneous features

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    E-commerce security enhancement and anomaly intrusion detection using machine learning techniques

    Get PDF
    With the fast growth of the Internet and the World Wide Web, security has become a major concern of many organizations, enterprises and users. Criminal attacks and intrusions into computer and information systems are spreading quickly and they can come from anywhere on the globe. Intrusion prevention measures, such as user authentication, firewalls and cryptography have been used as the first line of defence to protect computer and information systems from intrusions. As intrusion prevention alone may not be sufficient in a highly dynamic environment, such as the Internet, intrusion detection has been used as the second line of defence against intrusions. However, existing cryptography-based intrusion prevention measures implemented in software, have problems with the protection of long-term private keys and the degradation of system performance. Moreover, the security of these software-based intrusion prevention measures depends on the security of the underlying operating system, and therefore they are vulnerable to threats caused by security flaws of the underlying operating system. On the other hand, existing anomaly intrusion detection approaches usually produce excessive false alarms. They also lack in efficiency due to high construction and maintenance costs. In our approach, we employ the "defence in depth" principle to develop a solution to solve these problems. Our solution consists of two lines of defence: preventing intrusions at the first line and detecting intrusions at the second line if the prevention measures of the first line have been penetrated. At the first line of defence, our goal is to develop an encryption model that enhances communication and end-system security, and improves the performance of web-based E-commerce systems. We have developed a hardware-based RSA encryption model to address the above mentioned problems of existing software-based intrusion prevention measures. The proposed hardware-based encryption model is based on the integration of an existing web-based client/server model and embedded hardware-based RSA encryption modules. DSP embedded hardware is selected to develop the proposed encryption model because of its advanced security features and high processing capability. The experimental results showed that the proposed DSP hardware-based RSA encryption model outperformed the software-based RSA implementation running on Pentium 4 machines that have almost double clock speed of the DSP's clock speed at large RSA encryption keys. At the second line of defence, our goal is to develop an anomaly intrusion detection model that improves the detection accuracy, efficiency and adaptability of existing anomaly detection approaches. Existing anomaly detection systems are not effective as they usually produce excessive false alarms. In addition, several anomaly detection approaches suffer a serious efficiency problem due to high construction costs of the detection profiles. High construction costs will eventually reduce the applicability of these approaches in practice. Furthermore, existing anomaly detection systems lack in adaptability because no mechanisms are provided to update their detection profiles dynamically, in order to adapt to the changes of the behaviour of monitored objects. We have developed a model for program anomaly intrusion detection to address these problems. The proposed detection model uses a hidden Markov model (HMM) to characterize normal program behaviour using system calls. In order to increase the detection rate and to reduce the false alarm rate, we propose two detection schemes: a two-layer detection scheme and a fuzzy-based detection scheme. The two-layer detection scheme aims at reducing false alarms by applying a double-layer test on each sequence of test traces of system calls. On the other hand, the fuzzy-based detection scheme focuses on further improving the detection rate, as well as reducing false alarms. It employs the fuzzy inference to combine multiple sequence information to correctly determine the sequence status. The experimental results showed that the proposed detection schemes reduced false alarms by approximately 48%, compared to the normal database scheme. In addition, our detection schemes generated strong anomaly signals for all tested traces, which in turn improve the detection rate. We propose an HMM incremental training scheme with optimal initialization to address the efficiency problem by reducing the construction costs, in terms of model training time and storage demand. Unlike the HMM batch training scheme, which updates the HMM model using the complete training set, our HMM incremental training scheme incrementally updates the HMM model using one training subset at a time, until convergence. The experimental results showed that the proposed HMM incremental training scheme reduced training time four-fold, compared to the HMM batch training, based on the well-known Baum-Welch algorithm. The proposed training scheme also reduced storage demand substantially, as the size of each training subset is significantly smaller than the size of the complete training set. We also describe our complete model for program anomaly detection using system calls in chapter 8. The complete model consists of two development stages: training stage and testing stage. In the training stage, an HMM model and a normal database are constructed to represent normal program behaviour. In addition, fuzzy sets and rules are defined to represent the space and combined conditions of the sequence parameters. In the testing stage, the HMM model and the normal database, are used to generate the sequence parameters which are used as the input for the fuzzy inference engine to evaluate each sequence of system calls for anomalies and possible intrusions. The proposed detection model also provides a mechanism to update its detection profile (the HMM model and the normal database) using online training data. This makes the proposed detection model up-to-date, and therefore, maintains the detection accuracy

    Adding Contextual Information to Intrusion Detection Systems Using Fuzzy Cognitive Maps

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In the last few years there has been considerable increase in the efficiency of Intrusion Detection Systems (IDSs). However, networks are still the victim of attacks. As the complexity of these attacks keeps increasing, new and more robust detection mechanisms need to be developed. The next generation of IDSs should be designed incorporating reasoning engines supported by contextual information about the network, cognitive information and situational awareness to improve their detection results. In this paper, we propose the use of a Fuzzy Cognitive Map (FCM) in conjunction with an IDS to incorporate contextual information into the detection process. We have evaluated the use of FCMs to adjust the Basic Probability Assignment (BPA) values defined prior to the data fusion process, which is crucial for the IDS that we have developed. The experimental results that we present verify that FCMs can improve the efficiency of our IDS by reducing the number of false alarms, while not affecting the number of correct detections

    Autonomic Parameter Tuning of Anomaly-Based IDSs: an SSH Case Study

    Get PDF
    Anomaly-based intrusion detection systems classify network traffic instances by comparing them with a model of the normal network behavior. To be effective, such systems are expected to precisely detect intrusions (high true positive rate) while limiting the number of false alarms (low false positive rate). However, there exists a natural trade-off between detecting all anomalies (at the expense of raising alarms too often), and missing anomalies (but not issuing any false alarms). The parameters of a detection system play a central role in this trade-off, since they determine how responsive the system is to an intrusion attempt. Despite the importance of properly tuning the system parameters, the literature has put little emphasis on the topic, and the task of adjusting such parameters is usually left to the expertise of the system manager or expert IT personnel. In this paper, we present an autonomic approach for tuning the parameters of anomaly-based intrusion detection systems in case of SSH traffic. We propose a procedure that aims to automatically tune the system parameters and, by doing so, to optimize the system performance. We validate our approach by testing it on a flow-based probabilistic detection system for the detection of SSH attacks
    corecore