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Abstract

With the fast growth of the Internet and the World Wide Web, security has become a major

concern of many organizations, enterprises and users. Criminal attacks and intrusions into

computer and information systems are spreading quickly and they can come from anywhere on

the globe. Intrusion prevention measures, such as user authentication, firewalls and cryptography

have been used as the first line of defence to protect computer and information systems from

intrusions. As intrusion prevention alone may not be sufficient in a highly dynamic environment,

such as the Internet, intrusion detection has been used as the second line of defence against

intrusions. However, existing cryptography-based intrusion prevention measures implemented

in software, have problems with the protection of long-term private keys and the degradation

of system performance. Moreover, the security of these software-based intrusion prevention

measures depends on the security of the underlying operating system, and therefore they are

vulnerable to threats caused by security flaws of the underlying operating system. On the other

hand, existing anomaly intrusion detection approaches usually produce excessive false alarms.

They also lack in efficiency due to high construction and maintenance costs. In our approach,

we employ the “defence in depth” principle to develop a solution to solve these problems.

Our solution consists of two lines of defence: preventing intrusions at the first line and

detecting intrusions at the second line if the prevention measures of the first line have been

penetrated. At the first line of defence, our goal is to develop an encryption model that en-

hances communication and end-system security, and improves the performance of web-based

E-commerce systems. We have developed a hardware-based RSA encryption model to address

the above mentioned problems of existing software-based intrusion prevention measures. The

proposed hardware-based encryption model is based on the integration of an existing web-based

client/server model and embedded hardware-based RSA encryption modules. DSP embedded

hardware is selected to develop the proposed encryption model because of its advanced security
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features and high processing capability. The experimental results showed that the proposed DSP

hardware-based RSA encryption model outperformed the software-based RSA implementation

running on Pentium 4 machines that have almost double clock speed of the DSP’s clock speed

at large RSA encryption keys.

At the second line of defence, our goal is to develop an anomaly intrusion detection model

that improves the detection accuracy, efficiency and adaptability of existing anomaly detec-

tion approaches. Existing anomaly detection systems are not effective as they usually produce

excessive false alarms. In addition, several anomaly detection approaches suffer a serious effi-

ciency problem due to high construction costs of the detection profiles. High construction costs

will eventually reduce the applicability of these approaches in practice. Furthermore, existing

anomaly detection systems lack in adaptability because no mechanisms are provided to update

their detection profiles dynamically, in order to adapt to the changes of the behaviour of moni-

tored objects. We have developed a model for program anomaly intrusion detection to address

these problems.

The proposed detection model uses a hidden Markov model (HMM) to characterize normal

program behaviour using system calls. In order to increase the detection rate and to reduce

the false alarm rate, we propose two detection schemes: a two-layer detection scheme and a

fuzzy-based detection scheme. The two-layer detection scheme aims at reducing false alarms by

applying a double-layer test on each sequence of test traces of system calls. On the other hand,

the fuzzy-based detection scheme focuses on further improving the detection rate, as well as

reducing false alarms. It employs the fuzzy inference to combine multiple sequence information

to correctly determine the sequence status. The experimental results showed that the proposed

detection schemes reduced false alarms by approximately 48%, compared to the normal database

scheme. In addition, our detection schemes generated strong anomaly signals for all tested traces,

which in turn improve the detection rate.

We propose an HMM incremental training scheme with optimal initialization to address

the efficiency problem by reducing the construction costs, in terms of model training time and

storage demand. Unlike the HMM batch training scheme, which updates the HMM model using

the complete training set, our HMM incremental training scheme incrementally updates the

HMM model using one training subset at a time, until convergence. The experimental results

showed that the proposed HMM incremental training scheme reduced training time four-fold,



3

compared to the HMM batch training, based on the well-known Baum-Welch algorithm. The

proposed training scheme also reduced storage demand substantially, as the size of each training

subset is significantly smaller than the size of the complete training set.

We also describe our complete model for program anomaly detection using system calls in

chapter 8. The complete model consists of two development stages: training stage and testing

stage. In the training stage, an HMM model and a normal database are constructed to represent

normal program behaviour. In addition, fuzzy sets and rules are defined to represent the space

and combined conditions of the sequence parameters. In the testing stage, the HMM model and

the normal database, are used to generate the sequence parameters which are used as the input

for the fuzzy inference engine to evaluate each sequence of system calls for anomalies and possible

intrusions. The proposed detection model also provides a mechanism to update its detection

profile (the HMM model and the normal database) using online training data. This makes the

proposed detection model up-to-date, and therefore, maintains the detection accuracy.



Chapter 1

Introduction

With the fast growth of the Internet and the World Wide Web, computer and information

systems have increasingly become the targets of criminal attacks and intrusions. Attacks spread

very quickly and they can come from anywhere on the globe [114]. The reported number

of computer and network attacks rises sharply every year [11, 35]. Therefore, finding the best

possible ways to protect valuable information and computer systems against intrusions is crucial.

An attack, or intrusion, on a system is a security policy breach. Most attacks cause security

policy breaches in very specific ways [5]. For example, certain attacks may enable an attacker

to read specific files, but they do not allow the attacker to modify any system components.

Another attack may cause a system service disruption to authorized users, but it does not

allow the attacker to access any files. Athough computer and network attacks vary in types

and capabilities, they usually cause breaches of four different security properties of the system

[3, 5, 70]:

• Confidentiality: An attack causes a confidentiality breach if it allows unauthorized access

to data.

• Integrity: An attack causes an integrity breach if it allows unauthorized modification to

the system state or data.

• Availability: An attack causes an availability breach if it keeps authorized users from

accessing a particular system resource when they need it.

• Control: An attack grants an attacker privilege to interfere with system operation in viola-

tion of the access control policy of the system. This can lead to a subsequent confidentiality,
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integrity, or availability breach.

In regard to the violation to these four security properties, there are two common types

of attacks: denial of service (DoS) attacks and system penetration attacks. DoS attacks may

cause an availability breach because they attempt to slow or shut down the targeted systems or

services. For example, “ping of death” attacks can crash certain Microsoft Windows systems [5].

In contrast, system penetration attacks may cause breaches to all four security properties. Sys-

tem penetration attacks usually involve unauthorized acquisition and/or modification of system

privileges, resources, or data. For example, a “Remote Disk Read” attack allows an attacker on

the network to read private data files on the target system without the owner’s authorization

[5].

There have been several approaches to protect computer and information systems from crim-

inal attacks and intrusions. Among them, defence in depth is the best asset-protection strategy,

in which several security mechanisms are combined to create a defence wall with multiple pro-

tection layers [3, 76]. This strategy is a result of the fact that all security mechanisms can

be vulnerable to some form of compromise. Furthermore, it may require an enormous cost to

substantially increase the strength or reliability of any given security mechanism [76]. In light

of the defence in depth strategy, intrusion prevention has been used as the first line of defence,

and intrusion detection has been used as the second line of defence, to protect computer and

information systems from intrusions.

Intrusion prevention: first line of defence

Generally, intrusion prevention measures, which include a set of access control mechanisms,

such as authentication, firewalls and cryptography, have been used to protect computer and

information systems as the first line of defence [81, 70]. Each access control mechanism can

be used to protect a resource in a very specific way. For example, authentication can be used

to verify the identity of a user, a process or a computer, that attempts to gain access to a

resource. On the other hand, a firewall can be used to protect a local system or a private

network from network-based security threats by controlling the incoming and outgoing traffic.

In our approach, we focus on improving the security and performance of cryptography-based

intrusion prevention measures for E-commerce applications.

Intrusion prevention measures for E-commerce systems must ensure two important security
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aspects: communication security and end-system security [32]. Communication security has

to ensure the confidentiality, integrity, non-repudiation and authenticity of the information ex-

changed among communicating parties. End-system security requires strong security measures

to protect sensitive information, such as long-term private keys.

Cryptography techniques have been long in use to address the communication security prob-

lems, such as confidentiality, integrity, non-repudiation of origin and authenticity. Cryptography

plays a crucial role in software-based security packages and protocols, such as Secure Socket Layer

(SSL) and Transport Layer Security (TLS). Researchers have pointed out that software-based

security packages in general and SSL/TLS in particular, have problems with the protection of

long-term private keys and the degradation of performance [32, 39, 61]. Furthermore, since the

security of these software-based security packages depends on the security of the underlying

operating system, they are susceptible to threats caused by security flaws of the underlying

operating system. Therefore, improving the communication security, end-system security and

performance of existing E-commerce systems is a major objective of this research.

Intrusion detection: second line of defence

Intrusion detection is usually needed as the second line of defence, when previous intrusion

prevention measures of the first line of defence have been bypassed. The major benefits of an

intrusion detection system (IDS) include [5, 81]:

• Real-time reporting of intrusions and misuses so that appropriate actions can be taken.

• Auditing of system configurations and vulnerabilities.

• Acting as quality control for security design and administration, especially of large and

complex enterprises.

• Providing useful information about intrusions that take place, allowing enhanced diagnosis,

recovery, and elimination of causative factors.

There are two broad categories of intrusion detection techniques: misuse detection and

anomaly detection [26, 93]. In misuse detection, known attacks or system weaknesses are first

encoded into patterns or signatures. Then, these signatures are used to verify the current

activities, and any matched activity is considered an attack. In anomaly detection, a detection
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profile is first constructed to characterize normal behaviour or historical activity patterns of

an object. Then, the detection profile is used to verify the object’s current activities, and

any significant deviation from normal behaviour is considered a possible attack. While misuse

detection can only effectively detect known attacks, anomaly detection has the potential to

detect novel and unknown attacks. This is because no advance knowledge about specific attacks

is required in anomaly detection [26, 93]. In our approach, we focus on anomaly detection,

specifically in detecting anomalies in the execution of programs, as well as intrusions against

programs.

Accuracy, efficiency and adaptability are the most important properties of any intrusion

detection systems [81, 82]. Generally, existing anomaly detection systems usually produce ex-

cessive false alarms, which will virtually disrupt the normal operations of the monitored systems.

In addition, several anomaly detection approaches, such as those presented in [102, 134] suffer

a serious efficiency problem due to high training costs of the detection profiles. Furthermore,

existing anomaly detection systems lack in adaptability, because no mechanisms are provided to

update their detection profiles dynamically, in order to adapt to the changes of the behaviour of

monitored objects [81, 82]. Therefore, improving the detection accuracy, efficiency and adapt-

ability of existing program anomaly intrusion detection approaches is another major objective

of this thesis research.

1.1 Thesis Aims

We propose a solution to protect computer and information systems against intrusions with two

lines of defence: preventing intrusions at the first line, and detecting intrusions at the second

line if the prevention measures of the first line have been bypassed.

Specifically, we focus on enhancing the following aspects of existing E-commerce systems at

the first line of defence:

• Communication security

• End-system security

• Performance.

And we aim at improving the following characteristics of existing program anomaly intrusion
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detection approaches at the second line of defence:

• Accuracy

• Efficiency

• Adatability.

1.2 Thesis Contributions

This thesis research provides contributions to three fields: E-commerce security, machine learn-

ing and anomaly intrusion detection.

1.2.1 Hardware-based RSA encryption model

This thesis develops a hardware-based RSA encryption model for the enhancement of security

and performance for E-commerce applications.

This thesis presents a hardware-based RSA encryption model, aiming at enhancing security

and performance for E-commerce applications with the following contributions:

1. Hardware-based RSA encryption modules are developed to enhance the security and per-

formance for E-commerce applications. The security of the proposed encryption model is

assured by the strength of RSA encryption at large keys and the security of a hardware-

based cryptosystem. On the other hand, the model’s performance is guaranteed by the

hardware’s high processing capability.

Hardware-based cryptosystems are generally considered more secure than software-based

counterparts since a hardware based cryptosystem runs on its own physical memory space,

and therefore it can effectively prevent malicious access from external programs. This also

means that the security of a hardware-based cryptosystem does not depend on the security

of the underlying operating system. Furthermore, hardware can then be used to safely store

sensitive information, such as long-term private keys.

Experimental results showed that the proposed hardware-based RSA encryption model

performs better than the software-based RSA implemetation, running on Intel Pentium

4 machines that have almost double clock speed of the DSP’s clock speed at large RSA
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encryption keys. The results confirmed that the proposed encryption model is more scal-

able than software based implementations, and it can be used to efficiently improve the

security and performance of E-commerce applications.

2. Techniques are developed to integrate hardware-based RSA encryption modules into exist-

ing web-based client/server E-commerce systems. These techniques also include a method

to improve the throughput of communication channels between hardware-based encryption

modules and computer applications.

Some parts of our work in this area, including the above contributions has been published

in [41].

1.2.2 HMM incremental training scheme for program anomaly detection

This thesis develops a new HMM incremental training scheme which aims at reducing HMM

training time and storage demand. The proposed HMM incremental training scheme can be used

to solve the efficiency problem for existing HMM-based program anomaly detection approaches.

Hidden Markov model (HMM) is a powerful data modelling tool in a wide range of ap-

plications [103, 104]. The application of Hidden Markov models to characterize the normal

behaviour of monitored objects in anomaly detection has also reported high detection accuracy

[42, 102, 134]. However, these HMM-based anomaly detection approaches suffered a serious

efficiency problem because the construction of HMM models, using the well-known Baum-Welch

algorithm, is very expensive in terms of training time and space. The time and space complexi-

ties of Baum-Welch algorithm are O(N2T ), where N is the number of HMM states and T is the

length of the observation sequence [77, 104]. The high training costs make HMM-based anomaly

detection approaches less efficient for use in practice, especially when N and T are large. This

thesis presents an efficient HMM incremental training scheme with the following contributions:

1. An optimal initialization method for HMM training: Random initialization is

a common method used in HMM training, where random generated values are used as

initial values for HMM parameters. The HMM training convergence, based on random

initialization, is usually slow and this leads to longer training time. This thesis proposes

an optimal initialization method to improve the HMM training convergence. Experimental

results showed that HMM training based on the proposed initialization method reduced
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training time up to 67.36%, compared to HMM training based on random initialization.

The proposed initialization method consists of:

(a) An algorithm to compute the prior probabilities from training data.

(b) A method to initialize HMM parameters using a combination of the computed prior

probabilities and random generated values for HMM training.

2. An HMM incremental training scheme with optimal initialization: We improve

the HMM training scheme in [16] and make it incremental. Unlike the Baum-Welch algor-

ithm which uses the complete set of training data to update the HMM model, the proposed

HMM incremental training scheme only uses one subset of training data at a time to up-

date the HMM model until convergence. This results in faster training convergence and

lower storage demand. The optimal initialization method is incorporated into the proposed

HMM incremental training scheme to further reduce training time. Experimental results

showed that the proposed HMM incremental training scheme with optimal initialization,

reduced training time about four times, compared to the Baum-Welch algorithm. The

reduction of storage demand is K times, where K is the number of data subsets used. The

proposed HMM incremental training scheme includes:

(a) Weighted merging equations for HMM parameters λ(A,B, π). These equations are

used to merge two same-size HMM models based on their weights.

(b) An HMM incremental training algorithm based on weighted merging, which updates

the HMM model using one subset of training data at a time until convergence.

Some parts of our work in this area, including the above contributions has been published

in [43].

1.2.3 HMM-based model for program anomaly detection

This thesis develops an HMM-based model for program anomaly detection using system calls,

which aims at improving the detection accuracy, efficiency and adaptability of existing program

anomaly detection approaches.

This thesis presents an HMM-based program anomaly detection model using system calls

with the following contributions:
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1. A temporal-based anomaly signal evaluation scheme to improve the strength

of anomaly signals: In [25], the anomaly signal was measured by the percentage of the

number of abnormal sequences detected in the whole test trace. However, since abnormal

sequences usually distribute in small groups across the test trace, this anomaly signal mea-

surement method does not accurately represent the distribution of abnormal sequences in

the test trace. A temporal-based anomaly signal evaluation scheme is proposed to improve

the strength of anomaly signals by grouping individual abnormal sequences into tempo-

rally local regions. The proposed anomaly signal evaluation scheme is used to evaluate the

anomaly signal in the proposed HMM-based program anomaly detection model.

2. A two-layer detection scheme to reduce false positive alarms: The proposed

two-layer detection scheme uses an HMM model and a normal database [25] to create a

double-layer test in order to reduce false alarms. Sequences of system calls of test data

are first evaluated by the normal database to find mismatched and rare sequences. Then

only mismatched and rare sequences are evaluated by the HMM model to find abnormal

sequences. Experimental results showed that the proposed two-layer detection scheme

effectively reduced the false alarms by about 28%, compared to the normal database scheme

[25].

3. A fuzzy-based detection scheme to further reduce false positive alarms and

to increase detection rate: It is a fact that the normalcy and the abnormalcy are

not truly crisp concepts, and therefore it is not always possible to correctly classify an

object’s behaviour as normal or abnormal using crisp conditions [18, 33, 34]. A fuzzy-based

detection scheme is developed to improve this classification problem. In this detection

scheme, first fuzzy sets and rules are used to represent the space and combined conditions

of parameters of each test sequence of system calls. The sequence parameters are generated

by an HMM model and a normal database. Then, the fuzzy reasoning is used to evaluate

each test sequence by combining the sequence parameters based on the pre-defined fuzzy

sets and rules. Experimental results showed that the fuzzy-based detection scheme reduced

false alarms by about 28% and 48%, compared to the two-layer detection scheme and the

normal database scheme [25], respectively. Furthermore, it also produced strong anomaly

signals for all tested abnormal traces, which helped to improve detection accuracy. The
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proposed fuzzy-based detection scheme includes:

(a) An empirical method to represent space and combined conditions of sequence param-

eters using fuzzy sets and rules.

(b) A fuzzy reasoning method to evaluate each sequence of system calls by combining

sequence parameters from multiple sources.

4. The efficient HMM incremental training scheme is used to construct and update the HMM

model in the proposed HMM-based anomaly detection model. This improves the proposed

detection model’s efficiency.

5. A scheme for the online updating of the detection model: An online update scheme

is developed to update the HMM model and the normal database, which are the two main

components of the proposed HMM-based anomaly detection model, using the online test

data. First, the online test data is cleaned from anomalies to produce an online training

set. Then, the online training set is used to incrementally update the HMM model and

the normal database.

Some parts of our work in this area, including the above contributions has been published

in [42, 43].

1.3 Thesis Structure

The rest of the thesis is organized as follows: Part I, which consists of Chapter 2, focuses

on preventing intrusions for E-commerce systems using hardware-based encryption. Chapter

2 first investigates the problems of the existing software-based security solutions, and then

presents the proposed hardware-based RSA encryption model for the enhancement of security

and performance for E-commerce systems.

Part II, which includes six chapters, from Chapter 3 to Chapter 8, focuses on detecting

intrusions on programs using anomaly detection. Chapter 3 discusses the advantages and disad-

vantages of the existing approaches for program anomaly detection, and then presents the aims

and the outline of our anomaly intrusion detection approach. Chapter 4 gives a brief introduc-

tion to hidden Markov models, and their three basic problems and solutions, which will be used

to develop the proposed HMM-based anomaly detection model. Chapter 5 describes our basic
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model for program anomaly detection, in which HMM modelling is used to characterize normal

program behaviour using system calls. It also presents our two-layer detection scheme, which

is an extension to the basic model, aimed at reducing false alarms. Chapter 6 describes the

proposed efficient HMM incremental training scheme for program anomaly detection. Chapter 7

presents our fuzzy-based detection scheme, aimed at further reducing false alarms and increasing

the detection rate. Chapter 8 describes the proposed complete HMM-based program anomaly

detection model using system calls.

Chapter 9 summarizes the thesis and outlines some possible improvements for future work,

followed by the Appendices and Bibliography.
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for E-commerce Applications
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Chapter 2

E-Commerce Security Enhancement

Based on DSP Hardware

RSA Encryption

This chapter presents a hardware-based encryption model for the enhancement of E-commerce

security. The proposed encryption model focuses on two main security issues: (i) information

confidentiality and long-term private key protection, and (ii) performance improvement for E-

commerce applications. The model’s architecture is based on the existing web-based client/server

model, and is enhanced with hardware-based encryption modules. A prototype E-commerce

system, based on the proposed encryption model, has been built for the proof of concepts.

Performance evaluation shows that the proposed encryption model is suitable for the business-

to-customer E-commerce.

2.1 Introduction

As discussed in Chapter 1, the security of E-commerce applications depends on two aspects:

communication security and end-system security [32]. Cryptography-based security packages

and protocols, such as Secure Socket Layer (SSL) and Transport Layer Security (TLS) have

been widely used to ensure communication security for Internet and E-commerce applications.

These security protocols make use of TCP to provide a reliable end-to-end secure communication

service. Figure 2.1 shows the relative location of SSL/TLS in the TCP/IP protocol stack. TLS

15
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Figure 2.1: Relative location of SSL/TLS in the TCP/IP protocol stack

is approved by the Internet Engineering Task Force (IETF) as a standard protocol for secure

communications. As TLS is very similar to SSL, thereafter we only discuss SSL. SSL’s general

features are as follows:

• SSL uses public key cryptography for communication parties to authenticate each other

and to exchange shared secret keys.

• SSL uses secret key cryptography to encrypt and decrypt all information exchanged in

communication sessions.

• SSL requires at least one communication party to hold a public key certificate.

SSL was developed by Netscape in 1994 and it quickly became an industrial standard for

secure communications over the Internet. It has been implemented in most mordern Internet

applications, such as web servers and web browsers. Although SSL is widely used in Internet

and E-commerce applications, there are still some issues that need to be addressed:

1. Protection of long-term private keys: A communication party, that has a public key certifi-

cate, is also holding a private key corresponding to the public key stored in the certificate

[32]. A common question is how this private key can be protected during its lifetime? Soft-

ware, whether it is an operating system, a web browser, or an application package, that

gets access to the private key, has to protect that key. In most cases, present technology

will not be able to provide strong assurance for the protection of private keys [32].

2. Degradation of performance: Like almost all present security solutions, SSL provides the

security at the expense of performance, because it uses system resources to establish secure

communiation channels and to encrypt and decrypt all traffic between communication
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Figure 2.2: SSL Performance for HTTP ‘authentication’ requests [61]

parties. In order to measure the SSL’s effect to the performance, Kaven [61] has conducted

experiments on a client/server communication system using three options as follows:

(a) No SSL, no VPN1: the client sends requests to the server using a direct connection,

without SSL and without VPN.

(b) SSL, VPN: the client sends requests to the server using a VPN connection over SSL.

(c) SSL, no VPN: the client sends requests to the server using a SSL connection.

The results of these experiments presented on Figure 2.2 and 2.3 [61] clearly show that SSL

degrades the performance for both HTTP ‘authentication’ and ‘get’ requests significantly.

Similarly, Secure HTTP (HTTP over SSL) is usually slower than normal HTTP. He’s [39]

experiments on the performance of Secure HTTP confirm that performance reduction of

Secure HTTP compared to HTTP is 33% on average.

In general, SSL/TLS and software-based security packages, that are used to address the

problems of E-commerce security, do not provide features that can address the security issues

of E-commerce as a whole. In particular, SSL/TLS does not provide mechanisms to protect

private keys during their lifetime. It is also noted that performance degradation is an issue of

software-based security packages.

Hardware-based cryptography can overcome many security problems suffered by software-

based security packages. Hardware-based cryptography has two main advantages over software-
1VPN stands for Virtual Private Network
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Figure 2.3: SSL Performance for HTTP ‘get’ requests [61]

based cryptography:

• Security : Hardware-based cryptosystems are considered more secure than software-based

equivalents, because hardware cryptosystems run in their own physical memory space,

which effectively prevents malicious memory access. Unlike software cryptosystems, hard-

ware cryptosystems are not dependent on the security of the underlying operating system

[6]. This means that they are not affected by operating system flaws that lead to secu-

rity threats. Furthermore, sensitive information, such as long-term private key, which is

burnt into a hardware chip, is effectively protected from illegal accesses and modifications

[6]. Smart cards are the best example of using dedicated hardware to store important

information [32].

• Performance: Generally, dedicated hardware provides high computing power, compared

to that of general-purpose computers. Therefore, hardware can be used to speed up the

encryption and decryption process. This also means that longer encryption keys can be

used. And, this in turn improves security.

2.1.1 Aims

We propose a hardware-based encryption model for existing E-commerce systems, which focuses

on three major aims:

1. To enhance the confidentiality of transaction data of E-commerce systems.
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2. To improve the private key security of E-commerce end-systems.

3. To impvove the performance of E-commerce systems.

2.1.2 Outline of the Proposed Approach

In order to ensure the confidentiality of transaction data of an E-commerce system, we use the

RSA public key encryption algorithm [108] as the core algorithm to encrypt all data at each

end before they are transferred to the other end. The RSA encryption can provide a high

level of security and its strength has been proven in practice [92, 113, 122]. As a public key

algorithm, RSA has simpler key exchange mechanism, compared to that of secret key encryption

[92, 113, 122]. RSA has been used in a wide-range of applications, to provide data confidentiality,

non-repudiation of origin and digital signature [32, 92, 113, 122].

The private key security is guaranteed using an integrated hardware module as the key stor-

age medium. Hardware has been proven to be the best medium to store important information,

such as long-term private keys [6, 32]. Specifically, we use Digital Signal Processors (DSPs) to

develop our hardware-based encryption modules. On one hand, DSPs provide more computing

power than small microchip devices, such as smart cards. On the other hand, DSPs are more

flexible than the dedicated VLSI (Very Large Scale Integrated) chips. In addition, DSP boards

support several types of computer communication interfaces, such as PCI interface, COM ports

and USB ports. This makes it more favourable for the development and deployment of DSP

applications.

The use of hardware as the platform in the proposed encryption model also serves for the

purpose of performance improvement. As discussed in Section 2.1, dedicated hardware can

provide high computing power, compared to that of general-purpose processors. This is very

important for performance improvement of RSA encryption implementations.

The proposed encryption model is based on the integration of the existing client/server model

of E-commerce applications and hardware-based encryption modules. The hardware modules

are integrated into both ends of an E-commerce system. They perform data encryption and

decryption, as well as store the system’s life-time private keys. In Sections 2.3 and 2.4, we

discuss the architecture and implementation of the proposed encryption model in details.
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2.2 Related Work in Hardware-based Cryptosystems

Hardware cryptography is an on-going research topic [67, 98]. Research and development on

hardware-based RSA cryptosystems can be roughly classified into two categories:

1. Reconfigurable Hardware Cryptosystems:

This solution is based on special hardware architectural design to build fast RSA cryptosys-

tems. A new approach in this category is Field Programmable Gate Arrays (FPGAs). An

FPGA is an array of logic gates that can be hardware-programmed to fulfill user-specified

tasks. In this way, one can create special purpose functional units that may be very ef-

ficient for a specific task. As FPGAs can be reconfigured dynamically, it is theoretically

possible to optimize them for more complex special tasks at speeds that are higher than

what can be achieved with general-purpose processors [96, 135].

2. Embedded Hardware Cryptosystems:

Smart cards and Digital Signal Processors (DSPs) are leading hardware in this category.

Generally, a smart card is a plastic card with a special integrated circuit (IC) chip imbed-

ded in the surface of the card. There are two principal types of smart cards, namely

microprocessor-based and memory-based. The IC chip in the card provides intelligence

sufficient to protect its information from theft or damage. Smart cards usually have limited

processing power and storage capacity [32, 45].

A DSP is a specialized digital microprocessor used to efficiently and rapidly perform cal-

culations on digital signals that were originally analog in form [135]. DSPs provide more

computing power and storage capacity than smart cards. For example, a Texas Instru-

ments’s TMS320C6416 DSP board has a 32-bit processor running at 1000 MHz, and ex-

ternal RAM memory of 16 megabytes [127], as opposed to a typical smart card that has a

16-bit microprocessor and 8 kilobytes of RAM [45].

On the DSP platform, Hu et al [46] reported a DSP-based RSA cryptosystem. In this work a

Texas Instruments’ TMS320C6201 DSP PCI card is used as the hardware platform to implement

the RSA encrytion algorithm. This DSP-based RSA cryptosystem was reportedly to outperform

the RSA implementation in software environment using C++ language at PC level. The use of a

DSP PCI card is an advantage in this system, because it can reduce overhead of communications

between the host computer and the DSP. A common point between this work and our approach
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is that DSP hardware of Texas Instruments’ TMS320C6000 DSP family was used as the platform

to support the RSA encryption. However, the reported work is a stand-alone DSP-based RSA

cryptosystem while our hardware-based encryption modules are integrated into an E-commerce

system in order to improve the system’s security and performance.

In other DSP-based approach, Er et al [20] presented a design and implementation of an RSA

cryptosystem using multiple DSP chips. The reported system makes use of parallel processing in

order to speed up the RSA encrytion. The most interesting feature of this system design is that

it allows for additional DSP chips to be inserted in allocated slots to improve performance. A

master DSP chip is used to control and co-ordinate all the slave DSP chips, while the slave DSPs

carry out the actual task processing. With 8 slave DSPs, the system’s performance was found

70 times faster than the corresponding software implementation at the PC level. In this system,

the DSP cryptosystem is controlled by a host PC application through UART serial channels.

On reconfigurable hardware platform, Buldas et al [10] presented a VLSI implementation of

the RSA and IDEA encryption engine. The VLSI module can generate and hold RSA keys in

its firmware. It uses the RSA encryption for secure key exchange, and the IDEA algorithm for

block encrytion. The reported VLSI module only supports maximum RSA moduli of 768 bits

which is too short for an RSA key for practical applications [108, 122].

In [96], an FPGA implementation of the RSA algorithm is reported. The FPGA struc-

tures are built using a modified Montgomery multiplier, where the multiplication and modular

reduction operations are carried out in parallel rather than interleaved as in the traditional

Montgomery multiplier. This helps the reported RSA structures outperform structures which

are built based on the traditional Montgomery multiplier. The proposed implemenation report-

edly had double throughput rate, compared to that of implementations, based on the traditional

Montgomery multiplier. Another advantage of this implementation is it can reduce the size of

the chip.

Kim and Lee [65] proposed an integrated crypto-processor which is a special-purpose mi-

croprocessor. This crypto-processor is optimized for cryptography algorithms. The proposed

system supports secret key algorithms, such as AES, KASUMI, triple-DES, and public key algo-

rithms, including RSA and ECC. The crypto-processor consists of a 32-bit RISC processor block

and co-processor blocks. Each co-processor block is a dedicated hardware implementation of a

cryptographic algorithm. The co-processor block allows fast execution of encryption, decryption
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and key scheduling operations. The RISC processor block can be used to perform several cryp-

tographic algorithms, such as hash, and other application programs, such as user authentication

and IC card interface. The proposed crypto-processor can be used for various security applica-

tions, such as storage devices, embedded systems, network routers, security gateways using IPSec

and SSL protocol. There are many other reports along this line, as in [64, 109, 118, 125, 126].

2.3 The Proposed DSP-Based RSA Encryption Model

We introduce a new DSP hardware-based encryption model using the RSA public key algorithm

[108] for E-commerce systems, as shown in Figure 2.4. The model’s architecture is based on the

web-based client/server model. The server consists of a web server, a server DSP communication

module and a DSP hardware RSA decryption engine. The client includes a web browser, a client

DSP communication module and a DSP hardware RSA encryption engine. The server and the

client communicate with each other using TCP/IP networks, such as the Internet. For simplicity,

one way of exchanging information from the client to the server is presented. First, a plaintext

message is encrypted by the client’s hardware encryption engine using the server’s public key

to produce a ciphertext message. The ciphertext message is then sent to the server. Next, the

ciphertext message is decrypted by the server’s hardware decryption engine using the server’s

private key.

Regarding public key distribution from the server to the client, the most common method

is that, the client gets the server’s public key certificate that includes the server’s identity and

public key. Generally, a public key certificate is a certificate which uses a digital signature to

bind a public key together with an identity that can be the information about an organization,

or a person. In a typical public key infrastructure (PKI) scheme, public key certificates are

issued by trusted parties called Certificate Authorities (CAs) [32, 135]. A CA certificate can be

used to verify an individual’s identity and that a public key belongs to an individual [135]. In

our experiments, for simplicity we incorporate the server’s public key into a web page and send

it to the client.

A detailed description of components of the server and the client in the proposed encryption

model is as follows:
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Figure 2.4: Architecture of proposed DSP hardware RSA encryption model. The parts wrapped

by dashed lines are new components that are added to an existing client/server model.

1. The Server:

(a) Web server is used to host a functional E-commerce website. It serves website’s

content to client and accepts information submitted from client.

(b) The server DSP communication module runs on the server and works on the web

server’s requests. It is responsible for all communications between the web server and

the DSP hardware RSA decryption engine.

(c) The DSP hardware RSA decryption engine runs on DSP hardware to decrypt cipher

messages received from the web server. This decryption engine stores the server’s

RSA long-term private key.

2. The Client:

(a) Web browser is responsible for sending requests, managing downloads and displaying
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web pages. It can also submit user data forms to the web server.

(b) The client DSP communication module runs embeded inside the client web browser

as a plug-in. It is responsible for all communications between the client web browser

and the DSP hardware RSA encryption engine.

(c) The DSP hardware RSA encryption engine runs on the DSP hardware to encrypt

plaintext messages received from the client web browser. The encryption engine is

also used to store the client’s RSA private key for the decryption of messages from

the server.

On the client side, the client DSP communication module is designed to be downloadable1

and installable automatically from server to client. The procedure of sending information from

the client to the server in the proposed encryption model has the following steps:

1. On the user’s behalf, the client web browser sends a request to the server for a web page,

such as an online credit card payment page, where the user’s payment information needs

to be encrypted before being sent to the server. The client DSP communication module is

embeded into the requested web page. The client browser loads the web page, and installs

and activates the client DSP communication module. The client DSP communication

module is only downloaded and installed if it is not already present in the client system.

The server’s public key is also incorporated into the requested web page that is sent to the

client web browser.

2. When the user enters data (plain text) into the data entry form in the web page and

submits the information, the client DSP communication module captures the plain text.

It then establishes an input communication channel to the DSP hardware RSA encryption

engine, and then sends the plain text and public key to the encryption engine.

3. Upon receiving the plain text and public key, the DSP hardware RSA encryption engine

encrypts the plain text to produce the cipher text. It then sends the cipher text back to

the client DSP communication module through an output communication channel.

4. Next, the client DSP communication module forwards the cipher text to the browser, and

then the browser submits the cipher text to the server.
1The security of downloadable ActiveX components is discussed in Section 2.4.2
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5. When the server gets the cipher text, it passes the message to the server DSP communica-

tion module through its object interface. In turn, the server communication module opens

an input communication channel to the DSP hardware RSA decryption engine, and then

sends the cipher text to the decryption engine.

6. Upon receiving the cipher text, the DSP hardware RSA decryption engine decrypts the

cipher text to get the plain text, using the server’s stored private key. It then sends the plain

text back to the server DSP communication module through an output communication

channel.

7. In the end, the server DSP communication module forwards the plain text back to the

server.

2.3.1 Communications between host computer and DSP

In the proposed encryption model, as shown in Figure 2.4, all communications between the client

web browser and the DSP hardware RSA encryption engine, as well as communications between

the web server and the DSP hardware decryption engine, are supported by the Real Time Data

Exchange (RTDX) channels. RTDX comes as a software library of the DSP application devel-

opment tools. Figure 2.5 shows the RTDX-based communication mechanism between the client

browser and the DSP encryption engine. Figure 2.6 describes the RTDX-based communication

mechanism between the web server and the DSP decryption engine.

RTDX is a new technology of Texas Instruments (TI), that enables two ways of commu-

nications between the DSP applications and computer applications. The RTDX’s application

programming interface includes the RTDX built-in library and the RTDX exported library. The

RTDX built-in library is used in DSP applications to support RTDX communications on DSP

target side while RTDX exported library is included in computer applications to support RTDX

communications on computer side. The RTDX communication channels can support real-time

and full duplex data exchanges between the host computer and the target DSP [62].

RTDX communication channels can be operated in two modes: non-continuous and continu-

ous mode. In non-continuous mode, the transferred data is recorded into a log file that has been

specified in RTDX configuration. As data is saved in a log file, non-continuous mode is suitable

for off-line processing. In continuous mode, data is logged into a circular memory buffer in the
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Figure 2.5: Communications between the client web browser and

the DSP hardware RSA encryption engine using RTDX channels

Figure 2.6: Communications between the web server and the DSP

hardware RSA decryption engine using RTDX channels

RTDX Host Library, which helps continuously obtain and display live data from a target DSP

application [62]. In our experiments, we use RTDX in continuous mode to get the real time

data, as well as to avoid storing plain text data to computer’s hard disk.
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2.3.1.1 RTDX communications on the client side

As shown in Figure 2.5, the client web browser exchanges information with the DSP hardware

RSA encryption engine, using RTDX channels supported by the client DSP communication

module. The data flow from the client web browser to the DSP encryption engine is as follows:

• First, the browser sends user data that needs to be encrypted to the client DSP commu-

nication module through its object interface.

• Next, the browser object interface forwards the data to the computer RTDX interface of

the client DSP communication module.

• Then, the computer RTDX interface opens an input RTDX communication channel to

send the data to the DSP RTDX interface of the DSP encryption engine.

• Upon receiving the data, the DSP RTDX interface transfers it to the DSP encryption

engine for encryption.

On the opposite direction, the data, which is an encrypted message, can be sent from the

DSP encryption engine to the client web browser using the following procedure:

• First, the DSP encryption engine forwards the data to its DSP RTDX interface.

• Next, the DSP RTDX interface opens an output RTDX communication channel to send

data to the computer RTDX interface of the client DSP communication module.

• Upon receiving the data, the computer RTDX interface transfers it to the browser object

interface.

• In the end, the browser object interface forwards the data to the client web browser. The

client web browser in turn submits the data to the server.

2.3.1.2 RTDX communications on the server side

As shown in Figure 2.6, the web server exchanges information with the DSP hardware RSA

decryption engine, using RTDX channels supported by the server DSP communication module.

The RTDX-based communication mechanism on the server side is very similar to that of the

client side. The only difference is that the web server communicates with the server DSP
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communication module using the Server Object Interface, instead of the Browser Object Interface

of the client. In addition, the web server sends the encrypted message (submitted from the client

web browser) to the DSP decryption engine and then gets back the decrypted message.

2.4 Implementation of the Proposed Encryption Model

In this section, we discuss the implementation details of crucial components of the proposed

hardware-based encryption model, including the DSP hardware RSA encryption engine, the

client DSP communication module, the DSP hardware RSA decryption engine and the server

DSP communication module. We chose Microsoft Windows as our software platform and DSP

hardware and development tools from Texas Instruments (TI) to develop these components.

Specifically, Microsoft Visual C++ was used to develop the client DSP communication module

and the server DSP communication module. The DSP hardware RSA encryption engine and the

DSP hardware RSA decryption engine were built using the TI’s TMS320C6416 DSP and Code

Composer Studio. TI’s Code Composer Studio is a C programming development environment

for DSP applications.

2.4.1 DSP hardware RSA encryption engine

The DSP hardware RSA encryption engine consists of two parts: the RSA encryption engine

and the DSP RTDX interface. The RSA encryption engine is the implementation of the RSA

algorithm on DSP hardware, while the DSP RTDX interface is the communication interface

between the RSA encryption engine and the client DSP communication module.

2.4.1.1 Implementation of RSA encryption engine

As discussed in Section 2.1, the RSA public key encryption algorithm [108] is selected as the

core encryption algorithm for the proposed encryption model. The RSA algorithm was invented

by R. Rivest, A. Shamir and L. Adleman in 1977. Table 2.1 summaries the RSA encryption

scheme [122]. The RSA encryption protocol consists of two major processes: (1) - Key Gener-

ation to generate RSA key pair, which are public and private keys, and (2) - Encryption and

Decryption of messages, using RSA key pair. Only the private key of the RSA key pair needs

to be kept secret, while the public key can be made publicly available and transmitted through
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Table 2.1: RSA public key encryption algorithm

Key Generation

Select p, q p and q both primes, p 6= q

Calculate n = p ∗ q

Calculate φ(n) = (p− 1)(q − 1)

Select integer e gcd(φ(n), e) = 1; 1 < e < φ(n)

Calculate d d ≡ e−1 mod φ(n)

Public key KU = {e, n}

Private key KR = {d, n}

The modulus n

Encryption component e

Decryption component d

Encryption

Plaintext: m ; m < n

Ciphertext: c = me mod n

Decryption

Ciphertext: c

Plaintext: m = cd mod n

open communication environment, such as the Internet.

Important notes on the generation of RSA keys

In the RSA key generation process, the prime numbers p and q should be selected so that

the factoring n = p ∗ q is computationally infeasible. The major restriction on p and q, in order

to avoid the elliptic curve factoring, is that p and q should be roughly the same bit length and

sufficiently large [92]. For example, if a 1024-bit modulus n is to be used, then each of p and

q should be about 512 bits in length. Another restriction on the primes p and q is that the

difference p− q should not be too small. If p− q is small, then p ≈ q and hence p ≈
√

n. Thus,

n could be factored efficiently, simply by trial division by all odd integers close to
√

n. If p and

q are chosen at random, then p − q will be appropriately large with overwhelming probability

[92]. In addition to the mentioned conditions, it is recommended that p and q be strong primes.
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A prime p is said to be a strong prime if it satisfies the following three conditions [92]:

(i) p− 1 has a large prime factor, denoted r;

(ii) p + 1 has a large prime factor; and

(iii) r − 1 has a large prime factor.

Use of small encryption component

Small encryption component e, such as e = 3, may be used to improve the efficiency of

the RSA encryption [92]. A common encryption component e may be shared among a group

of entities, and each entity in the group must have its own distinct modulus n. If an entity

wants to send a message to other entities in the group, it encrypts the original message using

common encryption component and a modulus from each of other entities to produce one cipher-

text message for each entity. However, this scheme is vulnerable to eavesdropping attacks, in

which an eavesdropper can recover the original message by analyzing corresponding ciphertext

messages sent to other entities. Padding a random bit-string to the original message on each

encryption can be used to prevent this type of attach [92]. In our proposed model, we chose

encryption component size as same size of the modulus in order to prevent attacks that exploit

the weaknesses of small encryption components.

Use of small decryption component

Similar to the use of small encryption component e, small decryption component d may be

used to improve the efficiency of the RSA decryption [92]. However, if the decryption component

d is small and gcd(p − 1, q − 1) is small, d can be efficiently computed from the modulus and

the encryption component (n, e). Hence, in order to avoid this type of attacks, we chose the

decryption component size roughly the same size of the modulus n [92].

Size and format of encryption blocks

In the RSA algorithm, the equation c = me mod n is used to encrypt message m using the

public key (n, e). In order to make the RSA encryption work properly, the message m must be

represented as an integer, and integer value of(m) must be smaller than integer value of(n)

[92]. Therefore, for a large message M , it must first be divided and formatted into r encryption

blocks (m1,m2, ...,mr) such that:
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integer value of(mi) < integer value of(n), i = 1, r

The size of encryption blocks could be a fixed or changeable value, depending on the system’s

design. Theoretically, the encryption block size could be any non-zero value, provided that

integer value of(mi) is smaller than integer value of(n). However, the block size should not

be too small because a block cipher with small block size may be vulnerable to the attacks, based

on statistical analysis [92]. One such attack involves simple frequency analysis of cipher text

blocks. Therefore, to get the maximum security, the block size should be as large as possible

[92] and roughly the same size as the size of the modulus n.

The format of RSA encryption blocks has been formally defined in “PKCS #1: RSA En-

cryption, version 1.5 and 2.0” [55, 56]. An encryption block EB, that consists of a block type

BT, a padding string PS and data D, is a formatted octet string as follows [55, 56]:

EB = 00 || BT || PS || 00 || D

where || is the concatenation sign. If the modulus n has k octets, each encryption block

also has the same k octets. The leading 00 octet makes sure that the converted integer value

of the encryption block is smaller than the value of the modulus n. The block type BT is one

octet which is 00 or 01 for private key operation, and 02 for public key operation. The padding

string PS consists of k − 3 − ||D|| octets, where ||D|| is the length of the data D in number of

octets. For public key operation, the padding string should be pseudorandomly generated and

nonzero. The padding string should be at least eight octets long, which is a security constraint

for public-key operations, that prevents an attacker from recoving data by trying all possible

encryption blocks [55, 56]. Therefore, the minimum size of the encryption block EB is 12 octets

to satisfy the defintion of the encryption block format (minimum 1 octet for data, and 11 octets

for the leading octet, the BT, the PS and 1 octet between PS and the data).

For the purpose of performance testing, we chose to use a simple method to format a large

message into encryption blocks in our implementation. Our encryption blocks consist of only

the data. The size of encryption blocks in the number of octets is calculated as follows:

size of encryption blocks (octets) = k − 2

where k is the size of the modulus n in number of octets.
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As we use the radix of 216 (as explaining in next heading) to represent the big integers for

RSA operations, the size of a big integer’s digit is 16 bits or 2 octets. Therefore, the substraction

of 2 octets (which is equivalent to one meaningful big integer digit) from the modulus size is to

make sure that integer value of(mi) is always smaller than integer value of(n).

Big integer representation for RSA implementation

Most modern 32-bit computing architectures, including the TI’s TMS320C6416 DSP and

personal computers, support standard types of integers, which are represented using fixed num-

ber of bits. The maximum size of integers supported by these computing systems is 32 bits.

This means the maximum value representable in these system is 232 − 1 = 4, 294, 967, 295. By

the requirement of the RSA algorithm, RSA keys would be in the level of 10100, or even larger,

which cannot be held by computing systems in the standard types of integers. One solution

is to use arrays of fixed integers to represent big integers, or multiple precision integers. This

representation allows the accommodation of any integer values, and is therefore limited only by

the size of the physical memory.

Takagi [125] reported a fast radix-4 modular multiplication hardware algorithm. Numbers

are represented in a redundant representation, and additions and subtractions are performed

without carry propagation. The algorithm was found efficient especially in applications where

modular multiplications are carried out iteratively. However, this specialized hardware algorithm

is not suitable for DSPs which have general-purpose processors.

In our work, we select 65536, or 216 as the base for multiple precision integer representation.

The major advantage of representing integer in base 65536 over decimal representation is that

it requires much less memory. This is especially important in the embedded systems, such as

DSPs that usually have limited memory space.

Another advantage of base 65536 representation over smaller bases, such as 256 or 28 is that

a big integer on base 65536 has fewer number of digits than the same integer value on smaller

bases. This means that arithmetic operations on base-65536 integers require less number of

memory references, as well as less number of standard-integer-atomic operations. These in

turn help to improve the computational performance. A larger base than 65536 would make

the implementation of the arithmetic operations more complicated. This is because on most

current computing systems, where the largest integer supported is 32-bit long, and the results

of arithmetic operations on such integers would overflow the 32-bit registers.
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Table 2.2: Definition of BigInt Data Struture

typedef struct {

unsigned short *digits; // pointer to array of digits

// the least significant digit at index 0

unsigned int size; // number of digits of the big integer

short sign; // sign of the big integer,

// sign = -1 for negative number, and 1 otherwise

} BigInt ;

In addition, on base 65536 (216), fast shift operations can be used to replace the high-cost

multiplication and division operations. This in turn gives better computational performance.

We define a simple data structure BigInt to store big integers for the implementation of

the RSA encryption algorithm, as shown in Table 2.2. Each digit in the BigInt type can store

a 16-bit integer number, ranging from 0 to 65535. The maximum size of the big integer is

232 = 4294967296 digits. Hence, the biggest integer value can be represented is 655364294967296.

This great integer value is sufficient to represent very large RSA keys, such as 2048-bit key,

which is about 616 base-10 digits.

BigInteger package implementation

BigInt package is the heart of the RSA algorithm implementation. The package consists of

necessary arithmetic and logic functions on big integers to support RSA encryption and decryp-

tion. The implementation of arithmetic functions is based on efficient arithmetic algorithms,

given in [92]. Auxiliary functions, such as input and output, are also implemented to convert

text messages to BigInt and vice verse. Table B.1 (page 180) shows major functions of the BigInt

package.

2.4.1.2 Implementation of the DSP RTDX interface

The RTDX built-in library is included into the implementation of the DSP RTDX interface,

to support real-time communication between the RSA encryption engine and the client DSP

communication module. The DSP RTDX interface provides functions to initialize the RTDX

communication sessions, open communication channels, read and write data to channels and
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close channels. In order to make the RTDX communication channels work properly, they need

to be configured with correct mode and suitable buffer size. We selected the RTDX continuous

mode to get the real time data transfer. Table B.2 (page 182) lists the core RTDX built-in

functions that are used in the DSP RTDX interface.

2.4.2 Client DSP communication module

Since the client DSP communication module plays the role of a communication bridge, it must

be able to communicate with both the client web browser and the DSP hardware RSA en-

cryption engine. The module exchanges information with the DSP encryption engine using

RTDX channels, and it communicates with the client web browser via the browser’s object in-

terface. The browser object interface is the Object Linking and Embedding (OLE) interface on

Microsoft platform. The implementation of the communication module consists of two commu-

nication interfaces: the Browser Object Interface and the Computer RTDX Interface (as shown

in Figure 2.5, page 26). The browser object interface’s functions are callable from the browser,

using browser’s scripting languages, such as JavaScript. The computer RTDX interface is imple-

mented, based on RTDX exported library that provides functions to establish communication

channels to the DSP application. Table B.3 (page 183) lists the core RTDX exported functions

that are used to build the client DSP communication module. Table B.4 (page 184) lists the

major functions in the implementation of the client DSP communication module.

The client DSP communication moldule is designed and implemented as a web browser

plug-in, using Microsoft’s ActiveX technology. There is a security concern on the downloadable

ActiveX control code [27]. However, a digital signature scheme called “Authenticode”, which

is developed by Microsoft, can be used to sign the code. This scheme allows certifying the

authenticity and integrity of programs [27].

In order to use the client DSP communication module, it is embedded into web pages,

using the HTML <OBJECT> tag. Table 2.3 shows a segment of HMTL code that is used to

incorporate the client DSP communication module into a web page. The module was designed

to be downloadable and installable automatically on the client machine if it is not already

present in the client system. When the communication module is loaded into the client browser,

its interface functions can be invoked using browser’s scripting languages, such as JavaScript.

Table 2.4 shows a segment of JavaScript code that is used to call an interface function of the
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Table 2.3: Sample HTML code to embed the DSP communication module into a web page

<OBJECT NAME="dsp_comm" ID="dsp_comm" WIDTH=0 HEIGHT=0

CLASSID="CLSID:08E5AB55-BD25-437F-A03F-7FB44B6FEFE4"

CODEBASE="/dsp/ClientComm.ocx">

</OBJECT>

Table 2.4: Sample JavaScript code to invoke the DSP communication module from browser

// get the plain text

var plainText = new String(document.myForm.plainText.value);

if (plainText.length>0){

// assign the board name and DSP CPU name

var boardName = new String("C6416 Revision 1.1 DSK");

var cpuName = new String("CPU_1");

// get the RSA public key pair

var rsa_keys = new String(document.myForm.eKey.value+"."+

document.myForm.nKey.value);

// invoke the DSP encryption engine to encrypt the message

// through the DSP client communication module

// and assign the result to the cipher text control

// "dsp_comm" is the name of the embedded client DSP communication module

document.myForm.cipherText.value =

document.dsp_comm.DSPEncrypt(boardName, cpuName, rsa_keys, plainText);

}

communication module from the client web browser.

Improvement of RTDX communication performance

The RTDX library provides basic input and output functions which can be used to read

data from and write data to RTDX communication channels. However, in order to maximize

the performance of RTDX channels, the number of read and/or write operations to a channel
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Figure 2.7: RTDX data transfer speed in single and batch modes

in a communication session should be kept to a minimum [62]. In a simple term, if the amount

of data to transfer is 100 bytes, the data transfer is more efficient if the data is wrapped in a

compound, and sent at one time than sending 100 times with one byte in each message. We

encapsulated the data into a Microsoft Visual C++ SAFEARRAY of bytes, and sent them to the

target DSP, using the Write() function (as shown in Table B.3 (page 183)). To get the data

from the DSP target, we read the bulk of data into a SAFEARRAY of bytes, using ReadSAI1()

function (as shown in Table B.3 (page 183)), and then extract the bulk data to appropriate

data types. Figure 2.7 shows the RTDX data transfer speed in two cases: in the first case, we

use single read and write (Single Mode), and the next case, we use the SAFEARRAY of bytes, as

above mentioned (Batch Mode). The performance data shows that the data transfer speed of

the latter is about 8 times faster than the former, on average. For the DSP target application,

there is no need to use a compound data type, because the RTDX built-in functions, such as

RTDX_read() and RTDX_write(), support both single and bulk data transfer (as given in Table

B.2 (page 182)).
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Table 2.5: Sample VBScript code to invoke the decryption function

’ declare variables

Dim boardName, cpuName

Dim cipherText, plainText

Dim rsaObj

’ get the cipher text from client

cipherText = Request.Form("cipherText")

’ Specify the DSP board and CPU used

boardName = "C6416 Revision 1.1 DSK"

cpuName = "CPU_1"

’ create an instance of server DSP communication object

Set rsaObj = Server.CreateObject("ServerComm.DSPComm")

’ pass the cipher text to DSP decryption engine through the server

’ DSP communication module for decryption and get back plaintext

plainText = rsaObj.DSPDecrypt(boardName, cpuName, cipherText)

’ release the server object after use

Set rsaObj = nothing

2.4.3 DSP hardware RSA decryption engine

The implementation of the DSP hardware RSA decryption engine uses the same core arithmetic

and logic functions on big integers, as those of the DSP hardware RSA encryption engine, as

discussed in Section 2.4.1. The decryption engine has two components which are the DSP

RTDX interface and the RSA decryption engine. The DSP RTDX interface is responsible for

communications with the server DSP communication module, and RSA decryption engine is the

implementation of the RSA decryption. In order to decrypt a cipher message, the decryption

engine uses the server’s private key which is also stored in the DSP.

2.4.4 Server DSP communication module

The server DSP communication module plays the same role as the client DSP communication

module on the client side. Therefore, the core implementation of this module is very similar to the
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implementation of client DSP communication module. It has two communication components,

including the server object interface and the computer RTDX interface. The server object

interface is used to communicate with the web server, and the computer RTDX interface is

used to exchange information with the DSP decryption engine. The server DSP communication

module is developed using Microsoft Visual C++, and linked in the form of a Dynamic Link

Library (DLL). Its server object interface provides interface functions that are callable from

server-side scripts, such as Microsoft VBScript and JScript. Table B.5 (page 184) lists the

major functions in the implementation of the server DSP communication module. Table 2.5

shows a VBScript code segment that is used to invoke an interface function of server DSP

communication module.

2.5 Experimental Design and Results

In the first part of this section, we describe the hardware and software, which are used in the

development process and in the experiments of the proposed encryption model. Then, the design

of experiments for the evaluation of the proposed model’s security and performance is discussed.

In the last part, we present the experimental results.

2.5.1 Hardware and software

We chose Microsoft Windows as the software platform, which includes the operating system and

applications, running on server and client machines for our experiments. The DSP hardware

and software development tools are from Texas Instruments Inc.

2.5.1.1 Hardware

• The client machine was a PC with an Intel Pentium 4 1.8 GHz CPU and 512MB RAM,

running Microsoft Windows XP Professional.

• DSP devices were the Texas Instruments’ TMS320C6416 1000 MHz DSP Starter Kits

(DSK) [127]. The block diagram, board layout and major features of the TMS320C6416

DSK are given in Appendix A. TMS320C6416 is a fixed-point DSP chip, running at

the default clock speed of 1000 MHz. The DSP can be configured to run at other clock

speeds of 500, 600, 720, 850 and 1200 MHz. The DSP chip has 1024 KBytes fast internal
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RAM memory for code and data. In addition, the DSP board has 16MB SDRAM main

memory. The board also has a USB 1.0 port for communications with the host computer.

The TMS320C6416 DSK is built on the TI’s industry-leading line of low cost and high

performance DSP development boards.

• The server used in experiments was a PC with an Intel Pentium 4 2.4 GHz CPU and

512MB RAM, running Microsoft Windows 2000 Server Family. A web server and a data-

base server are installed on the server machine to host a functional E-commerce website.

The website is used as the environment to test the proposed encryption model.

2.5.1.2 Software

• Development Tools for TMS320C6416 DSP : The Texas Instruments Code Composer Stu-

dio 3.0 and the attached RTDX library were used to develop the RSA encryption and

decryption engines on DSP hardware.

• Development Tools for client and server applications: Microsoft Visual C++ 6.0 was used

to build the server DSP communication module and the client DSP communication module.

• Web browser : The web browser used in our experiments was Microsoft Internet Explorer,

because it supported the ActiveX/OLE technology that was used to develop the client

DSP communication module.

• Web and database servers: The web server software used was Microsoft Internet Infor-

mation Services 5.0. In order to test our encryption model, we built a simple but fully

functional E-commerce website on the web server, with the Microsoft SQL Server 7.0 as

database backend. The E-commerce website provides customers with online registration

for various types of commercial events. The customers can register their details with the

system, then select the interested events, and make the online payment. The design and

implementation of the website and its database are not discussed in this thesis due to

limited space.

2.5.2 Experimental design

In order to begin experiments on the proposed DSP hardware RSA encryption model, the first

step is to generate RSA key pairs. We developed a simple module to generate RSA key pairs
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for our experiments. The RSA keys, we choose to generate, are 128, 256, 512, 1024, 1536 and

2048 bits in length. For each RSA key pair, the public and the private components are roughly

the same length, and their length is equal to the modulus’s length.

In the next step, we used the generated RSA keys to conduct three types of experiments as

follows:

1. Performance tests on the proposed encryption model: the aim of these experiments was to

measure the model’s performance, including DSP encryption/decryption speed, overhead

of RTDX communications. We also measure the impact of RSA key length, DSP clock

speed and message size, to the encryption speed. Since the RSA public (encryption) and

private (decryption) keys had the same length, the complexities of the encryption and

decryption were equal. Therefore, we only measure the DSP encryption performance to

represent the model’s performance. In order to get the performance information, first,

we measure the amount of time taken for each task in the encryption process. We then

compute the speed performance, base on the amount of time taken and the size of input

message. The amounts of time taken are collected as follows:

• Encryption time: The amount of time taken, from the time the web browser sends

plain text message to the DSP encryption engine, to the time it gets back the corre-

sponding cipher text message from the DSP.

• Message transfer time: The amount of time taken for round trip of a message sent

from the client browser to the DSP encryption engine, and then the DSP sends the

message back to the client browser, without doing the encryption.

In this performance testing, we also tested the proposed model with different DSP clock

speeds, in order to measure the effect of the DSP clock speed to the model’s performance.

The TMS320C6416 DSP clock speeds, that are selected for experiment, are 500, 720, 1000

and 1200 MHz.

2. Testing the proposed encryption model with the online credit card payment: In this exper-

iment, we measure the amount of time taken for the encryption of information of typical

online credit card payments.

3. Performance testing of the RSA implementation in software: We measure the speed per-
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formance of software-based RSA implementation, running on Pentium 4 PC machines

with different clock speed CPUs, in order to compare with the performance of the DSP

hardware-based RSA implementation.

The sizes of input messages used in experiments are 512, 1024, 2048, and 4096 bytes.

2.5.3 Experimental results

2.5.3.1 Model’s performance

For each RSA key pair of 128, 256, 512, 1024, 1536 and 2048-bit, we conducted four tests,

with different messages of 512, 1024, 2048 and 4096 bytes in size as mentioned in Section 2.5.2.

The performance results are shown in Tables 2.6, 2.7, 2.8 and 2.9 for the TMS320C6416 DSP,

running at 500, 720, 1000 and 1200 MHz, respectively. Figure 2.8 presents the relation between

RSA key length and the encryption speed for a 2048-byte message, on the DSP running at 500,

720, 1000 and 1200 MHz. Figure 2.9 shows the relation between the 1000 MHz-DSP encryption

speed and the message sizes, at encryption keys of 512, 1024 and 2048 bits. Figures 2.10 and

2.11 describe the effect of the DSP clock speed to the encryption speed for short encryption

keys and long encryption keys, respectively. Figure 2.13 shows the RTDX data transfer speed

between computer and the DSP, using USB port.

As shown in Figure 2.8, the encryption speed decreases dramatically, when the length of

keys increases, for all DSP clock speeds. However, the decrement rates are vary for each DSP

clock speed. Another important factor, that affects the encryption speed, is the DSP clock

speed. It can be seen from Figures 2.10 and 2.11 that the encryption speed is proportional to

the DSP clock speed. It is also noted on Figure 2.9 that the message size has small impact on

the encryption speed. The encryption speed almost becomes stable when the message is large

enough (2048 to 4096 bytes).
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Figure 2.8: Dependence of the encryption speed on the RSA key length

Table 2.6: Encryption speed of the DSP running at 500 MHz

Message

(Bytes)

Speed on RSA key length (Kbit/s)

128-bit 256-bit 512-bit 768-bit 1024-bit 1536-bit 2048-bit

512 18.78316 8.44545 2.48505 1.20945 0.61789 0.31697 0.13476

1024 20.20637 8.39237 2.62102 1.31286 0.68694 0.31795 0.16172

2048 19.95210 8.58101 2.61442 1.31674 0.72779 0.34685 0.17969

4096 19.13739 8.62978 2.66670 1.31620 0.74973 0.34671 0.19010
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Figure 2.9: Dependence of the encryption speed on the size of input messages

Figure 2.10: Dependence of the encryption speed on the DSP clock speed for short keys
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Figure 2.11: Dependence of the encryption speed on the DSP clock speed for long keys

Table 2.7: Encryption speed of the DSP running at 720 MHz

Message

(Bytes)

Speed on RSA key length (Kbit/s)

128-bit 256-bit 512-bit 768-bit 1024-bit 1536-bit 2048-bit

512 30.72000 12.59016 3.60563 1.74150 0.88992 0.45851 0.19409

1024 28.98113 12.59016 3.80198 1.89630 0.98462 0.45755 0.23305

2048 24.97561 11.95331 3.74634 1.88814 1.04561 0.49886 0.25856

4096 25.49378 11.88395 3.78092 1.88351 1.07620 0.49886 0.27361

Table 2.8: Encryption speed of the DSP running at 1000 MHz

Message

(Bytes)

Speed on RSA key length (Kbit/s)

128-bit 256-bit 512-bit 768-bit 1024-bit 1536-bit 2048-bit

512 34.90909 15.67347 4.80000 2.37771 1.22684 0.63002 0.26881

1024 30.72000 14.91262 5.12000 2.59459 1.35929 0.63288 0.32222

2048 30.72000 15.51515 5.12855 2.60560 1.44497 0.69065 0.35867

4096 33.57377 16.21108 5.21562 2.60670 1.49126 0.69166 0.37975
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Table 2.9: Encryption speed of the DSP running at 1200 MHz

Message

(Bytes)

Speed on RSA key length (Kbit/s)

128-bit 256-bit 512-bit 768-bit 1024-bit 1536-bit 2048-bit

512 51.52203 20.77430 5.95493 2.92085 1.49144 0.76269 0.32229

1024 39.41620 19.95615 6.21941 3.13529 1.64114 0.76157 0.38750

2048 39.38462 19.44304 6.21862 3.11858 1.73651 0.83049 0.43013

4096 39.40040 19.38361 6.26300 3.12349 1.78762 0.83017 0.45589

Table 2.10: Increment rate of the encryption speed on the DSP clock

speed. The encryption speed of 500 MHz DSP is used as the unit speed.

DSP Clock

Speed (MHz)

Increment rate of encryption speed (times)

128-bit 256-bit 512-bit 768-bit 1024-bit 1536-bit 2048-bit

500 1.00 1.00 1.00 1.00 1.00 1.00 1.00

720 1.25 1.39 1.43 1.43 1.44 1.44 1.44

1000 1.54 1.81 1.96 1.98 1.99 1.99 2.00

1200 1.97 2.27 2.38 2.37 2.39 2.39 2.39
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Figure 2.12: Increment rate of the encryption speed on the DSP clock speed for

128 and 2048-bit keys. The encryption speed of 500 MHz DSP is used as the unit

speed.

Figure 2.13: RTDX data transfer speed on message size
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Table 2.11: Encryption time of a typical set of the payment information on DSP at 1000 MHz

Encryption time on RSA key length (s)

128-bit 256-bit 512-bit 768-bit 1024-bit 1536-bit 2048-bit

Time (s) 0.01213 0.03009 0.10496 0.21398 0.41906 0.81947 1.93924

Figure 2.14: The relationship between the RSA key size and the encryption time of

a typical set of the credit card payment information on DSP at 1000 MHz

2.5.3.2 Experiments with online credit card payment

We simulate the online credit card payments to measure the model’s performance for payment

transactions. In this experiment, the DSP hardware RSA encryption engine is used to encrypt

the customers’ card payment information (which consists of card number, expiry date, card se-

curity code and name on card, in total of 80 bytes maximum), using the server’s public key. The

encrypted payment message is then submitted to the server. Upon receiving the encrypted pay-

ment message, the server requests its DSP decyption engine to decrypt the encrypted payment

message, using its own private key. The server then gets the actual payment information for

verification. In the end, the server sends its response to client that the payment transaction is

accepted, or rejected. Table 2.11 and Figure 2.14 show the amounts of time in seconds needed to

encrypt a typical set of payment information on different key lengths. According to the results

of this experiment, as shown in Figure 2.14, the encryption time of the payment information is

less than 2 seconds at 2048-bit key, and less than 0.5 seconds at 1024-bit key.
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Table 2.12: Encryption speed of the software implementation on the Intel Pentium 4 1.8 GHz

machine

Message

(Bytes)

Speed on RSA key length (Kbit/s)

128-bit 256-bit 512-bit 768-bit 1024-bit 1536-bit 2048-bit

512 48.00000 17.06667 4.46512 2.08130 1.04348 0.52531 0.22152

1024 56.88889 17.65517 4.77019 2.26215 1.15402 0.52603 0.26551

2048 56.88889 17.96491 4.77019 2.27051 1.22439 0.57507 0.29490

4096 56.88889 18.12389 4.84161 2.26049 1.26108 0.57544 0.31200

Table 2.13: Encryption speed of the software implementation on the Intel Pentium 4 2.4 GHz

machine

Message

(Bytes)

Speed on RSA key length (Kbit/s)

128-bit 256-bit 512-bit 768-bit 1024-bit 1536-bit 2048-bit

512 69.81818 23.27273 6.00000 2.81319 1.42222 0.71243 0.29733

1024 76.80000 23.27273 6.40000 3.06587 1.56895 0.71144 0.35671

2048 78.76923 24.38095 6.37344 3.06893 1.66775 0.77792 0.39496

4096 78.76923 24.28458 6.50159 3.06893 1.71908 0.77812 0.41939

2.5.3.3 Experiments of RSA software implementation on different PC machines

In addition to the experiments on DSP hardware RSA encryption model, we have also conducted

experiments to test the performance of software implementation of the RSA encryption on some

PC computer systems, using the same inputs (message size and key length) as those used in

the tests on the proposed encryption model. Performance data are presented in Table 2.12, and

2.13 for experiments on the computer system running the Intel Pentium 4 CPU at 1.8 GHz and

2.4 GHz, respectively. Figure 2.15 shows the relationship between the RSA key length and the

encryption speed on Intel Pentium 4 1.8 GHz and 2.4 GHz machines.

It can be seen from Figure 2.15 that the size of encryption keys has similar impact on the

ecnryption speed of P4-based machines as that of DSP. The encryption speed drops sharply

when the key length increases, especially with keys from 128 to 512 bits. The performance
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Figure 2.15: The relationship between the RSA key length and the encryption speed

of the software implementation on the Intel P4 1.8 GHz and 2.4 GHz machines

comparison between 1200 MHz-DSP and P4-based machines, as shown in Figures 2.16 and 2.17

indicates that the DSP performs better than these Intel P4-based machines at large keys (from

512 to 2048 bits).

Figures 2.16 and 2.17 show the comparison of the encryption speed for the 2048-byte message

on the DSP hardware at different clock speeds and the software implementation running on PC

systems, using Pentium 4 1.8 GHz and 2.4 GHz CPUs.
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Figure 2.16: Encryption speed of DSP and PC machines for short encryption keys

Figure 2.17: Encryption speed of DSP and PC machines for long encryption keys



CHAPTER 2. E-COMMERCE SECURITY ENHANCEMENT BASED ON DSP 51

Table 2.14: RSA Security’s recommendation of RSA key sizes [108]

Protection Lifetime of Data Present 2010 Present 2030 Present 2031 and Beyond

Minimum RSA key size 1024 bits 2048 bits 3072 bits

2.6 Discussion

2.6.1 Model’s performace

In this section, we analyze the proposed model’s performance results, compared to that of RSA

software implementation on Pentium-based PC machines. In addition, main factors which affect

the model’s performance, such as length of encryption keys, DSP clock speed and the size of

input messages, are also discussed.

2.6.1.1 Performance comparison with RSA software implementation on Pentium

based PC machines

From the experimental results presented on Figure 2.16 and 2.17 (page 50), the 1200 MHz DSP

performs better than Pentium 4 based PC machines on large keys, although it is slower than

these PC machines on short keys. At short keys of 128 bits the DSP is slower than the Pentium

4 1.8 GHz machine, however, it performs slightly better than this PC machine at 256-bit keys

and outperforms the P4 machine at larger keys. At 2048-bit keys the DSP is about 46% faster

than the P4 1.8 GHz machine. Similarly, the DSP performs better than the P4 2.4GHz machine

at encryption keys of 768 bits and larger, although it is slower than the PC machine at short

keys of 128 bits, 256 bits and 512 bits.

The DSP’s performance gain at large keys indicates that the proposed DSP based encryption

model is more suitable for practical applications, as it is more scalable than the software im-

plementation running on modern Pentium based PC machines. Practical RSA security requires

large-size keys, because short keys of 128 bits and 256 bits can be factored quickly, and even

512-bit keys are not secure at present [108]. It is recommended by RSA Security Inc. [108], as

shown in Table 2.14, that a reasonable RSA key size should be at least 1024 bits for the present

time, and 2048 bits for the next 20 to 25 years [108, 122].
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2.6.1.2 Dependence of speed performance on the length of encryption keys

It is clearly shown on Figure 2.8 (page 42) that the length of encryption keys has a big impact on

the proposed model’s speed performance. For all supported DSP clock speeds, the encryption

speed drops dramatically when the length of encryption keys increases from 128 bits to 2048

bits. When the length of keys is doubled from 128 bits to 256 bits, the encryption speed drops

by half, and encryption speed reduces to one fourth when the key size increases from 1024 bits

to 2048 bits. This shows how computationally intensive RSA encryption is, especially for large

keys [92]. Therefore, an crucial question is how to determine the size of RSA encryption keys

that can help to balance the level of security and the performance. Although the model’s speed

is relatively slow with large keys, it is fast enough for small and medium size messages. The

time taken to encrypt a message of a typical online credit card payment information is about

0.105 second and 0.419 second at 512-bit and 1024-bit keys respectively, as can be seen in Table

2.11 (page 47).

2.6.1.3 Dependence of speed performance on DSP clock speed

When the DSP clock speed increases, the encryption speed increases proportionally, depending

on the length of encyption keys used (refer to results presented in Figures 2.10 (page 43), 2.11

(page 44), and 2.12 (page 46)). When the DSP clock speed increases from 500 MHz to 1000

MHz, the encryption speed increases 1.54 times and 2.0 times respectively, at encryption keys of

128 bits and 2048 bits respectively (as shown in Table 2.10 (page 45) and Figure 2.12 (page 46)

). This means that the encryption speed gains more at longer encryption keys, with the same

increase in DSP clock speed. Therefore, in order to get further gains on performance, especially

for the RSA operation on the server side, a choice of a high-speed multi-processor DSP is the

ideal solution.

2.6.1.4 Dependence of speed performance on the size of input messages

It can be seen from Figure 2.9 (page 43) that the size of messages has different impacts on the

speed performance of the proposed encryption model, depending on the length of encryption

keys used. On the tested message sizes, the larger a message is, the higher the encryption speed

is. The DSP-1000 MHz encryption speed increases 8.65%, when the message size raises from

512 bytes to 4096 bytes at the encryption key of 512 bits, while speed gain is 41.27% at 2048-bit
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encryption key, for the same increase in message size. The reason for the speed performance

gain for large messages is that for any message size, the initialization and cleaning work of the

encryption process gets the same overheads. However, when the message is large enough, the

speed performance will be stable. This is because the overhead of the initialization and cleaning

job accounts for only a small portion of the total time for the encryption process.

2.6.1.5 Communication performance

As shown in Figure 2.13 (page 46), the communication speed is proportional to the message size

due to the use of data transfer in batch mode. However, the RTDX communcation, based on

USB 1.0 is still not fast enough to support the transfer of large amounts of data. A possible

solution to improve the communication throughput, is to use faster communication interfaces

such as USB 2.0 or PCI interface. A faster DSP-computer communication interface will improve

the communcation performace as well as the overall performance of the proposed encryption

model.

2.6.2 Security

The security of the proposed encryption model is ensured by the strength of the RSA encryption

algorithm and the hardware cryptography features. RSA security is based on the difficulty

of factoring big prime integers. Generally, the larger the key, the more secure the system

[92, 108, 122]. Table 2.15 [108, 122] shows the estimated cost for factoring RSA keys from 428

bits to 1024 bits, in which the amount of time required to break the key is expressed in the total

number of arithmetic operations. A 1024-bit key will be 52 million times harder to break in

time, and about 7200 times harder to break in terms of space, compared to the 465-bit key. We

have tested the proposed encryption model with RSA encryption keys, ranging from 128 bits to

2048 bits, in which large-size keys (from 1024 bits to 2048 bits) are considered good keys (for

use in practice) [108, 122].

As discussed in Section 2.4.1, we used a simple method to format input message into encryp-

tion blocks for performance tests. In order to meet security requirements, standard format of

encryption blocks [55, 56] must be complied. In addition, the padding string of each encryption

block should be generated independently, especially if the same data is entered into more than

one encryption block [55, 56].
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Table 2.15: Estimated cost for factoring RSA keys [108]

Keysize (bit) Total Time Factor Base Sieve Memory Matrix Memory

428 5.5 ∗ 1017 600 Kbytes 24 Mbytes 128 Mbytes

465 2.5 ∗ 1018 1.2 Mbytes 64 Mbytes 825 Mbytes

512 1.7 ∗ 1019 3 Mbytes 128 Mbytes 2 Gbytes

768 1.1 ∗ 1023 240 Mbytes 10 Gbytes 160 Gbytes

1024 1.3 ∗ 1026 7.5 Gbytes 256 Gbytes 10 Tbytes

2.6.2.1 Security of hardware cryptography

Hardware cryptography has built-in features to address the security issues of communication

and end system security, as discussed in Section 2.1. The biggest advantage of hardware-based

cryptographic implementations, over their software counterparts, is that a hardware cryptosys-

tem runs in its own physical memory space, therefore, it effectively prevents illegal memory

access and modification by external programs. Running on a separate physical environment also

means hardware cryptosystems are protected from underlying operating systems’ security flaws

which usually lead to security risks to software implementations. Moreover, hardware can be

used to safely store long-term private keys [6, 32]. This is one of the most important reasons

that hardware was selected as the platform to implement the proposed encryption model. In

our DSP hardware based RSA encryption model, the RSA private key is kept in DSP hardware,

and is thus not directly accessible, even if the host is compromised.

From an architectural aspect, a secure communication tunnel is created between the client

and the server by the integrated hardware based encryption modules. All encryption and de-

cryption tasks are securely carried out inside these hardware modules. This is very important to

the proposed model’s security, because this mechanism can effectively prevent access violation

by malicious propgrams to the model’s code and protected data.

2.7 Summary

In this chapter we presented a new hardware-based encryption model for the enhancement

of security for E-commerce applications. The proposed model is based on the integration of
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an existing E-commerce model and embedded hardware based RSA encryption modules. The

security of the proposed model is guaranteed by the strength of RSA encryption at large keys

and the features of hardware-based cryptosystems, such as difficult-to-break-in features and

protected-from-operating-system flaws.

A successful implementation of DSP hardware-based RSA encryption and decryption mod-

ules using Texas Instruments’ TMS320C6416 DSK boards was presented to test the concepts.

We also provided the details on how to communicate efficiently between the host computer

applications (the web browser and the web server) and the DSP hardware based encryption

modules. A fully functional E-commerce system, including the web and database applications,

was built to test the proposed model’s performance and security. From our experimental results,

it is clear that, at large RSA encryption keys, the proposed DSP based RSA encryption system

outperforms a 1.8GHz Intel Pentium 4 PC, and it has comparable performance to a 2.4GHz

Intel Pentium 4 PC that has almost double clock speed of the DSP. The results confirm that

our model is more scalable than software-based implementations and it can be used to efficiently

improve the security and performance of E-commerce applications.
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Chapter 3

Program Based Anomaly Intrusion

Detection

3.1 Introduction

Intrusion detection is the process of monitoring events that occur in a computer system or

network, and analyzing these events for evidence of intrusions [5, 70]. An intrusion detection

system (IDS) usually consists of three functional components: information sources, analysis

and response. Information sources can be drawn from different levels of the target system.

Networks, hosts, and applications are the most common sources in intrusion detection. The

analysis component is responsible for modelling and analyzing the collected data events, to

decide whether those events indicate that intrusions are occurring, or have already taken place.

The response is a set of actions taken when an intrusion is detected. The actions can be

passive measures, such as reporting intrusion alerts to administrators, or active measures, such

as blocking intrusions.

3.1.1 Overview of intrusion detection

Based on the information sources, there are two main types of intrusion detection systems:

network-based IDSs and host-based IDSs. Network-based IDSs detect attacks by capturing and

analyzing network packets. A network-based IDS can be used to protect multiple hosts that

are connected to a network segment, or a switch, which is monitored by the IDS. However,

network-based IDSs may have difficulty processing all packets in a large, or busy network,
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and therefore they may fail to recognize an attack launched during periods of high traffic. By

contrast, host-based IDSs detect attacks by analyzing information collected within an individual

computer system. This allows host-based IDSs to provide a comprehensive analysis of the system

activities, to determine exactly which processes and users are involved in a particular attack on

the system [5].

Based on analysis methods, intrusion detection techniques can be classified into two cate-

gories : misuse detection and anomaly detection [26, 93]. Misuse detection searches for signatures

of known attacks and any matched activity is considered an attack. Misuse detection can detect

known attacks effectively, but it is incapable of detecting novel, or unknown attacks. Anomaly

detection attempts to characterize the normal behaviour of an object and any significant devia-

tion from that behaviour is considered a possible attack. Anomaly detection has the potential

to detect unknown attacks, because no advance knowledge about specific attacks is required

[26, 93]. The work discussed in Part II deals with anomaly detection, specifically in detecting

anomalies in the execution of programs, as well as intrusions against programs.

3.1.1.1 Misuse intrusion detection

Generally, misuse intrusion detection, also known as signature-based intrusion detection, first

defines signatures of known intrusions, then monitors current activities for such signatures, and

reports matched cases. An intrusion signature specifies a pattern of scenarios or events that lead

to an attack or misuse. Intrusion signatures are not only useful to detect intrusions but also

to discover intrusion attempts. A partial satisfaction of an intrusion signature may indicate an

intrusion attempt [70].

There are several misuse intrusion detection approaches which use different representations

of intrusion signatures, as well as apply different matching algorithms to search for intrusion

patterns. For example, NIDES [87], a real-time intrusion-detetion expert system consists of

a rule-based analysis component for misuse detection. The rule-based component uses an ex-

pert system to detect attempts which exploit security vulnerabilities of the monitored systems.

The rule-based component encode known system vulnerabilities, attack scenarios and suspicious

behaviour into rules. For example, one such rule is defined as “more than three consecutive

unseccessful login attempts for the same useid within five minutes is a penetration attempt”. A

monitored activity that satisfies any of these pre-defined rules is flagged.
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The key advantage of misuse intrusion detection approaches is that they are very effective

at detecting known attacks whose signatures have been encoded into rules, or patterns with-

out generating an overwhelming number of false alarms. However, misuse intrusion detection

approaches are not effective at detecting unknown attacks, because there are no matched signa-

tures for such attacks. In addition, since attacks change their patterns quickly and new attack

techniques are invented rapidly, the attack signatures of misuse detection systems must be up-

dated frequently across many platforms in order to be able to detect newly created attacks. This

maintenance work is very labour-intensive task [81].

3.1.1.2 Anomaly intrusion detection

Anomaly intrusion detection involves in first (i) building a profile of normal behaviour of a

monitored object, and then (ii) monitoring the object’s actual behaviour to detect significant

deviations from normal behaviour recorded in the profile. The monitored objects can be users,

programs, network traffic or other resources in a system. Generally, a object’s profile is con-

structed from historical data (also known as training data) collected over a period of normal

operation of the object.

The main assumption of anomaly intrusion detection is that intrusive activity is highly

correlated to anomalous activity [93]. In other word, intrusive activity can be considered as

a subset of anomalous activity. In practice, an intrusive activity can be implemented as a set

of individual activities, and none of these individual activities is independently anomalous [70].

Since the set of anomalous activities is not generally the same as the set of intrusive activities,

the evaluation result for an activity, by an anomaly intrusion detection system, can be one of

the following four possibilities:

1. Intrusive and anomalous: An activity is intrusive and it is correctly reported as intrusive

because it is also anomalous. This is true positive case because the intrusion detection

system correctly reports the activity as intrusive.

2. Not intrusive and not anomalous: An activity is not intrusive and it is not reported as

intrusive because it is not anomalous. This is true negative case because the intrusion

detection system does not report the activity as intrusive.

3. Not intrusive but anomalous: An activity is not intrusive but it is reported as intrusive
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because it is anomalous. This is false positive case because the intrusion detection system

falsely reports the activity as intrusive.

4. Intrusive but not anomalous: An activity is intrusive but it is not reported as intrusive

because it is not anomalous. This is false negative, or missed case because the intrusion

detection system fails to detect the intrusive activity.

Obviously, both false negatives and false positives are not desirable. One possible way to

reduce false negatives is to lower thresholds that define the abnormalcy. However, low thresholds

may result in large volume of false positives, which virtually disrupt the normal operation of the

monitored system and reduce the effectiveness of the anomaly intrusion detection system.

There are several anomaly intrusion detection approaches which use different information

sources as well as apply different modelling techniques to characterize normal behaviour of

monitored objects. Users, programs and network traffic are the most common monitored objects

in anomaly detection. Data modelling techniques, such as statistics, data mining and machine

learning, have been used in many anomaly intrusion detection systems [70, 82, 93].

The main advantage of anomaly intrusion detection approaches is that they have the potential

to detect novel and unknown attacks without advance knowledge about these attacks [26, 93].

This is because anomaly detection approaches focus on detecting abnormal, or unusual behaviour

based on the normal behaviour defined in profiles. However, anomaly detection approaches

usually produce high volume of false alarms, compared to misuse detection counterparts, due to

the unpredictable behaviour of users and networks. In addition, anomaly detection approaches

often require extensive system resources to contruct profiles of normal behaviour from historical

data.

3.1.2 Detecting intrusions by monitoring program behaviour

Monitoring program behaviour to detect intrusions has a major advantage over either moni-

toring user behaviour and network traffic, because of its stability [25, 26, 66, 93]. Unlike the

unpredictable nature of human user behaviour or the unstable pattern of network activity, the

behaviour of a program is relatively stable during its execution because it is generally designed

to perform a limited set of specific tasks [26]. More specifically, the monitored programs in

anomaly intrusion detection are commonly system or privileged programs. These programs are
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usually running in the background to provide services to users or other programs. The behaviour

of these programs should not be changed without our awareness [93]. Therefore, if intrusions

can be detected as deviations from normal program behaviour, false alarms caused by changes

in the historical patterns of user behaviour can be eliminated [93].

The remaining problem is how normal program behaviour should be characterized. Intu-

itively, a program’s normal behaviour can be extracted from the semantic of its source code.

However, this approach is generally unsolvable because the source code of programs are not

always available, especially for commercial software. In addition, the program behaviour ex-

traction from its source code can be very complicated due to the growing comlexity of modern

computer software. A more practical approach is to consider a program as a black box and

monitor its activity and interaction with the underlying operating system [25, 26]. The pro-

gram’s observed information is then used to characterize its normal behaviour. There exists a

mechanism, known as kernel auditing, and supported by many operating systems, which allows

auditing systems to record programs’ behaviour in terms of their interaction with the operating

system [93]. For example, many Unix systems support the Basic Security Modules (BSM) which

provide detailed audit trails for some running processes.

Forrest et al [25] proposed the use of short sequences of system calls, made by an Unix

privileged program to the operating system kernel during its normal execution, to characterize

its normal behaviour. Their approach is based on two assumptions: (i) temporal-ordering short

sequences of system calls of an Unix privileged process are consistent during its normal operation,

and (ii) abnormal sequences of system calls are produced by anomalies or intrusive activities.

This program-based anomaly detection method is relatively simple. Firstly, normal traces of

system calls produced by a program, during its normal execution, were collected. Then, a normal

database, characterizing normal program behaviour, was constructed from normal traces. The

normal database was built by sliding a window of k system calls across normal traces, one system

call at a time, and recording system calls within the sliding window as one short sequence at

each move. During this process, only unique short sequences were added to the normal database.

Then, this normal database was used to classify short sequences of system calls of test traces

to find anomalies. If a short sequence was not found in the normal database, it was considered

as abnormal. The anomaly signal was measured by counting the total number of abnormal

short sequences in test traces. Experimental results showed that short sequences of system calls
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were consistent for some Unix privileged programs and the proposed method was able to detect

several instrusions on Unix sendmail and lpr programs.

Forrest et al [26], in an extension to their previous work [25], conducted further experiments

on a wide range of Unix privileged programs in synthetic1 and real2 working environments.

Instead of simply counting the number of abnormal sequences, the Hamming distance method

was used in the latter to compute the differences between a mismatched short sequence and

short sequences in the normal database. The minimum value of the computed differences was

used as the anomaly signal. Their experimental results also confirmed that short sequences of

system calls are a good discriminator between the normal and abnormal behaviour of programs.

Their proposed detection method [25, 26] is efficient because it requires only one pass through

the training data (normal traces) to build the normal database. However, due to the growing

complexity of modern software applications, the behaviour of a program can be very complicated,

which makes it difficult to construct a complete normal database that covers all execution

scenarios of the program. The incompleteness of the normal database is likely to lead to a high

level of false alarms. Therefore, it is desirable to find more expressive modelling methods to

characterirze normal program behaviour [93].

Several other modelling techniques, such as data mining [78, 79], finite state automata (FSA)

[68, 93, 117] and hidden Markov models [42, 43, 102, 134] have been used to construct models of

normal program behaviour using system calls. In an effort to find the best modelling method for

normal program behaviour using system calls, Warrender et al [134] have investigated various

modelling techniques through extensive experiments. They used the normal database method

[25, 26], frequency based method, data mining, and the hidden Markov model to construct

detection models from the same normal traces of system calls. Their experimental results have

shown that the hidden Markov model method can generate the most accurate results on average,

although the training cost of the hidden Markov model method is high. Other program anomaly

detection approaches based on hidden Markov models also reported promising results [42, 43,

102].
1A type of artificial or simulated environment created to test programs. Detailed description of synthetic

environments is given in [26].
2Also called live environment [26].
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3.1.3 Aims

The hidden Markov model (HMM) is a very powerful data modelling technique [103, 104], and

it has been widely used to construct signal models in speech recognition [16, 28, 29, 30, 72,

104], and in protein sequence analysis in biology [47, 58, 59, 69, 115]. In anomaly detection,

HMM modelling has been used to increase the detection rate, as well as to reduce the false

alarm rate [42, 43, 102, 134]. However, the major drawback of these HMM-based anomaly

detection approaches is that the HMM training using the well-known Baum-Welch algorithm

[104] demands excessive system resources, which makes these HMM-based detection approaches

less efficient for practical use.

We propose an HMM-based program anomaly intrusion detection method using system calls,

which focuses on three major aims:

1. To improve detection accuracy, by reducing false alarms and by increasing the detection

rate. Generally speaking, existing anomaly intrusion detection approaches usually produce

too many false alarms, which will virtually disrupt the normal operations of the monitored

systems. Therefore, reducing the false alarm rate as well as increasing the detection rate

are crucial for any anomaly detection approaches [81, 82].

2. To improve efficiency in terms of training costs and testing costs. As mentioned, HMM-

based anomaly detection approaches consume excessive system resources due to the high

HMM training costs, which also affects the normal operations of the monitored systems.

Therefore, improving efficiency is critical to make HMM-based anomaly detection ap-

proaches practical.

3. To improve adaptability of existing anomaly detection approaches. The proposed detection

method should be adaptable to the changes of normal program behaviour.

3.1.4 Outline of the proposed approach

In order to improve the detection accuracy, we employ the hidden Markov model (HMM) as the

main data modelling technique to construct a model of normal program behaviour using system

calls because HMM is a powerful modelling technique in a wide range of applications [103, 104].

HMM modelling in anomaly intrusion detection has also brought promising results, but is still

in an early stage [42, 43, 102, 134]. Futhermore, in order to increase the detection rate and
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to reduce the false positive rate, we propose two detection schemes: (i) a two-layer detection

scheme and (ii) a fuzzy-based detection scheme. Both detection schemes use a normal database

[25, 26] and an HMM model to evaluate test traces of system calls for possible intrusions. The

two-layer detection scheme aims at reducing false positive alarms by applying two sequential

tests on each short sequence. On the other hand, the fuzzy-based detection scheme focuses on

improving the detection rate, as well as reducing false positive alarms, using fuzzy inference to

combine multiple sequence parameters generated by the normal database and the HMM model.

Efficiency improvement is also critical to HMM-based anomaly detection approaches. A

major factor that affects the overall efficiency of an intrusion detection system is the efficiency of

the construction of the detection model (also known as detection profile, rule base) [25, 26, 134].

Therefore, the efficiency improvement of the HMM construction or HMM training is crucial

to any HMM-based anomaly detection approachs. Traditional HMM batch training using the

Baum-Welch algorithm [104] was found to be expensive in terms of time and storage requirements

[104, 134]. We introduce an HMM incremental tranining scheme with optimal initialization for

program anomaly detection, which aims at reducing training time and storage demands.

While accuracy and efficiency are crucial requirements of an intrusion detection system, its

adaptability is also important in a networked computing environment [82]. This means that an

intrusion detection system should support the dynamic update of its detection model in order to

adapt to the changes of the monitored object’s behaviour. Our HMM-based detection method

supports the online update of its detection model, which is based on the model’s incremental

training scheme using cleaned online training data. This makes the proposed detection model

up-to-date, and therefore, maintains the detection accuracy.

In next section, we review some monitoring techniques in anomaly detection, including mon-

itoring user behaviour, monitoring network activity and monitoring program behaviour. We

then focus our discussion on program anomaly detection approaches using system calls.

3.2 Related Work in Anomaly Detection

Anomaly intrusion detection is based on the assumption that “intrusions are highly correlated to

abnormal behaviour exhibited by either a user, or the system” [93]. Based on this assumption,

anomaly detection techniques usually focus on detecting deviations of an object’s current be-

haviour from its past behaviour. If a deviation is significant it is considered a possible intrusion
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[26, 93].

Initially, one must decide which object to monitor to detect intrusions. The monitored object

can be a single object, or a set of objects, in computer and network systems. Once the monitored

object is selected, an anomaly detection system can be developed in two stages:

1. The construction of the detection model (also known as detection profile, rule base). This

is the process of building a model of the object’s normal behaviour. This task can also be

done in two steps as follows:

(a) Collect training data: collect data for the construction of the detection model. It is

usually assumed that the training data is clean and free from anomalies and intrusions.

(b) Construct the detection model: the detection model is built using suitable data mod-

elling techniques. Data modelling techniques such as data mining, machine learning

and statistics have been commonly used to build detection models [70, 82, 93].

2. Testing for intrusions: monitoring the object’s current behaviour to find deviations from

its normal behaviour, which is recorded in the detection model for possible intrusions.

In subsection 3.2.1, we discuss techniques used to detect intrusions by monitoring objects’

activities. In subsection 3.2.2, we discuss the methods used for modelling normal program

behaviour using system calls. In subsection 3.2.3, we review the methods used to improve detec-

tion accuracy, efficiency, adaptability and extensibility of current anomaly detection techniques.

Subsection 3.2.4 analyses some open issues of current anomaly detection approaches.

3.2.1 Monitoring techniques in intrusion detection

In one of the earliest studies in anomaly detection, Anderson [1] suggested that intruders can be

detected by monitoring the abnormal changes in historical patterns of use for individual users.

In a broader context, this suggestion can be applied to detect intrusions by monitoring objects’

activity such as user behaviour, network activity and program behaviour.

3.2.1.1 Monitoring user behaviour

In light of Anderson’s suggestion [1], Denning [17] proposed a generic detection model that aims

to detect a wide range of security violations including break-in attempts by outsiders and abuses
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by insiders. Denning’s generic detection model [17] is based on the hypothesis that “security

violations can be detected by monitoring a system’s audit records for abnormal patterns of

system usage” [17]. The generic detection model [17] has six main components including the

subjects, objects, audit records, profiles, anomaly records and activity rules, which can be

considered as a rule-based pattern matching system. For a given subject with respect to a given

object, an activity profile is created to represent the normal pattern of the subject’s activity,

which is used to determine whether the subject’s current activity is normal or anomalous.

More recently, Lane et al [73] used machine learning to construct user profiles from sequences

of user commands in order to detect user anomalies. Each record in a user profile is a charac-

teristic sequence which is an ordered and fixed-length set of temporally adjacent actions. Lee et

al [82], on the other hand, applied data mining techniques such as frequent episodes to learn the

normal patterns of user activity from input sequences of shell commands of user sessions. In the

learning process, a new pattern of user commands is compared with the historical patterns and

a similarity score is given. Only patterns with a high similarity score are merged into historical

patterns to create the user profile [82].

A major difficulty of user anomaly detection is that human user behaviour is generally

unstable and unpredictable in nature [93]. This means that the current user activity does not

always match the historical user activities. Therefore, user-based anomaly detection systems

usually tend to generate a high level of false positive alarms. In addition, there are gradual

changes in user behaviour over a long period of time, which makes it even more difficult to

detect user anomalies.

3.2.1.2 Monitoring network activity

Monitoring network activity to detect intrusions has been the attention of many reseachers

[9, 23, 82, 84, 97, 99, 116]. In [99], Paxson described a system, called Bro, which is a real-

time and stand-alone system for detecting network intrusions by monitoring network traffic.

Bro’s security policies are encoded into event handler scripts written in Bro language which is a

specialized language used to express a site’s security policy. Network traffic streams are filtered

into a series of high-level events by an event engine. These events are then processed by event

handler scripts which are interpreted by a policy script interpreter. Bro reportedly achieves some

advanced features including high-speed monitoring, real-time notification, separation between
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mechanism and policy, and extensibility [99]. However, the creation of site security policy scripts

using the Bro language still requires enormous amount of manual engineering work [82].

Aiming at the automatic creation of detection rules from training data, Lee et al [82],

first used various data mining algorithms such as classifications, association rules and frequent

episodes to compute frequent patterns from network connection data. Next, they extracted the

predictive features from these frequent patterns, and then these predictive features were used to

generate rules to detect known network intrusions [82]. The main advantage of this approach is

that it can reduce the amount of manual engineering work to encode the signatures of known

intrusions. However, as a misuse detection approach, it still needs at least one real trace of each

intrusion in order to extract the intrusion pattern, which is not possible for unknown attacks.

Instead of using real traces of known intrusions for detection rule learning, Fan et al [23]

proposed an algorithm called DBA2 (Distribution-based Artificial Anomaly) to generate artificial

anomalies for known network intrusions. These artificial anomalies were used to form initial

anomaly classes, which help a data mining based inductive learner to accurately discover the

boundary between known classes (normal connections and known intrusions) and anomalies. It

is reported that the proposed method performed well on unknown intrusions and comparably

to signature-based approaches on known intrusions [23].

Focussing on detecting intrusions that exploit the weaknesses of implementations of network

protocols, Lee and Heinbuch [84] proposed a network anomaly detection method which is based

on neural networks. The proposed system’s detection model is composed of a hierarchy of

back propagation neural networks. Artificial network data that are generated based on network

protocols’ specifications, are used to train these neural networks. According to the simulation

results, the proposed model was able to detect 100% of specific attacks in the experiment without

any prior knowledge about these attacks [84].

3.2.1.3 Monitoring program behaviour

Recently, there have been significant research interest in anomaly detection by monitoring pro-

gram behaviour [25, 26, 42, 43, 53, 54, 66, 68, 78, 93, 102, 112, 117]. Ko et al [66] proposed

a method to detect a program’s vulnerabilities by monitoring its execution. The normal pro-

gram behaviour is defined using a program policy specification language, in which the allowed

operations of the program are formally specified. It is reported that the program policies are
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concise and clear, and the proposed approach is capable of detecting exploitations of known

and unknown vulnerabilities of programs [66]. However, this is a type of security enforcement

technique that requires special knowledge about the program’s internal functionality to create

an appropriate program security policy. In addition, this approach cannot detect intrusions

that do not cause violations of the pre-defined program security policy. For example, Denial of

Service (DoS) attacks usually flood server programs with huge number of requests, which may

not cause any violations of the internal program security policy.

Other program-based anomaly detection approaches consider a program as a black box and

focus on modelling normal program behaviour using the program’s observed information such

as language library calls [54], temporal signatures [53], and system calls [25, 26, 42, 43, 68, 78,

93, 102, 112, 117]. Jones et al [54] described a program-based anomaly detection method using

language library calls used by a program during its execution. They applied the method of

[25] to construct a normal database from normal traces of language library calls to represent

normal program behaviour. Their experimental results using C language library calls have shown

that the proposed method can correctly detect some intrusions such as buffer overflow, trojan

programs and DoS attacks [54]. The language library call-based method reportedly gave stronger

anomaly signals for a Trojan attack on a mSQL program, than the system call-based approach.

However, there was not sufficient evidence provided in [54] to conclude that the language library

call-based method performed better than the system call-based approach in different attacks

on other programs. In general, low-level system calls represent the system resource usage of a

program better than high-level language library calls [25, 26].

Jones and Li [53] used a temporal signature to characterize normal program behaviour. The

temporal signature was created by measuring time duration between adjacent system calls of a

program. This is an interesting approach because it has the potential to detect intrusions which

do not create sufficient anomalies in the temporal ordering of system calls (which is one of the

basic assumptions of the approaches in [25, 26]). The measurement of elapsed time of consecutive

calls was conducted multiple times, for each unique sequence of system calls, in order to capture

elapsed time patterns. After removing high variance data and noise, the temporal signature was

found relatively stable for a number of applications. However, there are many factors such as

CPU clock speed, CPU load, and the availability of system resources, that affect execution time

of a system call or elapsed time between two consecutive system calls. Because of high variation
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of these factors, it is difficult to remove their effect on the temporal signature. In addition,

execution time of system calls is machine (CPU) dependent, which makes the deployment of the

proposed method even more difficult.

3.2.2 Modelling normal program behaviour using system calls

Program-based anomaly detection using system calls has received a growing attention by many

researchers since the successful initiative of Forrest et al [25]. Inspired by the properties of natural

immune systems, Forrest et al [25] introduced the concept of self of a program to represent its

normal behaviour. A program’s self is defined as a normal database, which is a list of unique

and fixed-length short sequences of system calls as discussed in Section 3.1. Since then, several

other approaches have been proposed to represent normal program behaviour using system calls.

Among them, approaches that are based on data mining [78, 134], finite state automata (FSA)

[68, 93, 117] and hidden Markov models (HMM) [42, 43, 102, 134] have been the most successful.

3.2.2.1 Data mining-based approaches

Lee et al [78, 79] proposed a method to learn detection rules from program traces of system calls

based on data mining. They used a data mining-based rule induction program called RIPPER

[13] to learn detection rules from training data [78, 79]. Two separate sets of detection rules

were learnt: (i) the first set was used to classify a test sequence as normal or abnormal, and

(ii) the second set was used to predict a system call in a test sequence to find violations. The

proposed method’s rule base requires less storage than the normal database of [25, 26]. Another

advantage over [25, 26] is that it requires less training data to build the detection model in order

to achieve the same level of detection performance. However, the construction of the detection

model is much more expensive than the construction of a normal database of [25, 26] in terms of

training time and system resoure requirements. This is because there are additional overheads

generated by the learning of initial abnormal classes using a normal database and by the rule

induction using the RIPPER program.

3.2.2.2 Finite state automata-based approaches

Finite State Automata (FSA) is a natural way to represent normal program behaviour as it

can capture program structures such as loops and branches [117]. In addition, the FSA states
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can remember short-term and long-term correlations among system calls [117]. Kosoresow and

Hofmeyr [68] manually built a Deterministic Finite Automaton (DFA) to characterize normal

program behaviour using system calls. The DFA was reportedly able to detect some intrusions.

However, the manual construction of finite state automata from system calls is a time-consuming

task, especially for complicated programs and long running traces of system calls.

Sekar et al [117] proposed an automated method to learn FSA from program execution

information, which effectively solves the DFA manual learning problem [68]. The FSA can learn

the program structures, therefore it is able to capture both short-term and long-term relationship

among system calls. The proposed method [117] makes use of operating system mechanisms to

get program execution information which includes: system calls, values of program counter

(the position from which each system call was made), and the stack information when each

system call was made. Each state in the FSA corresponds to a distinct value of the program

counter, and a transition is a system call. The FSA was reportedly light-weight and had fast

training convergence. Moreover, the proposed method had low false positive rate, and was able

to detect several attacks such as buffer overflow, malicious code changes, password guessing and

DoS. However, learning a program’s structures without its source code and special knowledge

about the program’s internal functionality, is an extremely difficult task. In addition, modern

applications usually make heavy use of language library functions, and functions from dynamic

linked libraries, which makes it even more difficult to learn program structures correctly.

Aiming at improving detection performance, Micheal and Ghosh [93] proposed two simple

state-based algorithms for program-based anomaly detection using system calls. Unlike Sekar

et al’s [117] FSA that requires values of program counter, these finite state automata were

automatically constructed only from normal traces of system calls [93]. In the first algorithm, a

finite state automaton was constructed from training data of system calls to represent normal

program behaviour. The FSA was able to detect the unseen short sequences in the training

data. The second algorithm built a finite state machine, of which each state was associated

with the probability distribution of the successor sequence of system calls. This algorithm was

designed to detect statistical deviations of current program behaviour from its normal behaviour.

The second algorithm had an advantage over the first algorithm as its state machine had the

capability of modelling long-term dependencies in normal program behaviour. The performance

of the proposed detection algorithms was reportedly almost comparable to the normal database
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method [25, 26] while they required much less training data.

3.2.2.3 Hidden Markov model-based approaches

Modelling normal program behaviour, using hidden Markov models (HMM), has some common

characteristics with modelling normal program behaviour, using finite state automata, because

HMM is a special type of finite state machines. Although the hidden Markov model is a powerful

data modelling technique [19, 103, 104], its applications in anomaly detection are still in an early

stage. HMM modelling was used to construct a model of normal program behaviour from normal

traces of system calls [134]. The HMM-based approach [134] can give the best detection accuracy

on average, compared to other modelling methods including normal database method [25, 26],

frequency-based method, and data mining [78].

In an attempt to find the original factor which determines the emission of program system

calls, Qiao et al [102] first constructed an HMM from the training data, then used the HMM to

find the sequence of hidden states for the observation sequence of system calls. Next, they built

a normal database from these hidden states using the approach of [25, 26] to represent normal

program behaviour. It is reported that the proposed method [102] had a smaller detection

database, compared to that of [25, 26], and it required less training data.

HMM-based anomaly detection approaches [42, 102, 134] face a common problem of efficiency

degradation. This is because the training of hidden Markov models from traces of system

calls using the Baum-Welch algorithm [104] was found expensive in terms of time and storage

[77, 104, 134]. Therefore, it is crucial to improve the efficiency of HMM training in order to make

HMM-based anomaly detection approaches more practical. This is one of the main objectives

of our research.

3.2.3 Improving intrusion detection performance: existing methods

An intrusion detection technique can be evaluated based on the following four characteristics

[26, 81, 82]:

1. Accuracy : Accuracy can be evaluated as a combination of detection rate and false postive

rate. A good intrusion detection technique should have a high detection rate as well as

low a false positive rate.
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2. Efficiency : In a narrow context, the efficiency of an intrusion detection technique can be

measured by: (i) the cost of the detection model construction for a monitored object, and

(ii) the cost of testing the object’s current activity against its recorded normal activity.

Each of these costs consists of several factors including time and system resources.

3. Adaptability : An intrusion detection method should be able to detect novel/unknown

attacks. Furthermore, the intrusion detection method should support the dynamic update

of its detection model in order to adapt to the changes of the object’s behaviour.

4. Extensibility : This relates to what extent an intrusion detection system supports extensible

features such as reuse, customization and upgrade.

Next, we discuss the methods that have been used to improve accuracy, efficiency, adapt-

ability and extensibility in anomaly intrusion detection.

3.2.3.1 Accuracy

The common methods that have been used to improve anomaly detection accuracy can be

broadly classified into four categories: (i) improvement of the detection model (also known as

detection database, rule base), (ii) enhancing of the evaluation method of anomaly signal, (iii)

enrichment of the training data quality, and (iv) combination of misuse and anomaly detection

in an unified system.

Among these four methods, improvement of the detection model, or more specifically, finding

more appropriate representations of normal behaviour of monitored objects in anomaly detection,

has been the most effective way to increase detection accuracy. In [68, 93, 117], more expressive

FSA models have been used to learn normal program behaviour using system calls as opposed

to normal databases in [25, 26]. This is because FSA models can capture program structures,

and short-term and long-term correlations among system calls. The proposed method in [117]

reportedly had a much lower false positive rate than the normal database method in [25, 26].

Hidden Markov model was found to give the highest detection accuracy, on average, when

compared to other modelling techniques, including normal database, frequency-based method,

and data mining [134].

Enhancing the evaluation method of the anomaly signal is also an effective way to increase

the detection rate and reduce false alarms. Forrest et al [25] in their initial work, simply counted
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the number of mismatched sequences in the whole test trace and considered this number as the

anomaly signal. However, this result depends on the length of the test trace. In addition, it is not

a good indication of how much difference there is between a mismatched sequence and sequences

stored in the normal database. A better solution on how to measure anomalies was proposed in

[26], which computes the minimum value of Hamming distances between a mismatched sequence

and all sequences in the normal database. Although the latter method gives better detection

accuracy than the former, it is still not suitable for online detection because it does not take the

temporal locality of test sequences into account. Methods which evaluate the anomaly signal

based on temporal frames of test sequences, are more suitable for online detection [93, 117, 134].

Improving the quality of training data for detection model construction can be used to

increase the detection accuracy. Fan et al [23] generated artificial anomalies for known network

intrusions, which were labelled and injected into the training data to help the inductive learner

correctly recognize the boundary between known classes and anomalies. In another approach

to program anomaly detection, Sekar et al [117] used operating system mechanisms to gather

information of program execution, which includes the program counter and stack information at

the time each system call was made. While the program counter values were used to correctly

learn program structures, the stack information helped to detect several types of buffer overflow

attacks. Information, such as parameters of system calls, can also be used to enrich the system

call training data for program anomaly detection.

Misuse detection and anomaly detection can be combined in one system that can take advan-

tages of advanced features of both misuse and anomaly detection techniques in order to improve

detection accuracy. Lunt [87] described a hybrid intrusion detection system, called NIDES,

which has an anomaly detection module and a rule-based misuse detection module. The two

detection modules work in parallel and independently to each other. Fan et al [23], on the other

hand, integrated misuse detection and anomaly detection in one module with an unified decision

making process. The integration of misuse detection and anomaly detection achieved a higher

detection rate and a lower false positive rate than each separate detection technique [23].

3.2.3.2 Efficiency

Building concise and simple detection models is a common approach to reduce both the model

construction cost and the cost of testing for intrusions. The construction of a normal database
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is very efficient in terms of training time and system resources because it requires only a single

pass through the training data [25, 26]. On the other hand, the construction of detection models

needs multiple passes through the training data using other modelling methods such as finite

state automata [68, 93], data mining [78, 79, 23], and hidden Markov models [102, 134]. However,

since these latter methods provide better detection accuracy, the balance between efficiency and

accuracy must be taken into account.

Reducing the required amount of training data for the construction of detection models is

also an effective approach. Lee et al [78] reported two data mining based methods for the

construction of the detection model, which require only 80% of the training data set used by

the normal database method [25, 26] for the same level of detection performance. Finite state

automata based approaches also reported a significant reduction in the required amount of

training data to build detection models [93, 117].

3.2.3.3 Adaptability

Unlike misuse detection, anomaly detection is capable of detecting novel/unknown intrusions

in its characteristics [26, 93]. However, due to the changes of the monitored object’s behaviour

over time, an anomaly intrusion detection system must support adaptive learning, in order to

maintain its detection accuracy. The detection rule base is continuously updated using inductive

learning from new training data, which keeps the detection model up-to-date [79]. This is one

of the most effective approaches to make a detection model that can adapt to the changes of the

object’s behaviour [74, 81, 83].

3.2.3.4 Extensibility

Applying hierarchical architectures has been commonly used to support customization and ex-

tension [79, 82, 100, 142]. In these systems high-level detection modules combine evidences from

multiple local detection modules, each of which is responsible for monitoring a set of specific

objects. The decision making process can be either centralized or distributed, depending on

the system design. However, distributed approaches achieve better extensibility [83, 142]. In

another approach, Paxson’s Bro [99] separates “mechanism from policy” to support customiza-

tion and extension. Nevertheless, the extension of a site’s security policy can only accommodate

signatures of known intrusions.
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3.2.4 Other issues of existing anomaly detection approaches

Apart from the main problems of existing anomaly detection approaches, as discussed in Section

3.1.2 and Section 3.1.3, such as excessive false alarms, lack of efficiency and lack of adaptability,

there are still other unsolved issues that also need to be taken into consideration. They are as

follows:

• There is not a good method for the selection of important parameters. In most anomaly

detection approaches, many critical parameters have been chosen manually or empirically

for each monitored object. For example, there is no formal method available to select

crucial parameters, such as: the length of short sequences in the construction of a normal

database [25, 26, 102, 134]; the number of states of hidden Markov models [102, 134]; and

most importantly, the detection threshold, which is used to determine whether the object’s

current activity is normal or anomalous.

• Detection models are built from noisy data. The assumption of many anomaly detection

approaches is that the input training data is clean and free from anomalies and intrusions.

However, this assumption does not always hold up in practice. Eskin [21] first built a

probability model from the original (noisy) training data, and then used the probability

model to process each original data element to find anomalies. When an anomaly was

found, it was removed from the original training data, and the probability model was

re-calculated. This training method [21] reportedly gives good results provided that the

amount of anomalies in the original training data is small, about 5%.

3.3 Summary

Unlike misuse detection, anomaly detection first constructs a model of normal behaviour of a

monitored object, and then uses that model to evaluate the object’s current behaviour to find

possible intrusions. User behaviour, network activity and program behaviour are the most com-

mon objects to be monitored in computer and network systems in anomaly intrusion detection.

Introduced by Forrest et al [25], short sequences of system calls produced by a program during

its execution have been extensively used in many program anomaly detection approaches. Forrest

et al’s [25] normal database method, which uses short sequences of system calls to represent the
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normal program behaviour, is simple and efficient to build. However, it produces a very low

level of anomaly signals, which is likely to lead to a low detection rate and high false positive

alarms.

Some program anomaly detection approaches, based on HMM modelling to characterize

normal program behaviour, reported a higher overall detection accuracy than those based on

other modelling methods such as normal database, data mining and frequency-based methods

[42, 102, 134]. However, these HMM-based anomaly detection approaches suffer a serious effi-

ciency problem because the HMM training costs are very high in terms of time and storage.

As discussed in Section 3.1.3, our major aims are to improve the detection accuracy, efficiency

and adaptability. In chapters 5 and 7, we incorporate HMM modelling of normal program

behaviour into a two-layer detection scheme and a fuzzy-based detection scheme to improve the

detection accuracy. Chapter 6 discusses our solutions to the HMM training efficiency problem.

In Chapter 8, we present the complete description of the proposed program anomaly detection

model which also provides a mechanism to support adaptability.



Chapter 4

Hidden Markov Models

As indicated in Section 3.1.3, we have chosen the hidden Markov model (HMM) as the main

modelling technique to characterize normal program behaviour. In this chapter, we give a brief

introduction to hidden Markov models, and the HMM three basic problems and their solutions.

These HMM problems and solutions will be extensively used in next chapters to construct and

test HMM-based detection models. The information presented in this chapter is based on Dugad

and Desai [19], Rabiner and Juang [103], and Rabiner [104].

4.1 Markov Models and Hidden Markov Models

Hidden Markov model (HMM) is an extension of the traditional Markov model [103, 104]. Unlike

a Markov model’s states that are observable, a hidden Markov model’s states are not observable

or hidden [104]. Only observations emitted from these hidden states can be observed [104].

4.1.1 Markov models

A traditional Markov process consists of a set of N distinct states, {S1, S2, ..., SN} and transitions

among states. An example of a Markov process is shown in Figure 4.1, where the number of

states N = 3. In this Markov process, states are fully connected, and transitions are allowed

from one state, to any other states, and to itself. The transitions among states are determined

by the transition probability matrix, A = {aij}, i, j = 1, .., N . For a discrete, first-order and



CHAPTER 4. HIDDEN MARKOV MODELS 78

Figure 4.1: A Markov process with 3 states {S1, S2, S3}; All states are fully connected.

stationary Markov process, the state transition probabilities {aij} are defined as:

aij = P (qt = Sj , qt−1 = Si), 1 ≤ i, j ≤ N

with the standard stochastic constraints:

aij ≥ 0, 1 ≤ i, j ≤ N

N∑
j=1

aij = 1, i = 1, N

In a first-order Markov process, the next state is dependent only on the current state, whereas

in an n-order Markov process, the next state depends on previous n states. In a stationary

Markov process, the state transition probability distribution is independent of time. The basic

Markov process is called an observable Markov model because the output of the process is a

set of states at each instant of time, and each state corresponds to an observable event [104].

The restriction of Markov models, that a state is correspondent to one observable event, limits

their application to many real-world problems. Therefore, hidden Markov models have been

introduced to overcome the Markov models’ limitation. A hidden Markov model’s states are not

observable, and an observation is probabilistic function of a state.
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Figure 4.2: A 4-state HMM {S1, S2, S3, S4} with selected state transitions,

and emitted observations {O1, O2, O3, O4, O5}

4.1.2 Hidden Markov models and their notations

Hidden Markov Model (HMM) is a doubly embedded stochastic process with two hierarchy

levels. The upper level is a Markov process, in which the states are not observable. The lower

level consists of observations, each of which is a probabilistic function of an upper-level Markov

state. Different Markov states will have different observation functions. Figure 4.2 illustrates a

hidden Markov model with 4 states: {S1, S2, S3, S4}, some selected transitions, and observations:

{O1, O2, O3, O4, O5}, which are emitted from states.

HMM is a powerful data modelling tool [103, 104], and it has been widely used in biology

for protein sequence analysis [47, 58, 59, 69, 115], and in speech recognition to build signal

models [16, 28, 29, 30, 72, 104]. The application of hidden Markov models in anomaly intrusion

detection, to construct models of the normal behaviour of monitored objects, has also reported

promising results [42, 43, 102, 134].

Hidden Markov models can be classified roughly into two types based on the observation

density: discrete and continuous HMMs. For discrete HMMs, observations generated from

distinct states are finite in number, while for continuous HMMs observations are infinite and

continuous. As program behaviour can be described by finite states, and there is only a finite

number of system calls, we only consider discrete HMMs hereafter.

In order to represent the cross relations among hidden states that emit system calls, we select

ergodic hidden Makov models for our detection model, in which hidden states are fully connected
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and transitions are allowed from any state to any other states [104]. We define notations for our

hidden Markov models to be used throughout this chapter as follows:

N : Number of hidden states in the model.

M : Number of distinct observation symbols.

T : Length of observation sequence, that is the number of symbols observed.

S : Set of hidden states, S = {S1, S2, ..., SN}.

V : Set of possible observation symbols, V = {v1, v2, ..., vM}.

π : Initial state distribution, π = {πi}, where πi = P (q1 = Si), 1 ≤ i ≤ N , is the probability

of being in state Si at t = 1.

A : State transition probability matrix, A = {aij}, where aij = P (qt+1 = Sj , qt = Si),

1 ≤ i, j ≤ N , is the probability of being in state Sj at time t + 1, given that the model

was in state Si at time t.

B : Observation probability distribution, B = {bj(k)}, where bj(k) = P (vk at t|qt = Sj),

1 ≤ j ≤ N, 1 ≤ k ≤M , is the probability of observing symbol vk at time t, given that the

model is in state Sj .

Q : Sequence of hidden states, Q = {q1, q2, ..., qt, ..., qT }, where qt is the model’s state at

time t.

O : Sequence of observations, O = {O1, O2, ..., Ot, ..., OT }, where Ot, 1 ≤ t ≤ T , denotes

observation symbol observed at time t.

λ : Entire HMM model, λ = (A,B, π) is used as compact notation to denote an HMM.

P (O|λ) : The probability of the occurrence of observation sequence O, given the HMM λ.

P (O,Q|λ) : The joint probability of the occurrence of the observation sequence O for the

state sequence Q, given the HMM λ.

HMM assumptions:
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• The first-order Markov assumption: The next state is dependent only upon the current

state.

aij = P (qt = Sj |qt−1 = Si) = P (qt = Sj |qt−1 = Si, qt−2 = Sk, ...) (4.1)

• The stationarity assumption: State transition probabilities are independent of the actual

time at which a transition takes place.

P (qt1 = Sj |qt1−1 = Si) = P (qt2 = Sj |qt2−1 = Si) (4.2)

Standard stochastic constraints to HMM parameters:

• Initial probability π:

πi ≥ 0, 1 ≤ i ≤ N (4.3)
N∑

i=1

πi = 1 (4.4)

• Transition probability matrix A:

aij ≥ 0, 1 ≤ i, j ≤ N (4.5)
N∑

j=1

aij = 1, i = 1, N (4.6)

• Observation probability distribution B:

bj(k) ≥ 0, 1 ≤ j ≤ N, 1 ≤ k ≤M (4.7)
M∑

k=1

bj(k) = 1, j = 1, N (4.8)

Basic conditional probability rules:

• Conditional probability:

P (A|B) =
P (AB)
P (B)

(4.9)

• Joint probability:

P (A,B) = P (A|B)P (B) (4.10)
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• The Bayes’ rule:

P (A|B) =
P (A)P (B|A)

P (B)
, P (B) > 0 (4.11)

• The Markov chain rule:

P (q1, q2, ..., qT ) = P (qT |q1, q2, ..., qT−1)P (q1, q2, ..., qT−1) (4.12)

= P (qT |, qT−1)P (q1, q2, ..., qT−1)

= P (qT |qT−1)P (qT−1|qT−2)P (q1, q2, ..., qT−2)

= P (qT |qT−1)P (qT−1|qT−2)...P (q2|q1)P (q1) (4.13)

4.2 The Three HMM Problems and Their Solutions

There are three basic problems for most HMM applications:

Problem 1 : Given the HMM λ = (A,B, π), how to compute P (O|λ), the probability of

the occurrence of the observation sequence O = {O1, O2, ..., OT }.

Problem 2 : Given observation sequence O = {O1, O2, ..., OT } and the HMM λ = (A,B, π),

how to choose Q = {q1, q2, ..., qT }, a corresponding state sequence so that the joint prob-

ability P (O,Q|λ) is maximized.

Problem 3 : Given the observation sequence O, how to adjust the HMM model parameters

λ = (A,B, π) so that P (O|λ) is maximized.

Problem 1 can be viewed as the evaluation problem in which the question is, given a model

and an observation sequence, how do we efficiently compute the probability that the observation

sequence was produced by the model. Problem 2 is a decoding problem in which we try to find

the optimal sequence of hidden states given a model and an observation sequence. Problem 3

is a learning problem where we attempt to find a model that best suits the input sequence of

observations. In the next section, we briefly discuss the solutions to Problems 1 and 3 as they

are used in our HMM-based intrusion detection model. Problem 2 is not discussed here because

it is not relevant to our HMM application.
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4.2.1 Solution to Problem 1: forward and backward procedures

HMM Problem 1 is to efficiently compute P (O|λ), the probability that the sequence of observa-

tions O was generated by the model λ. P (O|λ) may be computed directly as follows:

• Let Q = {q1, q2, ..., qT } be a state sequence, where q1 is the initial state.

• The joint probability of the observation sequence O for the state sequence Q is

P (O,Q|λ) =
T∏

t=1

P (Ot|qt, λ) (4.14)

= bq1(O1)bq2(O2)...bqT (OT ) (4.15)

with assumption that observations are independent.

• The probability of a state sequence Q is

P (Q|λ) = πq1aq1q2aq2q3 ...aqT−1qT (4.16)

• Then we have

P (O|λ) =
∑
Q

P (O,Q|λ)P (Q|λ) (4.17)

=
∑
Q

πq1bq1(O1)aq1q2bq2(O2)aq2q3 ...aqT−1qT bqT (OT ) (4.18)

The direct computation of P (O|λ), using the equation (4.18), involves in the order of

O(2NT T ) calculations that is computationally infeasible, even for small values of N and T

[104]. For example, for N = 5 (states), and T = 100 (observations), the number of compuations

is 2 ∗ 5100 ∗ 100 ≈ 1072 [104]. Therefore, a more efficient procedure to the Problem 1 is required;

such a procedure exists and is called forward-backward procedure. More precisely, we need only

the forward part of the forward-backward procedure to solve the Problem 1. However, we also

discuss the backward part here because it will be used to solve Problem 3.

Forward procedure to compute P (O|λ) [19, 104]:

• Define forward variable αt(i) as:

αt(i) = P (O1, O2, ..., Ot, qt = Si|λ) (4.19)
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• αt(i) is the probability of observing the partial sequence {O1, O2, ..., Ot} and the state i

at time t, given model λ. αt(i) can be computed inductively as follows:

1. Initialization:

α1(i) = πibi(O1), 1 ≤ i ≤ N (4.20)

2. Induction:

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(Ot+1), (4.21)

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

3. Termination:

P (O|λ) =
N∑

i=1

αT (i) (4.22)

Backward procedure to compute P (O|λ) [19, 104]:

• Define backward variable βt(i) as:

βt(i) = P (Ot+1, Ot+2, ..., OT |qt = Si, λ) (4.23)

• βt(i) is the probability of observing the partial sequence {Ot+1, Ot+2, ..., OT } given the

state i at time t and the model λ. βt(i) can be computed inductively as follows:

1. Initialization:

βT (i) = 1 (4.24)

2. Induction:

βt(j) =
N∑

i=1

aijbj(Ot+1)βt+1(j), (4.25)

t = T − 1, T − 2, ..., 1, 1 ≤ j ≤ N

3. Termination:

P (O|λ) =
N∑

i=1

πibi(O1)β1 (4.26)
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The complexity of the forward and backward procedures is the order of O(N2T ) [104]. These

computation methods of P (O|λ) are much more efficient than the direct calculation in equation

(4.18). For example, when N = 5, and T = 100, we need about 3000 computations for the

forward method, compared to 1072 computations, which is required by the direct method. The

proof of the forward and backward procedures are not discussed in this thesis due to space

limitations. This information can be found in [19, 103, 104].

4.2.2 Solution to Problem 2: Viterbi algorithm

As stated at the beginning of Section 4.2, Problem 2 is not relevant to our work, and is not

discussed. Additional materials are available [19, 103, 104].

4.2.3 Solution to Problem 3: Baum-Welch algorithm

The Baum-Welch algorithm is an Expectation-Maximization (EM) iterative procedure, which is

used to estimate HMM parameters λ = (A,B, π) to maximize the probability of the observation

sequence O. The following is a brief description of the Baum-Welch re-estimation procedure of

HMM parameters.

Preliminaries:

• Define ξt(i, j) be the probability of being in state i at time t and in state j at time t + 1,

given observation sequence O = {O1, O2, ..., OT } and λ = (A,B, π):

ξt(i, j) = P (qt = Si, qt+1 = Sj |O, λ) (4.27)

=
P (qt = Si, qt+1 = Sj , O|λ)

P (O|λ)
(4.28)

• Considering the numerator of equation (4.28), we have:

P (qt = Si, qt+1 = Sj , O|λ) = P (qt = Si, O1, O2, ..., Ot, Ot+1, ..., OT , qt+1 = Sj |λ) (4.29)

= P (qt = Si, O1, O2, ..., Ot|λ)P (Ot+1, ..., OT , qt+1 = Sj |λ)

= αt(i)P (Ot+1, ..., OT , qt+1 = Sj |λ) (4.30)
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• Analyzing the second factor of equation (4.30), we get:

P (Ot+1, ..., OT , qt+1 = Sj |λ) = P (qt+1 = Sj , Ot+1|λ)P (Ot+1, ..., OT |qt+1 = Sj , λ) (4.31)

= P (qt+1 = Sj , Ot+1|λ)βt+1(j)

= aijbj(Ot+1)βt+1(j) (4.32)

• Combining (4.28), (4.30), and (4.32), we get:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
(4.33)

=
αt(i)aijbj(Ot+1)βt+1(j)

N∑
i=1

N∑
j=1

αt(i)aijbj(Ot+1)βt+1(j)
(4.34)

• Define γt(i) as the probability of being in state i at time t, given observation sequence

O = {O1, O2, ..., OT } and λ = (A,B, π):

γt(i) = P (qt = Si|O, λ) (4.35)

=
P (qt = Si, O|λ)

P (O|λ)

=
αt(i)βt(i)
P (O|λ)

=
N∑

j=1

ξt(i, j) (4.36)

• By definition of ξt(i, j) and γt(i), we have:
T−1∑
t=1

γt(i) = Expected number of transitions from state i

T−1∑
t=1

ξt(i, j) = Expected number of transitions from state i to state j

Update rules of model parameters:

π̄i = expected number of times in state i at time t = 1

π̄i = γ1(i) (4.37)

āij =
expected number of transitions from state i to state j

expected number of transitions from state i

āij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)
(4.38)
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b̄j(k) =
expected number of times in state j and observed symbol vk

expected number of times in state j

b̄j(k) =

T∑
t=1

Ot=k

γt(i)

T∑
t=1

γt(i)
(4.39)

Baum-Welch algorithm training procedure:

1. Let initial model be λ0.

2. Estimate new model λ based on λ0 and observation sequence O using equations (4.37,

4.38, 4.39).

3. Compute P (O|λ0) and P (O|λ); If P (O|λ)− P (O|λ0) < ∆ go to step 5.

4. Else set λ0 ← λ, and go to step 2.

5. Stop.

where ∆ is the convergence threshold that the HMM training stops when P (O|λ) is stable.

Complexity of Baum-Welch algorithm:

For an HMM with N hidden states, M distinct observation symbols, and an observa-

tion sequence O of length T , the time and space complexities of Baum-Welch algorithm are

O(N(1 + T (M + N))) and O(N(N + M + TN)) respectively [77]. Since the length T of the

observation sequence is usually much larger than the number of states N , and the number of

distinct observation symbols M (T >> N, T >> M), we can consider the time and space

complexities of Baum-Welch algorithm are O(N2T ) [77, 104].

4.2.4 Scaling in probability computation and re-estimation of

HMM parameters

Scaling is a technique which is used in the implementation of the Baum-Welch re-estimation

of HMM parameters to prevent the value underflow problem. This is where the computation

values head to zero exponentially and are out of the precision range of numeric representation of

computers. For example, considering the definition of αt(i) of the equation (4.19) in the forward
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procedure to compute P (O|λ). It can be seen that αt(i) consists of the sum of a large number

of terms, each of which has the form(
t−1∏
s=1

aqsqs+1

t∏
s=1

bqs(Os)

)
(4.40)

with qt = Si. Since each term a and b is generally significant less than 1, it can be seen that

each term of αt(i) starts to head exponentially to zero as t starts to get big [104]. For our

HMM-based intrusion detection, t (the number of data items in the training set) is usually very

large. Therefore, incorporating a scaling procedure is necessary to compute αt(i) and P (O|λ).

Instead of computing P (O|λ), we compute log(P (O|λ)) in our implementation using forward

procedure with scaling. In this procedure, a scaling coefficient ct is used and it is computed as:

ct =
1

N∑
i=1

αt(i)
(4.41)

The forward procedure with scaling is describered as follows [104]:

1. Initialization:

α̂1(i) = πibi(O1), 1 ≤ i ≤ N (4.42)

c1 =
1

N∑
i=1

α̂1(i)
(4.43)

α̂1(i)← c1α̂1(i) (4.44)

2. Induction:

α̂t+1(j) =

[
N∑

i=1

α̂t(i)aij

]
bj(Ot+1), (4.45)

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

ct+1 =
1

N∑
i=1

α̂t+1(i)
(4.46)

α̂t+1(i)← ct+1α̂t+1(i) (4.47)

3. Termination:

log(P (O|λ)) = −
T∑

t=1

log(ct) (4.48)
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4.3 Summary

Hidden Markov model is a doubly embedded stochastic process with two hierarchy levels includ-

ing the upper level of states and the lower level of observations. Unlike the observable states

of the traditional Markov model, the states of the upper level of the hidden Markov model are

not observable. Each observation of the lower level is a probabilistic function of an upper-level

Markov state. Due to the dual-level structure, hidden Markov models overcome the restriction

of Markov models, where a state is correspondent to one observable event.

There exist three basic problems for most HMM applications. However, we focused on

the solutions to HMM Problem 1, the evaluation problem and Problem 3, the training problem,

because they will be used extensively in our work. Although the convergence of the Baum-Welch

algorithm, the solution to HMM Problem 3, has been proven mathematically, the algorithm has

been found very expensive in terms of time and space. This makes the HMM-based anomaly

detection approaches less efficient for practical use. Our solution to the efficiency problem of

HMM training is presented in chapter 6.



Chapter 5

A Basic Detection Model Based on

HMM Modelling

In this chapter, a basic model, based on HMM modelling for program anomaly detection is

presented, which will be used as a starting point for our approach. First, the two-stage devel-

opment process of the basic model is given in Section 5.1. Then, a two-layer detection scheme

is proposed to further improve the detection performance of the basic model in Section 5.2.1.

5.1 The Proposed Basic Model for Program Anomaly Detection

Based on HMM Modelling

HMM modelling of normal program behaviour is the process of building a HMM model from

training data. The training data is the traces of system calls, which are collected in normal

runs of the program. In this section, we propose a basic model, in which HMM modelling is

used to characterize normal program behaviour, using traces of system calls. The collection

and pre-processing procedures of system call traces are also given. In addition, we present

some preliminary results of using HMM models to generate anomaly signals for abnormal traces

generated by some known intrusions.

5.1.1 Collecting system call data

Generally, application programs use system calls (also called API calls in some systems), or

software interrupts as the mechanism, to request services and resources from the underlying
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operating system. There are hundreds of system calls supported in present day operating sys-

tems. However, the number of distinct system calls used by a specific program is usually a small

portion of the supported system calls. In Unix and Linux systems, popular system calls are

close, execve, fork, kill, open, read, and write [135].

There have been several methods that can be used to collect traces of system calls produced

by a program during its execution [26, 93]. One can use Basic Security Modules (BSM) supported

in many Unix systems to get audit information of running programs. Another popular auditing

and debugging tool, strace, is freely available in almost all Linux systems, and it can also be used

to capture the program’s traces of system calls and related information. On the other hand, Sekar

et al integrated the operating system’s kernel autditing mechanism into their monitoring engine,

to capture system calls, as well as other related information, such as the program counter and

stack information when each system call was made [117]. In our work, we use strace to collect

system call data produced by programs running on RedHat Linux systems. In addition, we

use data traces of system calls of some common Unix programs from the “Computer Immune

Systems Project” at the University of New Mexico (UNM), USA [132] in our experiments.

5.1.1.1 Collecting system call data using strace

Strace is an open-source debugging tool which can trace system calls made by another process,

or program [4]. When attached to a running process, strace can capture traces of system calls

made by the process to the operating system kernel. In addition to the name and parameters

of each system call, other system call information, such as timestamp, return value, and elapsed

time are also available. Table 5.1 shows a sample of a raw trace of system calls of sendmail

process, which was captured by strace on a RedHat Linux 9.0 system. In addition, strace can

also follow and trace system calls of child processes, created by fork system calls, which are

issued by the parent process. This is important because server processes, such as sendmail

usually create child processes to handle new connections.

5.1.1.2 System call data from the UNM project

The system call data sets from the “Computer Immune Systems Project” at the University of

New Mexico consist of several traces of system calls of some common Unix server applications,

such as sendmail, FTP, named, inetd and lpr programs [132]. The procedures of generating
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Table 5.1: A sample of a raw trace of system calls produced by sendmail process,

captured by strace. Each line shows one system call, the first part is the timestamp,

followed by the system call name, parameters and return value, and the elapsed time.

11:57:38 rt_sigprocmask(SIG_BLOCK, [ALRM], [], 8) = 0 <0.000040>

11:57:38 time([1128563858]) = 1128563858 <0.000014>

11:57:38 open("/proc/loadavg", O_RDONLY) = 6 <0.000065>

11:57:38 fstat64(6, {st_mode=S_IFREG|0444, st_size=0, ...}) = 0 <0.000015>

11:57:38 read(6, "0.00 0.00 0.00 2/41 10368\n", 1024) = 26 <0.000024>

11:57:38 close(6) = 0 <0.000029>

11:57:38 time([1128563858]) = 1128563858 <0.000014>

11:57:38 rt_sigprocmask(SIG_UNBLOCK, [ALRM], [ALRM], 8) = 0 <0.000015>

11:57:38 select(4, [3], NULL, NULL, {5, 0}) = 0 (Timeout) <4.998346>

11:57:43 rt_sigprocmask(SIG_BLOCK, [ALRM], [], 8) = 0 <0.000040>

11:57:43 time([1128563863]) = 1128563863 <0.000013>

11:57:43 open("/proc/loadavg", O_RDONLY) = 6 <0.000063>

11:57:43 fstat64(6, {st_mode=S_IFREG|0444, st_size=0, ...}) = 0 <0.000015>

11:57:43 read(6, "0.00 0.00 0.00 2/41 10368\n", 1024) = 26 <0.000024>

11:57:43 close(6) = 0 <0.000028>

11:57:43 time([1128563863]) = 1128563863 <0.000014>

11:57:43 rt_sigprocmask(SIG_UNBLOCK, [ALRM], [ALRM], 8) = 0 <0.000014>

11:57:43 select(4, [3], NULL, NULL, {5, 0}) = 0 (Timeout) <4.998376>

11:57:48 rt_sigprocmask(SIG_BLOCK, [ALRM], [], 8) = 0 <0.000039>

11:57:48 time([1128563868]) = 1128563868 <0.000014>

11:57:48 open("/proc/loadavg", O_RDONLY) = 6 <0.000063>

11:57:48 fstat64(6, {st_mode=S_IFREG|0444, st_size=0, ...}) = 0 <0.000015>

11:57:48 read(6, "0.00 0.00 0.00 2/41 10368\n", 1024) = 26 <0.000025>

11:57:48 close(6) = 0 <0.000029>

11:57:48 time([1128563868]) = 1128563868 <0.000014>

11:57:48 rt_sigprocmask(SIG_UNBLOCK, [ALRM], [ALRM], 8) = 0 <0.000015>
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Table 5.2: A sample of a sendmail trace of system calls from the “Computer

Immune Systems Project” of University of New Mexico [132]. Each pair of

values in first two lines of this table forms a record in system call trace files.

Process identification (PID) 8840 8840 8840 ... 8844 8844

System call number 4 2 66 ... 19 105

Corresponding system call write fork sstk ... lseek sigvec

and collecting these traces are described in [25, 26]. Each trace is a list of system calls produced

by a program’s running processes (including parent and child processes) during its execution.

The first two lines of Table 5.2 shows the sample of a trace file, in which each line is a pair of

the process identification (PID) and the system call number. The mapping between system call

numbers and actual system call names is provided in a separate file. For example, in the system

call mapping file “calls.txt.sun” [132], number 4 is corresponding to the system call “write”,

number 2 represents system call “fork”, and number 19 is “lseek”.

For each program, the collected system call data usually consist of two types of data traces:

(i) normal traces - traces collected during the program’s normal working condition, which are

used to construct the detection model in the training stage, and (ii) abnormal traces - traces

come from the program’s abnormal runs that were produced by real intrusions, or generated by

intrusion tools for some known intrusions, which are used in the model’s testing stage.

The normal traces of system calls in UMN project were collected in two environments:

(i) synthetic environment and (ii) live environment. In synthetic environment, a program’s

normal traces of system calls were collected from its execution in simulated conditions which

were specifically designed to capture the program’s behaviour in a number of scenarios. In live

environment, on the other hand, normal traces of system calls were collected directly from the

program’s runs in real and normal working conditions (without anomalies and intrusions).

5.1.2 The proposed basic detection model using HMM modelling

Figure 5.1 shows the two stages of the proposed basic detection model using HMM modelling:

(i) building a HMM model from the traces of system calls and (ii) testing input traces of system

calls for possible intrusions, using the built HMM model. In HMM building stage, the raw traces
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Figure 5.1: The proposed basic detection model using HMM modelling:

HMM building and HMM testing

of system calls are processed and transformed to HMM observation sequences which are then

used to train the HMM model. In HMM testing stage, a similar pre-processing procedure is

applied to the raw traces of system calls in order to get the HMM test data, and then the HMM

model is used to evaluate each short sequence of system calls for possible intrusions.

5.1.2.1 Pre-processing raw traces of system calls

Raw traces of system calls collected by process auditing tools, such as strace, must be processed

and transformed into HMM observation sequences, before they can be used in the HMM model

construction stage and the testing stage. First, we extract only plain system calls (system calls

without parameters and other related information) from raw traces, and then traces of plain

system calls are transformed into HMM observation sequences, using HMM notations defined

in Section 4.1.2. For data sets from [132], the transformation of traces of system calls to HMM

observation sequences can be applied directly, because the pre-processing of raw system calls

has already been done.
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In the transformation from system calls to HMM symbols, the first step is to determine

the number of distinct HMM symbols M and the set of possible HMM observation symbols,

V = {v1, v2, ..., vM}. Since we consider each system call in raw traces correspoding to one

symbol in HMM observation sequences, the number of distinct HMM symbols M can be chosen

as the number of system calls supported by the operating system and the HMM symbol set can

be the full set of system calls supported by the operating system. However, as the actual number

of distinct system calls used by a program, is usually a portion of the full set of supported system

calls, it is more practical to select M as the actual number of distinct system calls used, and V

as the set of actual system calls used. This selection leads to a smaller number of distinct HMM

symbols, which helps reduce the complexity of HMM training as well as testing for intrusions.

5.1.2.2 HMM training using traces of system calls

The purpose of HMM training is to estimate HMM parameters λ(A,B, π) from training data

which are traces of system calls in this case. After the number of distinct HMM symbols M

is chosen, the next step in HMM training is to select the number of HMM hidden states N .

It is suggested that number of hidden states N can be chosen based on the number of unique

system calls used by the program [134]. In our HMM training, we choose the number of hidden

states N also equal to the number of unique system calls used by the program. For example,

we select N = M = 35 for an HMM model for inetd program, using data sets collected in live

environment1 [132], because inetd only actually used 35 unique system calls in its normal traces.

Generally, an HMM model can be trained from the training data of observation sequences,

using the traditional Baum-Welch algorithm [19, 104], as discussed in Section 4.2. The Baum-

Welch algorithm requires several passes through the training data to infer the destination model.

As a special case of Expectation - Maximization (EM) algorithms, the Baum-Welch HMM train-

ing scheme consists of two steps at each pass through the training data: (i) E-step - values of the

probability auxiliary function over the whole set of training data are computed, and (ii) M-step

- update of HMM parameters λ(A,B, π), using the values computed in E-step. HMM training

using Baum-Welch algorithm can be seen as batch training, because the full set of training data

is required in E-step.

However, HMM training using Baum-Welch algorithm was found very expensive in terms
1Also called real working environment.
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of time and storage, especially for large-size HMM models and long observation sequences [77,

104, 134], although its convergence has been proven. The high cost of HMM training is likely to

limit the HMM application in anomaly intrusion detection. In order to reduce the requirement

of system resources and to speed up HMM training, we introduce an efficient HMM incremental

training scheme with optimal initialization, which is discussed in details in Section 6.1.

5.1.2.3 Testing traces of system calls and measuring anomaly signals

In testing stage, the constructed HMM model is used to evaluate test traces of system calls to

find possible intrusions. This task can be done using a number of ways. A standard way is to

compute the probability that the HMM model generates a test trace. If the HMM model is a good

model of normal program behaviour, normal traces should require only likely probabilities, while

intrusive traces should require unlikely probabilities [134]. However, this method is sensitive to

the length of the test trace. In another approach, Warrender et al considered the HMM model as

a non-deterministic finite automaton, and tracked the state transition and symbol probabilities

required to produce each system call in the test trace [134]. In our approach, we use the HMM

model to classify fixed-length short sequences of system calls, which are formed from the test

trace. In addition, we measure anomaly signals, based on temporally local regions of these short

sequences. To start with, first, we empirically choose parameters for the testing stage:

• Short sequence is a sequence of consecutive system calls in the test trace. Short sequences

have a pre-selected length of k system calls.

• Region is a series of non-overlapped consecutive short sequences in the test trace. Regions

have a pre-selected length of r short sequences.

• Short sequence probability threshold P̂ is the minimum probability that the HMM model

produces a normal short sequence. The threshold P̂ is used to determine if a short sequence

is normal or abnormal. If a short sequence probability, P ≥ P̂ , it is considered normal,

otherwise it is abnormal.

• Region score threshold Â

A region’s anomaly score A is calculated as:

A =
number of abnormal short sequences in the region c

length of region r
(5.1)
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Region score threshold Â is the minimum value of the anomaly score A, that indicates

alarm status.

Next, we form test short sequences by sliding a window of k system calls, through the test

trace, one system call at a time, and recording system calls within the sliding window as one short

sequence at each move. During this process, we form one test region from every r consecutive

short sequences. Non-overlapped regions are selected because a single abnormal short sequence

may generate anomalies in many overlapping regions. The procedure for classifying each short

sequence of system calls and measuring anomaly signal for a test region is as follows:

Input : HMM model λ(A,B, π), and a test region of r consecutive short sequences of system

calls, O(R) = {O(1), O(2), ..., O(l), ..., O(r)}. Each short sequence has k system calls.

Ouput : Status of a test region (normal or alarm). A region with alarm status can be used

to trigger an intrusion alarm.

1. Reset the abnormal region counter, c← 0.

2. For each consecutive short sequence O(l) in the test region, 1 ≤ l ≤ r:

(a) Compute the observation probability P = P (O(l)|λ) that the HMM model λ generates

the short sequence O(l).

(b) Compare probability P against the probability threshold P̂ ;

If P < P̂ , increase the abnormal region counter, c← c + 1.

3. Compute the anomaly score for the region, A =
c

r
.

4. Compare the region anomaly score A against the region score threshold Â;

If A ≥ Â, set the region status to alarm; otherwise set the region status to normal.

Because the anomaly score is computed based on fixed-length temporal regions, this testing

method is independent of the length of the test trace, and therefore it is suitable for online

detection.
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5.1.3 Experimental results

In order to evaluate the capability of HMM modelling of normal program behaviour in the basic

detection model, we construct an HMM model for sendmail program and another HMM model

for inetd program from their normal traces of system calls, and then use these HMM models to

generate anomaly signals for their test traces.

5.1.3.1 Data sets

We use the system call traces of sendmail and inetd programs, which were collected in a live

environment (also called real working environment), as given in [132] for this experiment. The

data sets include:

• Normal traces are traces collected during the program’s normal activities. These traces

are used to construct HMM models.

– The sendmail data include system call traces of sendmail daemon process and its

child processes. There are 13,726 data traces with the total of 15,631,952 system

calls.

– The inetd data include a single trace with 541 system calls.

• Abnormal traces are traces that come from a program’s abnormal runs produced by known

intrusions. Abnormal traces include:

– 105 traces generated by a denial-of-service attack (DoS) on sendmail program.

– 1 trace generated by a DoS attack on inetd program.

5.1.3.2 Results

In the HMM building stage, the first task is to select the HMM size. As discussed in Section

5.1.2, the number of hidden states N and the number of distinct symbols M are chosen as the

number of distinct system calls used in the program’s normal traces. For this sendmail data set,

we use the first 1,000,000 system calls of its normal traces to construct an HMM model with

N = M = 23. For the inetd data set, we use the only available normal trace to construct an

HMM model with N = M = 35.
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Figure 5.2: Anomaly signal (Log(P)) generated by inetd HMM model for an inetd DoS attack

trace. Length of short sequences k = 20 system calls.

In the HMM testing stage, we compute log(P) for each fixed-length short sequence of system

calls in test traces, where P is the probabilty that the HMM model produces a short sequence.

log(P) is considered as the anomaly signal, that the model generates for the test traces. Normal

short sequences should be generated by the HMM model with likely probabilites, while abnormal

short sequences should be generated with unlikely probabilites.

Figure 5.2 shows the anomaly signal in the form of log(P), generated by the inetd HMM

model for the test trace of system calls of a DoS attack on inetd. The test trace consists of

400 short sequences which are created using the sliding window method with length of k = 20

system calls. It can be seen that, the inetd model generates high probabilities (log(P ) ≥ −40.0)

for short sequences from number 35 to the end of the trace, although there are some periodic

irregularities. These short sequences are considered normal. On the other hand, short sequences

from number 13 to 34 associated with unusual low probabilities (log(P ) < −60.0) are considered

abnormal. The discovery of these consecutive abnormal short sequences clearly indicates that

the occurrence of DoS intrusion on inetd is detected. After the DoS attack period, the periodic

pattern of log(P ) of short sequences from number 35 to the end of the trace represents the

normal or recovered pattern of the system calls generated by repeated normal activities of the

inetd program.
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Figure 5.3: Anomaly signal (Log(P)) generated by sendmail HMM model for sendmail DoS

attack traces. Length of short sequences k = 20 system calls.

Similarly, Figure 5.3 shows the log(P) anomaly signal generated by the sendmail HMM model

for traces of system calls of a DoS attack on sendmail. 10,000 short sequences are formed from

the sendmail test traces using the same method with the same sequence length, as those used

in inetd test. It is noted that the sendmail model produces high probabilities (log(P ) ≥ −30.0)

for short sequences from number 2278 to 8758. These sequences are considered normal. Mixed

levels of high and low probabilities can be seen in two large groups of short sequences, from

number 1 to 2277 and from 8759 to the end of test traces. However, the high density of short

sequences that are associated with unlikely probabilities (log(P ) < −45.0) indicates that the

occurrence of DoS intrusion on sendmail is detected.

5.2 An Enhancement of the Basic Model: A Two-layer

Detection Scheme

In Section 5.1.3, we conducted a simple experiment on the basic detection model, in which HMM

models were used to generate anomaly signals for two abnormal traces of sendmail and inetd

programs. Due to the limitation of the incomplete training data, the basic detection model
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Figure 5.4: Two-layer detection scheme: evaluation of short

sequences for anomalies and possible intrusions.

with a single HMM-based detection engine may still produce considerable false alarms. In this

section, we propose a two-layer detection scheme which is an extension to the basic detection

model. The two-layer detection scheme aims at reducing false positive alarms. In this detection

scheme, a normal database [25] and an HMM model, are used to form a double-layer test to

evaluate short sequences of system calls, to find anomalies and possible intrusions.

5.2.1 The proposed two-layer detection scheme

Figure 5.4 shows our two-layer detection scheme for the evaluation of short sequences of system

calls of test traces for possible intrusions. The two-layer detection scheme is based on the basic

detection model, discussed in Section 5.1 and the normal database model [25, 26]. The detection

scheme is built as follows:
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1. Building a normal database and an HMM model from training data:

(a) Normal database: The normal database is an ordered list of all unique short sequences

of system calls found in training data. The database is created from the training data

of normal traces of system calls using the method given in [25, 26]. All short sequences

in the normal database have the same number of system calls k, and k is used as the

short sequence length. In addition, the frequency of each short sequence, that is

the number of occurrences of that sequence in training data, is also recorded in the

normal database.

(b) HMM model: The HMM model is trained from normal traces of system calls, using

HMM batch training, based on the Baum-Welch algorithm, as discussed in Section

4.2.3.

2. Detecting anomalies: First, test short sequences are formed from test traces of system

calls, using the sliding window method. The length of each short sequence is k system

calls, and is equal to the length of short sequences in the normal database. Then each

short sequence is evaluated using the following procedure:

(a) Test against the normal database: This test is applied for all short sequences of system

calls in the test traces and is used to find mismatched and rare short sequences.

(b) Test against the HMM model: This test is only used to verify short sequences which

were classified as mismatched and rare by the normal database. For each mismatched,

or rare short sequence, we compute the probability P of the HMM model producing

the short sequence. If P < P̂ , where P̂ is the sequence probability threshold, the

short sequence is considered abnormal. Otherwise, it is normal, even though it is not

found in the normal database.

5.2.2 Experimental results

In order to evaluate the performance of our proposed two-layer detection scheme, we conducted

experiments to measure the false positive rate and the detection rate of the proposed two-layer

detection scheme, and compared the results to those of the normal database scheme, as given

in [25].
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5.2.2.1 Data sets

We use sendmail traces of system calls collected in a synthetic environment1, as given in [132].

The format of system call traces and the data collection procedures were discussed in Section

5.1.1. The data sets consist of the following:

1. Normal traces that are collected during the program’s normal activity. Normal traces of

sendmail program include 2 traces with the total of 1,595,612 system calls.

2. Abnormal traces that include known intrusions. The sendmail abnormal traces consist of

1 trace of sm5x, 1 trace of sm565a, 2 traces of syslog-local, and 2 traces of syslog-remote

intrusions.

5.2.2.2 Experimental design

In order to measure the detection rate and the false alarm rate of our two-layer scheme, as

opposed to the normal database scheme [25], our experiments were designed as follows:

1. Measurement of the false positive rate: In this test, we use the proposed detection

scheme to evaluate normal traces of system calls which are not used in the construction

of the normal database and the HMM model. Since the normal traces do not contain any

intrusions, any reported alarms are considered false positive alarms. This experiment was

set up as follows:

(a) Select first 1,000,000 system calls of sendmail normal traces as the full training set.

(b) Form 4 training sets which account for 30%, 50%, 80% and 100% of the size of the

full training set.

(c) Construct normal databases and HMM models from these training sets. The chosen

values for the length of short sequences are k = 5, 11, and 15 system calls.

(d) Select three test traces, each trace of 50,000 system calls from sendmail normal traces,

which are not used in the training process to test for false positive alarms of our

scheme and the normal database scheme [25]. Reported abnormal short sequences

are counted for each test trace.
1A type of artificial or simulated environment created to test programs. Detailed description of synthetic

environments is given in [26].
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Table 5.3: Testing parameters: length of short sequences and probability threshold.

The test set consists of 3 traces, each of which has 50,000 system calls.

Length of

short

sequence k

Number of

short sequences in

each test trace (*)

Total number of

short sequences

in test set

Log probability

threshold of short

sequence log(P̂ )

5 49,996 149,988 -30.0

11 49,990 149,970 -40.0

15 49,986 149,958 -55.0

(*) Short sequences are formed by sliding a window of k system calls, one system call at a

time, through the test trace of 50,000 system calls, and recording system calls within the

sliding window as one short sequence at each move.

2. Measurement of anomaly signals and the detection rate: In this test, we use the

proposed detection scheme to evaluate abnormal traces to find possible intrusions. Since

the abnormal traces have been collected from the program’s abnormal runs generated by

known intrusions, reported alarms in this case can be considered true alarms, or detected

intrusions. This experiment was implemented as follows:

(a) Construct a normal database and a HMM model from sendmail normal traces of

system calls. We choose length of short sequences k = 11 to build the normal database

from normal traces, and to form test short sequences from abnormal traces.

(b) Use the proposed two-layer detection scheme to evaluate abnormal traces to find

abnormal sequences.

(c) Use temporally local regions to group individual abnormal sequences to measure the

anomaly signals, as discussed in Section 5.1.2. The selected region length is r = 20.

(d) Short sequence probability threshold P̂ (or log(P̂ )) and the region score threshold Â

are pre-selected.
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Table 5.4: Overall false positive alarms produced by the normal database scheme [25] and by

the proposed two-layer detection scheme, with the short sequence length, k = 5, 11 and 15.

Training

data sets

(% of full

data set)

Normal database scheme [25] Two-layer scheme

Reported number

of abnormal

short sequences

False

positive

rate (%)

Reported number

of abnormal

short sequences

False

positive

rate (%)

Sequence length, k = 5; 3 test traces with the total of 149,988 sequences

30% 196 0.131 168 0.112

50% 149 0.099 118 0.079

80% 141 0.094 104 0.069

100% 141 0.094 104 0.069

Sequence length, k = 11; 3 test traces with the total of 149,970 sequences

30% 291 0.194 255 0.170

50% 232 0.155 173 0.115

80% 225 0.150 160 0.107

100% 221 0.147 160 0.107

Sequence length, k = 15; 3 test traces with the total of 149,958 sequences

30% 338 0.225 246 0.164

50% 264 0.176 182 0.121

80% 261 0.174 174 0.116

100% 257 0.171 174 0.116

5.2.2.3 Results

False positive alarms

Table 5.4 shows the total number of abnormal short sequences in three test traces with total of

150,000 system calls (each trace consists of 50,000 system calls), reported by the normal database

scheme [25] and by the proposed two-layer scheme on different training sets, with short sequence

length k = 5, k = 11 and k = 15. The overall false positive rate is calculated as the ratio of

the total number of reported abnormal short sequences to the total number of short sequences

in the three test traces. The total number of short sequences in each test trace is dependent on
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Figure 5.5: The relationship between the size of training sets

and the false positive rate with k = 11

Figure 5.6: The relationship between the size of training sets

and the false positive rate with k = 15

the short sequence length and is given in Table 5.3.

It is seen from Table 5.4 that the proposed two-layer scheme has lower false positive rate

than the normal database scheme on all tested training sets and values of short sequence length.

For example, on the training set of 80% of the full set, with k = 15, the false positive rate of the

normal database scheme is 0.174%, while the false positive rate of our scheme is 0.116%. This

is about 33.33% lower in the false positive rates.
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Figures 5.5 and 5.6 describe the dependence of the false positive rate on the size of the

training sets, with the short sequence length k = 11 and k = 15 respectively. When the

size of the training set increases the false positive rate of both methods decreases significantly,

especially from the training set of 30% of the full set, to the training set of 50% of the full

set. For example, with k = 11, the false positive rates of our two-layer scheme are 0.170% and

0.115% on the training sets of 30% and 50% of the full set, respectively. This is a reduction of

about 32.35%.

Anomaly signals and the detection rate

Table 5.5 presents a summary of the detection results, produced by the normal database scheme

[25] and by the proposed two-layer scheme for some abnormal traces embedded with known

intrusions. The detection performance results of the normal database scheme are extracted from

Table 3, given in [25]. In [25], the anomaly signal is represented by the number of abnormal

(mismatched) short sequences detected in the test trace, or by the equivalent percentage which

is calculated as the ratio of the number of abnormal short sequences to the total number of short

sequences of the test trace.

On the other hand, we measure the strength of anomaly signals, based on temporally local

regions. The anomaly score A of a region is computed as the ratio of the number of abnormal

short sequences detected in the region to the region length r, as given in equation (5.1). The

average of anomaly scores is computed over abnormal regions which have the anomaly score A,

with A ≥ Â, where Â is the region score threshold, and Â = 40.0%.

It can be seen from Table 5.5 that the proposed two-layer scheme produced significantly

better detection results than the normal database scheme [25] for all tested abnormal traces.

For sm565a intrusion trace, the normal database scheme detected only 0.6% abnormal seq-

uences, while the proposed scheme detected 38.46% abnormal regions. Similarly, the normal

database scheme almost missed the “syslog-local” intrusion in the syslog-local No2 trace, with

only 1.7% abnormal sequences detected, while our scheme clearly detected the intrusion with

16.67% abnormal regions detected.

Furthermore, our two-layer detection scheme also generated strong anomaly signals on av-

erage. This indicates that the generated anomaly score of each abnormal region is high. The

average of anomaly scores generated by the proposed detection scheme is ranging from 60.42%

for sm5x trace to 74.74% for syslog-remote-2 trace. Figures 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12
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Table 5.5: Detection results produced by the normal database scheme and by the two-

layer scheme for some abnormal traces with the short sequence length k = 11, region

length r = 20 and the score threshold of abnormal regions, Â = 40.0%.

Name

of test

abnormal

traces

Normal database

scheme: % detected

abnormal sequences

[25] (#)

Two-layer scheme

% detected

abnormal

regions (*)

Average of scores

of abnormal

regions (%) (!)

sm565a 0.60 38.46 68.00

sm5x 2.70 31.58 60.42

syslog-local No1 5.10 12.00 73.33

syslog-local No2 1.70 16.67 71.54

syslog-remote No1 4.00 28.26 72.31

syslog-remote No2 5.30 24.68 74.74

(#) Results produced by the normal database model are extracted from Table 3 of [25].

(*) The percentage of the number of detected abnormal regions out of the total number

of regions of the test trace.

(!) The average of anomaly scores is computed over abnormal regions, those with A ≥ Â.

show the anomaly signals produced by our proposed two-layer scheme for abnormal traces of

s5mx, sm565a, syslog-local No1, syslog-local No2, syslog-remote No1 and syslog-remote No2,

respectively, at the short sequence length k = 11. It is noted that we compute the anomaly

score based on temporally local regions, as discussed in Section 5.1.2.3. It can be seen from

these figures that all embedded intrusions can be detected correctly at a region score threshold

Â = 0.40 for all tested traces.
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Figure 5.7: Anomaly signal generated for sm565a abnormal trace by the proposed

two-layer detection scheme with short sequence length k = 11, region length r = 20.

Figure 5.8: Anomaly signal generated for s5mx abnormal trace by the proposed

two-layer detection scheme with short sequence length k = 11, region length r = 20.
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Figure 5.9: Anomaly signal generated for syslog-local abnormal trace No. 1 by

the proposed two-layer detection scheme with short sequence length k = 11, region

length r = 20.

Figure 5.10: Anomaly signal generated for syslog-local abnormal trace No. 2 by

the proposed two-layer detection scheme with short sequence length k = 11, region

length r = 20.
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Figure 5.11: Anomaly signal generated for syslog-remote abnormal trace No. 1 by the

proposed two-layer detection scheme with short sequence length k = 11, region length

r = 20.

Figure 5.12: Anomaly signal generated for syslog-remote abnormal trace No. 2 by the

proposed two-layer detection scheme with short sequence length k = 11, region length

r = 20.
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5.3 Summary

In this chapter, a basic anomaly detection model which is based on HMM modelling, using

program system calls was presented. The model is developed in two stages: the building stage

and the testing stage. In the building stage, an HMM model is constructed from training data

to characterize normal program behaviour. In testing stage, the HMM model is used to evaluate

short sequences of system calls to find possible intrusions. Also in testing stage, a scheme was

given to measure the anomaly signal, which is based on the temporally local regions to group

individual abnormal sequences. The collection and pre-processing procedures of traces of system

calls were also given. The preliminary results showed that HMM-based basic detection model

was able to generate strong and clear anomaly signals for two tested abnormal traces of system

calls of sendmail and inetd programs. A strong anomaly signal helps the HMM-based detection

correctly recognize the program’s abnormal behaviour.

The proposed two-layer detection scheme which is an extension of the basic detection model

produced substantially better overall detection results than the normal database scheme [25].

Our experimental results showed that the two-layer detection scheme correctly detected all

intrusions embedded in the test traces for sendmail program. It also produced about 28% fewer

false positive alarms than the normal database scheme (refers to Table 5.4 (page 105), for the

case of k = 11 on the data sets of 50%, 80% and 100% of full data set). Futhermore, the proposed

two-layer detection scheme generated stronger anomaly signals than the normal database scheme

for several intrusion traces, as presented in Table 5.5 (page 108).

Since the basic detection model uses the traditional HMM batch training to train its HMM

model, the model training cost is high, as discussed in Section 5.1.2.2. In Chapter 6, an efficient

HMM training scheme is proposed to solve the HMM batch training efficiency problem.



Chapter 6

HMM Training for Program

Anomaly Detection

As discussed in Section 5.1, existing HMM-based anomaly detection approaches suffer a serious

efficiency problem, because the HMM batch training using the Baum-Welch algorithm is very

expensive. In this chapter, an HMM incremental training scheme with optimal initialization to

address the efficiency problem of HMM training is presented. The proposed HMM incremental

training scheme aims at reducing training time, as well as storage demands.

6.1 HMM Training for Anomaly Detection

We propose an efficient HMM incremental training scheme as the solution to the efficiency

problem of the traditional HMM batch training. The proposed HMM incremental training

scheme consists two components: (i) an optimal initialization method for HMM parameters,

and (ii) an HMM incremental training scheme. The optimal initialization method attempts to

find optimal initial values for HMM parameters, which help to speed up the HMM training

convergence. On the other hand, the HMM incremental training scheme focuses on reducing

training time and storage demands by incrementally updating the HMM model, using one subset

of the complete training data set at a time.
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6.1.1 Optimal initialization of HMM parameters for HMM training

In HMM training process, the HMM parameters λ(A,B, π) are adjusted so as to maximize

the probability of the observation sequence O, P (O|λ). Initialization is the first step in HMM

training process, in which HMM parameters λ(A,B, π) are assigned to pre-selected initial values.

In theory, the values of HMM parameters in HMM training process should converge to a local

maximum of likelihood function [104]. Choosing the initial values for HMM parameters, so

that the local maximum is the global maximum of the likelihood function, is a crucial question.

Unfortunately, there is no simple or straightforward answer for this question [104].

6.1.1.1 Random initialization

In random initialization, randomly generated values are used as the initial values for HMM

parameters in HMM training. The random initialization can be described in the following

simple algorithm:

1. Assign randomly generated values to HMM parameters, A,B, and π.

πi ← rand(), 1 ≤ i ≤ N (6.1)

aij ← rand(), 1 ≤ i, j ≤ N (6.2)

bj(k)← rand(), 1 ≤ j ≤ N, 1 ≤ k ≤M (6.3)

where N is the number of HMM states, M is the number of HMM distinct observation

symbols, and rand() is a function that returns a random value between 0 and 1.

2. Normalize A,B, and π, based on the stochastic constraints to HMM parameters, as given

in Equations (4.4), (4.6) and (4.8).

Generally, random initialization is simple and it can be used to obtain useful re-estimates

of HMM parameters in some cases [104]. However, since random generated values are used as

initial values for HMM parameters, the HMM training convergence is usually slow. This leads

to longer training time. Therefore, there is a need to find more suitable initialization methods

which can improve HMM training convergence.
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6.1.1.2 The proposed optimal initialization method

In order to find optimal initial values for HMM parameters, we propose to compute prior prob-

abilities C = {cij}, i = 1, N ; j = 1, N , where N is the number of hidden states, and use these

values to initialize HMM training parameters. The prior probabilities are defined as the oc-

currence frequencies of two consecutive observation symbols in the input observation sequence.

To compute prior probabilities, we count the number of occurrences of each pair of consecutive

symbols (Ot, Ot+1), t = 1...T −1 in input sequence O. After normalization, prior probabilities C

are used to initialize the HMM parameters in the training process. We use C as the initial val-

ues for HMM parameters A and B since C is relatively close to these parameters in probability

terms, referring to the definition of A and B in section 4.1.2.

The prior probabilities are computed using the following simple algorithm:

Input : Observation sequence O = {Ot}, t = 1, T . Also noted that, we selected the number of

hidden states equal to the number of distinct observation symbols, or N = M as discussed

in Section 5.1.2.2, page 95.

Output : The matrix of prior probabilities C = {cij}, i = 1, N ; j = 1, N .

1. Set cij = 0; i = 1, N, j = 1, N

2. For each pair of consecutive observations Ot and Ot+1 in sequence O, t = 1, T − 1:

(a) Find the corresponding element of C, cij : i← Ot, j ← Ot+1.

(b) Increase counter cij by 1: cij ← cij + 1.

3. Normalize the C matrix based on the transition probability distribution constraints defined

in equation (4.6).

HMM training can then be performed with two types of initializations:

1. Random initialization: assign initial values to all HMM parameters λ(A,B, π) randomly.

Random initialization is a common initialization method in HMM training using the Baum-

Welch algorithm. The random initialization is implemented based on equations (6.1), (6.2)

and (6.3).
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2. Mixed initialization: assign the combination of prior probabilities and random values to

HMM parameters λ(A,B, π) as intitial values. The prior probabilities are computed from

the input observation sequence using the algorithm discribed above. We form three ini-

tialization options using prior probabilities:

(a) Init A: assign prior probabilities to A as initial values, and random values to B and

π as initial values. Specifically, A, B and π are initilized as:

πi ← rand(), 1 ≤ i ≤ N (6.4)

aij ← cij , 1 ≤ i, j ≤ N (6.5)

bj(k)← rand(), 1 ≤ j ≤ N, 1 ≤ k ≤M, (M = N) (6.6)

(b) Init B: assign prior probabilities to B as initial values, and random values to A and

π as initial values. Specifically, A, B and π are initilized as:

πi ← rand(), 1 ≤ i ≤ N (6.7)

aij ← rand(), 1 ≤ i, j ≤ N (6.8)

bj(k)← cij , 1 ≤ j ≤ N, 1 ≤ k ≤M, (M = N) (6.9)

(c) Init A&B: assign prior probabilities to matrix A and the observation probability

matrix B as initial values, and random values to π as initial values. Specifically, A,

B and π are initilized as:

πi ← rand(), 1 ≤ i ≤ N (6.10)

aij ← cij , 1 ≤ i, j ≤ N (6.11)

bj(k)← cij , 1 ≤ j ≤ N, 1 ≤ k ≤M, (M = N) (6.12)

6.1.2 HMM incremental training

Traditional HMM batch training, based on Expectation-Maximization (EM) algorithms, such

as the Baum-Welch algorithm, updates HMM parameters using the full training data set at

each iteration. Although the convergence of EM algorithms have been proven mathemetically,

a large number of iterations is required to learn an useful model [36, 37]. This likely leads to

long training time, especially for large-size models and long observation sequences. On the other



CHAPTER 6. HMM TRAINING FOR PROGRAM ANOMALY DETECTION 117

hand, incremental HMM training algorithms first split the full training data set into smaller

subsets, and then incrementally update model parameters using one subset at a time, until

convergence. It is suggested that incremental training algorithms converge faster than their EM

batch counterparts [37, 95].

6.1.2.1 Existing HMM incremental training schemes

Gotoh et al [36, 37] proposed two HMM training schemes using incremental Maximum Like-

lihood (ML) and Maximum a Posterior (MAP) estimation algorithms for speech recognition.

Their HMM incremental training algorithms reportedly converge significantly faster than the

traditional HMM batch training. However, their algorithms only hold when the subsets of train-

ing data are independent. In our training data set, system calls are in interactive relations to

form program functionality, and therefore the assumption of independent data subsets does not

hold.

On the other hand, Davis et al [16] proposed a simple method to learn HMM models from a

training set of multiple observation sequences. In this approach, first each observation sequence

of the training set is used to learn one corresponding HMM model which we call an HMM sub-

model. The learning of HMM sub-models are independent from each other and can be done in

parallel. Then, when the learning of all HMM sub-models is complete, all HMM sub-models

are merged together based on their weights to produce the final HMM model. The proposed

method reportedly gives better recognition performance than the HMM batch training from

multiple observation sequences, as described in [104].

6.1.2.2 The proposed HMM incremental training scheme

In our approach, we improve Davis et al’s [16] training method to make it incremental. Our

proposed HMM training scheme first divides a long training data set into a number of data

subsets. Next, each data subset is used to train one HMM sub-model, and then the sub-model

is incrementally merged into the final HMM model. Figure 6.1 describes our training scheme, in

which λk is the HMM sub-model trained from the subset O(k), and λ(k) is the final HMM model

for k data subsets. To make the merging process simple, we choose an uniform size (number of

hidden states N and number of distinct observation symbols M) for the final HMM model and

all HMM sub-models. The proposed training scheme can be described in the following steps:
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Figure 6.1: The proposed HMM incremental training scheme based on weighted merging

1. Initialize the final HMM model to empty, λ(0) ← �.

2. Divide the training data set O into K subsets {O(1), ..., O(k), ..., O(K)}.

3. For each subset O(k), k = 1,K:

(a) Use subset O(k) to train HMM sub-model λk using the Baum-Welch training algorithm

as described in Section 4.2.

(b) Incrementally merge λ(k) into final HMM model, λ(k) ← λk + λ(k−1).

4. End: λ← λ(K).

The parameters of the final HMM model (A,B, π) at the subset kth are computed using

incremental weighted merging as follows:

π
(k)
i = wk ∗ π(k)i + w(k−1) ∗ π

(k−1)
i , 1 ≤ i ≤ N (6.13)

a
(k)
ij = wk ∗ a(k)ij + w(k−1) ∗ a

(k−1)
ij , 1 ≤ i, j ≤ N (6.14)

b
(k)
ij = wk ∗ b(k)ij + w(k−1) ∗ b

(k−1)
ij , 1 ≤ i ≤ N, 1 ≤ j ≤M (6.15)

where ({a(k)ij}, {b(k)ij}, {π(k)i}) and ({a(k−1)
ij }, {b(k−1)

ij }, {π(k−1)
i }) are HMM parameters of

sub-model λk and model λ(k−1) respectively, and the weights wk and w(k−1), which represent

the contribution of new data and historical data respectively to the HMM final model, are
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computed as:

wk =
1

P (O(k)|λk)
, P (O(k)|λk) is the probability that (6.16)

the sub-model λk generates subset O(k).

w(k−1) =
1

P (O(1), ..., O(k−1)|λ(k−1))
, P (O(1), ..., O(k−1)|λ(k−1)) is the probability that (6.17)

the model λ(k−1) generates subsets {O(1), ..., O(k−1)}.

In HMM online training, since the historical subsets {O(1), ..., O(k−1)} are not available,

w(k−1) is computed approximately as:

w(k−1) =
1

P (O(k−1)|λ(k−1))
, P (O(k−1)|λ(k−1)) is the probability that (6.18)

the model λ(k−1) generates subset O(k−1).

6.2 Experimental Results

We measure the performance of the proposed HMM training scheme using two sets of experi-

ments. In the first experiment set, we measure the training time of HMM batch training using

random initialization and the proposed mixed initialization method. The best performed option

of the mixed initialization method is named as the “optimal initialization method”. Optimal

initialization helps to improve the convergence rate of HMM training, and therefore to reduce

the overall training time. In the second experiment set, we measure the training time of HMM

batch training and the proposed HMM incremental training scheme. The optimal initializa-

tion method is used in both HMM batch training and the proposed HMM incremental training

scheme in the second experiment set.

6.2.1 Optimal initialization results

In order to examine the effect of different initialization methods to HMM training, we conducted

HMM training experiments with different data sets, using random initialization and mixed

initialization with the three options mentioned above. Our experiments were set up as follows:

1. HMM training data: First, a sendmail data set of 1,000,000 system calls, collected in
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Table 6.1: Length of the training subsets in number of system calls

Subset No 1 2 3 4 5

Length 100,000 300,000 500,000 800,000 1,000,000

% of full set 10% 30% 50% 80% 100%

synthetic environment1 [132], is selected as the full data set. Then, from the full data set,

we form 5 training subsets of 10%, 30%, 50%, 80%, and 100% of the size of the full data

set, as shown in Table 6.1.

2. Size of HMM models: As discussed in Section 5.1.2, we select N = M = 50, which is the

number of unique system calls used by sendmail in this sendmail data set.

3. Performance test of HMM training using different initialization methods: The Baum-Welch

algorithm is used to train HMM models from the mentioned data subsets. For each data

subset, we train HMM models using different initialization methods, as discussed in Section

6.1.1. The training time for each HMM model is recorded with common convergence

criteria. An AMD Athlon XP-2200+ based PC with 1GB RAM memory is used in this

performance test.

Table 6.2 shows the training time of HMM models trained from 5 data subsets, using random

initialization and mixed initialization with the three options, as discussed in Section 6.1.1.2. The

difference between the training time of HMM training using random initialization and option

“Init A” of mixed initialization for each data subset are computed, normalized and given in the

last column of the table in the percentage form for comparison.

It is seen from Table 6.2 that any option of mixed initialization gives better performance

than random initialization. Among three options of mixed initialization, two options of “Init

A” and “Init A & B” perform noticebly better than random initialization across the whole data

set. For example, the training time of HMM training, based on “Init A” initialization option is

reduced by 67.36%, compared to that of HMM training, based on random initialization, for the

data subset of 100,000 system calls. The reductions of HMM training time for data subsets of
1A type of artificial or simulated environment created to test programs. Detailed description of synthetic

environments is given in [26].
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Table 6.2: HMM training time based on random initialization and mixed initializa-

tions (Init A, Init B, and Init A & B) on 5 training sets.

Length of

training

subset

HMM training time (minutes) Normalized time

difference between

Init A and Random

Random

initialization

Mixed initialization

Init A Init B Init A&B

A B C D E F=(B-C)/B

100,000 24.77 8.08 9.10 13.08 67.36%

300,000 70.80 30.37 40.57 25.72 57.11%

500,000 100.30 50.50 56.90 53.75 49.65%

800,000 177.27 77.65 128.85 87.80 56.20%

1,000,000 201.37 123.92 180.88 111.07 38.46%

Figure 6.2: Performance comparison between random initialization and mixed initial-

ization (Init A, Init B, and Init A & B) on 5 training sets.

300,000, 500,000, 800,000 and 1,000,000 system calls are 57.11%, 49.65%, 56.20% and 38.46%,

respectively. “Init B” also performs well for small data sets of 300,000 and 500,000 system

calls, but it produces only a small reduction of training time for large data sets of 800,000 and
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1,000,000 system calls.

Figure 6.2 presents the performance comparison between random initialization and mixed

initialization with three options, including “Init A”, “Init B” and “Init A & B”. “Init A”

and “Init A & B” initialization options have about the same performance level. For 5 data

subsets, “Init A” performs better on 3 subsets of 100,000, 500,000 and 800,000 system calls,

while “Init A & B” does better on 2 subsets of 300,000 and 1,000,000 system calls. Although

“Init B” option performs almost comparably to “Init A” and “Init A & B” on small data sets

of 100,000 and 300,000 system calls, it does not perform well on larger data sets. The reason of

performance gains of options “Init A” and “Init A & B” is that the prior probabilities C (the

occurrence frequencies of two consecutive observation symbols), that are used as initial values

of the transition matrix A in “Init A” and “Init A & B” options, are the most suitable to the

transition probability distribution.

6.2.2 HMM incremental training results

In order to measure the performance of our incremental HMM training scheme, we conducted

HMM training experiments using the Baum-Welch batch training and using the proposed HMM

incremental training scheme on the different training sets. Our experiments were set up as

follows:

1. Selected data set: we select a sendmail data set of 1,000,000 system calls collected in

synthetic environment1, as given in [132] for our experiments.

2. Size of HMM models: As discussed in Section 5.1.2, we select N = M = 50, which is the

number of unique system calls used by sendmail in this data set.

3. Performance test of the proposed HMM incremental training scheme: in this performance

test, we measure the training time of our HMM incremental training scheme and the

traditional HMM batch training as follows:

(a) Measure the training time of the Baum-Welch HMM batch training using the original

training set of 1,000,000 system calls.
1A type of artificial or simulated environment created to test programs. Detailed description of synthetic

environments is given in [26].
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(b) Measure the training time of the proposed HMM incremental training. We form 7

incremental training options by dividing the original training set of 1,000,000 system

calls into 2, 5, 10, 20, 30, 40 and 50 subsets. For each incremental training option,

each subset is used to update the HMM model incrementally, until convergence.

(c) The mixed intitialization option “Init A”, discussed in Section 6.1.1, is used in both

HMM batch training and HMM incremental training.

(d) All HMM models have the same training convergence criteria.

An AMD Athlon XP-2200+ based PC with 1GB RAM memory is used in this HMM

training performance test.

Table 6.3 shows the training time of the Baum-Welch HMM batch training and the proposed

HMM incremental training scheme. The performance results of HMM batch training, based on

the Baum-Welch algorithm, is given in the first row of the table. Other rows show performance

results of the proposed HMM incremental training scheme. There are 7 incremental training

options with the number of training subsets, ranging from 2 to 50. The difference between

the training time of HMM batch training and each incremental training option was computed,

normalized and given in the last column of the table in the percentage form for comparison.

As can be seen from Table 6.3 that the proposed incremental training scheme can reduce

training time substantially on all incremental training options except the option with 2 subsets.

While the training time of the HMM batch training on a single set is 123.92 minutes, the training

time of HMM incremental training on 40 subsets is 48.47 minutes. This is 60.89% reduction.

The corresponding reductions of the training time of other HMM incremental training options

on 5, 10, 20, 30, and 50 subsets are 20.89%, 26.77%, 46.79%, 51.41%, 55.40%, respectively.

Figure 6.3 shows the dependence of the training time of HMM training on the number of

subsets. When the number of subsets increases from 1 (batch mode) to 2, the training time

increases slightly, from 123.92 minutes to 127.72 minutes. Then, the training time decreases

significantly, from 127.72 minutes to 48.47 minutes. This is a reduction of about 2.6 times,

when the number of subsets increases from 2 to 40. When the number of subsets increases to 50,

the training time increases slightly again to 55.27 minutes. This means that the proposed HMM

incremental training gives best performance on 40 subsets, or 25,000 system calls per subset.
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Table 6.3: Training time of HMM batch training and incremental training on the number of

subsets. The total length of each training set is 1,000,000 system calls.

Index

i =

0,...,7

Number

of

subsets

Length

of each

subset

Total

training

time

(mins)

Average

training time

per subset

(mins)

Normalized time

difference bewteen

incremental and

batch training

A B C Di = Ci/Ai Ei = (C0 − Ci)/C0

0 1* 1,000,000 123.92 123.92 0

1 2 500,000 127.72 63.86 -3.07%

2 5 200,000 98.03 19.75 20.89%

3 10 100,000 90.75 9.08 26.77%

4 20 50,000 65.93 4.80 46.79%

5 30** 33,333 60.22 2.01 51.41%

6 40 25,000 48.47 1.21 60.89%

7 50 20,000 55.27 1.11 55.40%

* Batch training: number of subset is 1

** There is 1 subset of 33343 system calls in this incremental option

When the number of training subsets is too small, the proposed HMM incremental training

scheme performs poorer than the HMM batch training scheme. For example, the training time of

HMM batch training is 123.92 minutes, while the training time of HMM incremental training on

2 subsets is 127.72 minutes. This is because the time saving produced by incremental training is

relatively small, when the number of training subsets is small. This time saving is not sufficient to

compensate the extra training time caused by the additional overhead of the HMM incremental

weighted merging. However, when the number of training subsets is increasing, the time saving

is increasing, and this additional overhead is becoming insignificant.
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Figure 6.3: The dependence of training time on the number of subsets in HMM incremental

training. 1 subset indicates HMM batch training. The total length of each training set is

1,000,000 system calls.

6.3 Summary

In this chapter, an HMM incremental training scheme with optimal initialization, which aimed

at addressing the efficiency problem of the HMM Baum-Welch batch training, was presented.

As compared to the HMM batch training, our HMM incremental training scheme reduced the

training time by over 4 times, and reduced the required storage, by K times, where K is the

number of training subsets used. This efficiency improvement is significant, and it makes our

HMM-based detection model more efficient for practical use.

Another advantage of our incremental training scheme is that the HMM model is updated

more frequently during the training process, because the model update is based on each subset

which is significantly smaller than the full training set. For example, the average training time

for each subset of 25,000 system calls is only 1.21 minutes, compared to the total training time

of 123.92 minutes for HMM batch training on the full training set. The frequent update by the

incremental training is suitable for online update of HMM-based detection models.

In Chapter 8, the proposed incremetal HMM training scheme will be used to construct the

HMM model in the training stage of the proposed complete detection model, as well as to

support online update of the HMM model, using online training data.



Chapter 7

Detecting Program Anomalies Based

on Fuzzy Inference

In this chapter, a fuzzy-based extension of the two-layer detection scheme, which aims at further

improving detection accuracy is presented. We are motivated by the fact that the normalcy or

abnormalcy in anomaly detection are not truly crisp concepts [18, 33, 34]. Therefore, it is difficult

to correctly classify an object’s behaviour as normal or abnormal, using crisp conditions. Fuzzy

logic and its fuzzy sets and rules are naturally suitable to be used to represent the space of these

imprecise concepts. Furthermore, fuzzy inference’s capability of combining information from

multiple sources helps anomaly detection accurately evaluate the object’s behaviour.

7.1 Introduction

One of the most difficult tasks in anomaly intrusion detection is to determine the boundaries

between the normal and abnormal behaviours of a monitored object. A well-defined boundary

helps an anomaly detection system correctly label the current behaviour as normal or abnormal.

Unfortunately, the border between the normal and abnormal behaviours may not always be

precisely defined, because the normal and abnormal behaviours can be overlapped or very closed

to each other [18, 33, 34]. This likely leads to an increase of the false positive rate and a reduction

of the detection rate. The work discussed in this chapter focuses on a fuzzy-based solution to

this problem, specifically in the classification of system call sequences, using fuzzy inference for

program anomaly detection.
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In anomaly detection, the boundaries between the normal and abnormal behaviours can be

divided into two types: (i) hard boundaries and (ii) soft boundaries. A hard boundary is usually

used in the form of crisp conditions or fixed thresholds. For example, in [25], a test sequence of

system calls is labelled as normal if it is seen in the training set. Otherwise, it is classified as

abnormal. In the HMM-based anomaly detection model, discussed in Section 5.1, a probability

threshold P̂ is used to determine the status of test sequences. If a test sequence’s probability P

generated by the HMM model is equal or greater than the probability threshold (P ≥ P̂ ), it is

considered normal. Otherwise, it is considered abnormal (P < P̂ ).

On the other hand, a soft boundary is usually represented by fuzzy sets and rules, instead

of crisp conditions or fixed thresholds. In [18], five fuzzy sets, namely LOW, MED-LOW,

MEDIUM, MED-HIGH and HIGH are used to represent the space of each input network data

source. In addition, a set of fuzzy rules is defined to combine a set of inputs in order to produce

an output which is the status of current network activity. In another approach reported in [24],

a set of fuzzy association rules is generated to represent the normal behaviour of network traffic.

Anomaly detection approaches, based on soft boundaries in general, or fuzzy sets and rules

in particular, can produce better detection performance than those based on hard boundaries

because of the following two reasons:

• Since the normalcy and abnormalcy are not truly crisp concepts, it is difficult to define

a hard boundary that can create a sharp distinction between the normal and abnormal.

Therefore, it is natural to use fuzzy sets to define a “soft” border between them [18, 34].

In fuzzy logic terms, the normal is represented by the degree of normalcy. Similarly, the

abnormal is represented by the degree of abnormalcy.

• Anomaly detection systems, based on fuzzy inference, can readily combine inputs from

multiple sources, which likely leads to better detection performance [18].

Although the application of fuzzy inference in intrusion detection is still in an early stage,

promising results have been reported by a number of fuzzy-based anomaly detection approaches.

Cho [12] reported a high detection rate and a significant reduction in the false positive rate, using

fuzzy inference to combine inputs from three separate HMM models in a user anomaly detection

system. In another approach, Luo et al [88] presented a real-time anomaly intrusion detection

system, in which a set of fuzzy frequent episode rules was mined from the training data to
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represent the abnormality. The proposed approach reportedly had lower false positive rates

than those, based on non-fuzzy frequent episode rules. There have also been good detection

results reported in [18, 24, 34].

In our approach, we propose a detection scheme which is based on fuzzy inference for program

anomaly intrusion detection using system calls. We employ the fuzzy inference to combine

multiple inputs generated by a normal database and an HMM model to evaluate each test

sequence of system calls. Each test sequence of test traces is represented by three parameters,

including the sequence probability generated by the HMM model, the sequence distance and the

sequence frequency produced by the normal database. Instead of using crisp conditions or fixed

thresholds, a group of fuzzy sets is defined to represent each parameter’s space. A set of fuzzy

rules is created to combine these input sequence parameters, in order to produce an output of

the sequence status.

The proposed fuzzy-based detection scheme is an extension of the two-layer detection scheme,

discussed in Section 5.2. Like the two-layer scheme, the fuzzy-based scheme also includes a

normal database [25] and an HMM model. Therefore, the two methods share the same process

of database building and HMM training. However, while the normal database and the HMM

model are used directly in the classification of short sequences in the two-layer scheme, they

are only used to generate inputs for the fuzzy inference engine. The fuzzy inference engine is

responsible for the classification of short sequences in the fuzzy-based scheme.

The remaining of this chapter is organized as follows: in Section 7.2, we give a brief in-

troduction to fuzzy logic which is the heart of fuzzy inference. Section 7.3 describes the fuzzy

reasoning process for sequence classification and Section 7.4 describes our fuzzy-based detection

scheme to find anomalies and possible intrusions. In Section 7.5, we present the experimental

results. Section 7.6 is the summary of this chapter.

7.2 Introduction to Fuzzy Logic

Fuzzy logic is an extension of boolean logic, which specifically deals with the concept of partial

truth [135]. The mathematical principles of fuzzy sets and fuzzy logic were first presented in

1965 by professor L.A. Zadeh at the University of California at Berkley, USA [137, 138]. Since

then, fuzzy logic has rapidly become one of the most successful technologies in the development

of control systems. The application of fuzzy logic is ranging from simple, small and embedded
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micro-controllers to large data acquisition and control systems [14].

While a truth value in classical logic can always be expressed in binary terms (0 or 1, True

or False, Yes or No), a truth value in fuzzy logic is represented by the degree of truth. The

degree of truth can be any value in the range [0.0, 1.0], with 0.0 representing absolute Falseness

and 1.0 representing absolute Truth.

In this section, we give a brief introduction to two important concepts of fuzzy logic, fuzzy

sets and fuzzy rules. Fuzzy sets and fuzzy rules will be extensively used by our fuzzy-based

detection scheme.

7.2.1 Fuzzy sets

Fuzzy sets are an extension of the mathematical concept of classical sets, which are used in fuzzy

logic. In classical set theory, the membership of elements in relation to a set is assessed in binary

terms according to a crisp condition, which means an element either belongs or does not belong

to the set. Therefore, classical sets are also known as crisp sets. In fuzzy set theory, on the

other hand, an element can belong to one or more fuzzy sets to some degree. The membership

of elements in relation to a fuzzy set can be assessed gradually using a membership function

[135]. Figure 7.1 shows an example of a fuzzy set and a crisp (classical) set.

Mathematically, a fuzzy set A is defined as follows:

A = {(x, µA(x)) | x ∈ U} (7.1)

where µA(x) is the membership function of the fuzzy set A, and U is the Universe of Dis-

course. A Universe of Discourse, or Universe in short is the range of all possible values for an

input to a fuzzy system.

7.2.1.1 Membership functions

The membership function µ(x) of a fuzzy set is the function that maps each element x of the

universe U to a value of the degree of membership. The degree of membership can be zero

or any value in the range of [0, 1]. Generally, the membership function can be represented

mathematically as:

µ(x) : U → [0, 1] (7.2)
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Figure 7.1: Fuzzy set and crisp (classical) set [135]

A membership function of a fuzzy set can either be continuous or discrete. In continuous

form, the membership function is a mathematical function as presented in expression (7.2). For

example, common membership functions are bell-shaped, s-shaped, triangular and trapezoidal.

In discrete form, on the other hand, the membership function is a vector of discrete values as

described in expression (7.3).

µ(x) : {x1, x2, ..., xn} → [0, 1] (7.3)

Figure 7.2 illustrates (a) a fuzzy set with a continuous trapezoidal membership function, and

(b) a fuzzy set with a discrete membership function. The continuous trapezoidal membership

function in this figure is defined as:

µ(x) =


1 if x0 ≤ x < x1

ax + b if x1 ≤ x < x2; a = − 1
x2 − x1

, b =
x2

x2 − x1

0 if x ≥ x2

(7.4)

and the discrete membership function is expressed as:

µ(x1, x2, x3, x4, x5) = {µ1, µ2, µ3, µ4, µ5} (7.5)

A fuzzy set is continuous if its universe and membership functions are continuous. On the

other hand, a fuzzy set is discrete if its universe and membership functions are discrete.

7.2.1.2 Fuzzy set operations

An operation on fuzzy sets creates a new fuzzy set from the original fuzzy sets. Since a fuzzy set

is defined by its membership function, it is natural to define operations on fuzzy sets by means
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Figure 7.2: Fuzzy sets with (a) continuous and (b) discrete membership functions

of their membership functions. Due to the scope of our work, we only discuss some primitive

operations on fuzzy sets.

Let A and B be fuzzy sets on a mutual universe U , and µA and µB be the membership

functions of A and B respectively. Three primitive operations on fuzzy sets, namely Intersection,

Union, and Complement are defined as follows:

Intersection: A ∩B ≡ min(µA, µB)

The Intersection of two fuzzy sets A and B is a new fuzzy set that has the membership

function as the minimum of the two indivudual membership functions.

Union: A ∪B ≡ max(µA, µB)

The Union of two fuzzy sets A and B is a new fuzzy set that has the membership function

as the maximum of the two indivudual membership functions.

Complement: Ā ≡ 1− µA

The Complement of fuzzy set A is a new fuzzy set that has the membership function as

the inverse of the membership function of A.

7.2.2 Fuzzy rules

Rules in fuzzy logic are used to combine and interpret inputs in order to produce an output.

Fuzzy rules are usually expressed in the IF/THEN form as:

IF <variable> IS <fuzzy set> THEN <output>

For example, the following simple set of rules can be used to control a fan [135]:
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IF temperature IS VeryCold THEN stop fan

IF temperature IS Cold THEN turn down fan

IF temperature IS Normal THEN maintain level

IF temperature IS Hot THEN speed up fan

where temperature is the input variable, {VeryCold, Cold, Normal, Hot} are input fuzzy sets,

and {stop, turn down, maintain level, speed up} are output values. In this case, the output value

is an action taken when the corresponding rule fires.

A rule is said to fire if its truth value is greater than 0. It is also noted that there is no “ELSE”

clause in a fuzzy rule. All available rules in a fuzzy control system are evaluated because an

input can belong to more than one fuzzy set. In the above fan control example, the temperature

might belong to Cold set and Normal set at the same time, however, to some different degrees.

Like classical logic, fuzzy logic also supports AND, OR and NOT operators, which can be

used to create more complex fuzzy rules. Let x and y be two fuzzy variables, and µ(x) and

µ(y) be the degrees of membership of x and y, respectively, AND, OR and NOT operators are

defined as:

x AND y = min(µ(x), µ(y))

x OR y = max(µ(x), µ(y))

NOT x = (1 - µ(x))

7.3 Fuzzy Inference for Sequence Classification

As our discussion in Section 3.2, the problem of program anomaly intrusion detection using

system calls is reduced to the problem of classification of short sequences of system calls produced

by the program during its execution. The two-layer detection scheme, presented in Section 5.2,

classifies short sequences of system calls using a double-layer test supported by a normal database

[25] and an HMM model. In this section, we present an enhanced sequence classification scheme

which is based on fuzzy inference, aimed at further accuracy improvement.

Figure 7.3 presents the fuzzy inference engine for the classification of sequences of system

calls. The engine accepts the sequence’s parameters as the input and then applies the fuzzy

sets and rules to produce the sequence’s status as the output. The sequence parameters include

the sequence probability P generated by the HMM model, and the sequence distance D and

frequency F produced by the normal database.
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Figure 7.3: Fuzzy inference engine for the classification of sequences of system calls

7.3.1 Creation of fuzzy sets and rules

As shown in Figure 7.3, fuzzy sets and rules are used by the fuzzy inference engine to interpret

the input in order to generate the output. While fuzzy sets are used to represent the sequence

input and output parameters, the fuzzy rules are used to combine inputs in fuzzy reasoning

process to produce the output.

7.3.1.1 Creation of fuzzy sets

We have created fuzzy sets for the three input parameters, including the sequence probability

P , the sequence distance D and the sequence frequency F , and for the output parameter which

is the anomaly score. Two common types of fuzzy sets, which are trapezium sets and triangle

sets, are selected, based on analyzing the characteristics of each input and output sequence

parameters.

Fuzzy sets for sequence probabilities

The probability of a test sequence is the probability that the HMM model produces the test

sequence. Given the HMM model λ(A,B, π) and the test sequence Ot = {Ot1, Ot2, ..., Otk},

the sequence probability P is expressed as P (Ot|λ). P (Ot|λ) is computed using forward or

backward procedure, as discussed in Section 4. In practice, log(P ) is usually computed, instead

of P because of the number underflow problem [104].
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Figure 7.4: Fuzzy sets of sequence probability P

Four fuzzy sets are created for the sequence probabilities, which are named VeryLow, Low,

High and VeryHigh, as shown in Figure 7.4. VeryLow and VeryHigh are trapezium sets while

Low and High are triangle sets. The universe of the sequence probability fuzzy sets is [0.0, 1.0],

with 0.0 representing impossible sequence events and 1.0 representing certain sequence events.

The membership functions of these fuzzy sets are determined empirically by computing the

probability distribution of short sequences for some normal and abnormal traces of system

calls. For example, (P10) - the minimum probability that the HMM model produces a normal

sequence is obtained from the sequence probability distribution in normal traces. And, (P1)

- the maximum probability that the HMM model produces an abnormal sequence is obtained

from the sequence probability distribution in abnormal traces.

The sequence probability fuzzy sets are defined as follows:

• VeryLow: VeryLow set represents unlikely probabilities that the HMM model produces

normal sequences. Its membership function is defined as:

µV eryLow(P ) =


1 if P0 ≤ P < P1

a ∗ P + b if P1 ≤ P < P3; a = − 1
P3 − P1

, b =
P3

P3 − P1

0 if P ≥ P3

(7.6)

• Low: Low set represents relatively low probabilities that the HMM model produces normal
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sequences. Its membership function is defined as:

µLow(P ) =



0 if P < P2

a1 ∗ P + b1 if P2 ≤ P < P4; a1 =
1

P4 − P2
, b1 =

P4

P4 − P2

a2 ∗ P + b2 if P4 ≤ P < P6; a2 = − 1
P6 − P4

, b2 =
P6

P6 − P4

0 if P ≥ P6

(7.7)

• High: High set represents relatively high probabilities that the HMM model produces

normal sequences. Its membership function is defined as:

µHigh(P ) =



0 if P < P5

a1 ∗ P + b1 if P5 ≤ P < P7; a1 =
1

P7 − P5
, b1 =

P7

P7 − P5

a2 ∗ P + b2 if P7 ≤ P < P9; a2 = − 1
P9 − P7

, b2 =
P9

P9 − P7

0 if P ≥ P9

(7.8)

• VeryHigh: VeryHigh set represents likely probabilities that the HMM model produces

normal sequences. Its membership function is defined as:

µV eryHigh(P ) =


0 if P < P8

a ∗ P + b if P8 ≤ P < P10; a =
1

P10 − P8
, b =

P10

P10 − P8

1 if P10 ≤ P ≤ P11

(7.9)

Fuzzy sets for sequence distance

We use the Hamming distance to measure the distance between two same-length sequences

of system calls. The distance between a test sequence and normal sequences of the normal

database is defined as:

D = min{D(j)}, j = 1, N

where N is the number of normal sequences in the normal database, and D(j) is the Hamming

distance between the test sequence and the normal sequence j. The distance D is then normalized

to the length k of the sequence as: D̂ = D/k. Hereafter, we use the normalized distance as the

sequence distance.

Based on the characteristics of the sequence distance, we create one crisp set and three fuzzy

sets for this input parameter, as shown in Figure 7.5. The crisp set, namely Zero is used to
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Figure 7.5: Fuzzy sets of sequence distance D

represent the “matched” cases when test sequences are found in normal database. Therefore,

the sequence distance values of Zero set are always 0. Three fuzzy sets, namely Small, Medium

and Large are used to represent the sequence distance when test sequences are “mismatched” or

not found in normal database. Among three distance fuzzy sets, Small and Large are trapezium

sets while Medium is a triangle set. The universe of the sequence distance fuzzy sets is [0.0, 1.0],

with 0.0 representing “matched” cases, and 1.0 representing “mismatched” cases in which a

test sequence is entirely different from normal sequences in normal database. The membership

functions of these fuzzy sets are also determined empirically by analyzing the distance pattern of

sequences. For example, for the sequence length k = 11, we have D0 = 0.0, D1 = 0.2, D2 = 0.3,

D3 = 0.4, D4 = 0.5, D5 = 0.6, D6 = 0.7, D7 = 0.8, and D8 = 1.0.

The sequence distance fuzzy sets are defined as:

• Zero: Zero set has only a single distance D = 0. Its membership function is defined as:

µZero(D) =

 1 if D = 0

0 if D > 0
(7.10)

• Small: Small set represents small differences between a test sequence and

normal sequences. Its membership function is defined as:

µSmall(D) =


1 if D0 ≤ D < D1

a ∗D + b if D1 ≤ D < D3; a = − 1
D3 −D1

, b =
D3

D3 −D1

0 if D ≥ D3

(7.11)
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Figure 7.6: Fuzzy sets of sequence occurrence frequency F

• Medium: Medium set represents medium differences between a test sequence and

normal sequences. Its membership function is defined as:

µMedium(D) =



0 if D < D2

a1 ∗D + b1 if D2 ≤ D < D4; a1 =
1

D4 −D2
, b1 =

D4

D4 −D2

a2 ∗D + b2 if D4 ≤ D < D6; a2 = − 1
D6 −D4

, b2 =
D6

D6 −D4

0 if D ≥ D6

(7.12)

• Large: Large set represents big differences between a test sequence and

normal sequences. Its membership function is defined as:

µLarge(D) =


0 if D < D5

a ∗D + b if D5 ≤ D < D7; a =
1

D7 −D5
, b =

D7

D7 −D5

1 if D7 ≤ D ≤ D8

(7.13)

Fuzzy sets for sequence frequency

The occurrence frequency of a test sequence is the number of occurrences of the sequence in

training data, which is recorded in normal database. Therefore, if a test sequence is not found

in normal database (a mismatched sequence), the sequence frequency is 0.

We define three fuzzy sets for the sequence frequency, namely Low, Medium and High, as

shown in Figure 7.6. Low and High are trapezium sets and Medium is a triangle set. The universe
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of the sequence frequency fuzzy sets is [0, T ], where T is number of sequences formed from the

training set. The membership functions of these fuzzy sets are also determined empirically by

analyzing the distribution of sequence occurrences in the training data recorded in the normal

database. The sequence frequency fuzzy sets are defined as:

• Low: Low set represents small number of occurrences of short sequences in training data.

Its membership function is defined as:

µLow(F ) =


1 if F0 ≤ F < F1

a ∗ F + b if F1 ≤ F < F3; a = − 1
F3 − F1

, b =
F3

F3 − F1

0 if F ≥ F3

(7.14)

• Medium: Medium set represents medium number of occurrences of short sequences in

training data. Its membership function is defined as:

µMedium(F ) =



0 if F < F2

a1 ∗ F + b1 if F2 ≤ F < F4; a1 =
1

F4 − F2
, b1 =

F4

F4 − F2

a2 ∗ F + b2 if F4 ≤ F < F6; a2 = − 1
F6 − F4

, b2 =
F6

F6 − F4

0 if F ≥ F6

(7.15)

• High: High set represents high number of occurrences of short sequences in training data.

Its membership function is defined as:

µHigh(F ) =


0 if F < F5

a ∗ F + b if F5 ≤ F < F7; a =
1

F7 − F5
, b =

F7

F7 − F5

1 if F7 ≤ F ≤ F8

(7.16)

Fuzzy sets for anomaly score

Anomaly score of a test sequence is the score assigned to the test sequence, which is used

to determine the status of the test sequence. In our fuzzy-based model, we have created two

fuzzy sets, namely Normal and Abnormal for the output sequence anomaly score parameter,

as shown in Figure 7.7. Both Normal and Abnormal are trapezium sets. The universe of the

sequence anomaly score fuzzy sets is [0.0, 1.0], with 0.0 representing absolute normal and 1.0

representing absolute abnormal. The anomaly score fuzzy sets are used in the defuzzification
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Figure 7.7: Fuzzy sets of sequence anomaly score A

process to convert the output fuzzy set to the actual anomaly score of the test sequence (refers

to Figure 7.3). The Normal and Abnormal sets are defined as follows:

• Normal: Normal set represents the anomaly scores for normal sequences. Its membership

function is defined as:

µNormal(A) =


1 if A0 ≤ A < A1

a ∗A + b if A1 ≤ A < A3; a = − 1
A3 −A1

, b =
A3

A3 −A1

0 if A ≥ A3

(7.17)

• Abnormal: Abnormal set represents the anomaly scores for abnormal sequences. Its mem-

bership function is defined as:

µAbnormal(A) =


0 if A < A2

a ∗A + b if A2 ≤ A < A4; a =
1

A2 −A4
, b =

A4

A4 −A2

1 if A4 ≤ A ≤ A5

(7.18)

7.3.1.2 Creation of fuzzy rules

Since the input sequence parameters of the fuzzy rules, which include probability P , distance D

and frequency F , are generated by the HMM model and the normal database, the definition of

fuzzy rules for our fuzzy-based detection scheme also follows the assumptions for the classification

of test sequences by the normal database and the HMM model. Specifically, these assumptions

are as follows:
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1. A sequence is produced with a likely probability by the HMM model is considered to be

normal.

2. A sequence is produced with an unlikely probability by the HMM model is considered to

be abnormal.

3. A mismatched sequence (which is not found in the normal database) is more suspicious

than a matched sequence (which is found in the normal database). The larger the distance

between a test sequence and normal sequences is the more likely the test sequence is

abnormal.

4. A matched sequence with low occurrence frequency is more suspicious than a sequence

with high occurrence frequency.

In addition, it should be noted in the definition of fuzzy rules that there exists a close

relationship between the distance and the frequency of a test sequence. If a test sequence is

labelled as “mismatched” by the normal database, its distance is greater than 0 (D > 0, and

D ∈ {Small, Medium, Large}). In this case, the sequence frequency is 0 (F = 0). On the

other hand, if a test sequence is labelled as “matched” by the normal database, its distance is 0

(D = 0, and D ∈ {Zero}). In this case, the sequence frequency is greater than 0 (F > 0).

Based on the above mentioned assumptions, we devise a set of fuzzy rules as follows:

Rule 1 : IF probability IS VeryLow AND distance IS Large THEN the test sequence IS

abnormal.

Rule 2 : IF probability IS VeryLow AND distance IS Medium THEN the test sequence IS

abnormal.

Rule 3 : IF probability IS VeryLow AND distance IS Small THEN the test sequence IS

abnormal.

Rule 4 : IF probability IS VeryLow AND distance IS Zero AND frequency IS Low THEN

the test sequence IS abnormal.

Rule 5 : IF probability IS VeryLow AND distance IS Zero AND frequency IS Medium THEN

the test sequence IS abnormal.
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Rule 6 : IF probability IS VeryLow AND distance IS Zero AND frequency IS High THEN

the test sequence IS normal.

Rule 7 : IF probability IS Low AND distance IS Large THEN the test sequence IS abnormal.

Rule 8 : IF probability IS Low AND distance IS Medium THEN the test sequence IS abnor-

mal.

Rule 9 : IF probability IS Low AND distance IS Small THEN the test sequence IS abnormal.

Rule 10 : IF probability IS Low AND distance IS Zero AND frequency IS Low THEN the

test sequence IS abnormal.

Rule 11 : IF probability IS Low AND distance IS Zero AND frequency IS Medium THEN

the test sequence IS normal.

Rule 12 : IF probability IS Low AND distance IS Zero AND frequency IS High THEN the

test sequence IS normal.

Rule 13 : IF probability IS High AND distance IS Large THEN the test sequence IS abnor-

mal.

Rule 14 : IF probability IS High AND distance IS Medium THEN the test sequence IS

normal.

Rule 15 : IF probability IS High AND distance IS Small THEN the test sequence IS normal.

Rule 16 : IF probability IS High AND distance IS Zero THEN the test sequence IS normal.

Rule 17 : If probability is VeryHigh THEN the test sequence is normal.

7.3.2 Sequence classification using fuzzy inference

As shown in Figure 7.3, the decision-making process of the fuzzy inference engine to classify

each sequence of system calls begins when the engine accepts the sequence parameters as the

input, and ends when the output is produced. This process is completed in three phases: (i)

fuzzification, (ii) fuzzy inference, and (iii) defuzzification.



CHAPTER 7. DETECTING PROGRAM ANOMALIES BASED ON FUZZY 142

Figure 7.8: Fuzzification of sequence distance parameter

7.3.2.1 Fuzzification

Fuzzification is the process of transforming crisp input values into linguistic values which usually

are fuzzy sets. There are two tasks involved in the fuzzification process: (a) input values

are converted into linguistic values which are represented by fuzzy sets, and (b) membership

functions are applied to compute the degree of truth for each matched fuzzy set.

Figure 7.8 illustrates two examples, in which input values of sequence distance are fuzzified.

In the first example, for the input sequence distance D = 0.7, the matched fuzzy set for this input

is Large. And Large’s membership function is used to determine the degree of truth µ(0.7) =

0.75. In the second example, two fuzzy sets of Small and Medium are found to be matched to

the input sequence distance D = 0.3. Applying membership functions of Small and Medium to

the distance input we get the degrees of truth of µSmall(0.3) = 0.37 and µMedium(0.3) = 0.13.

7.3.2.2 Defuzzification

Defuzzification is the process of transforming the fuzzy value into a crisp value. In our fuzzy

inference engine, the output anomaly score fuzzy set is defuzzified to produce the sequence’s

anomaly score. There are many defuzzification techniques available. Among them, some com-

mon defuzzification techniques can be listed as follows:

• Centriod (also known as center-of-area, center-of-gravity) method: This method deter-
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mines the “center point” of the output fuzzy set as:

x̄ =

∫
U

µ(x) ∗ xdx∫
U

µ(x)dx
(7.19)

where x̄ is the output crisp value, U is the universe, x ∈ U , and µ(x) is the membership

function of the output fuzzy set.

• Max-membership method: This method selects an element with maximum value of the

degree of truth of the output fuzzy set.

x̄ : µ(x̄) = max(µ(x)), x ∈ U (7.20)

There exist cases that there is a set of points {x̄1, ..., x̄n} which have a common maximum

membership value. In these cases, x̄ can be selected one of the following options:

x̄ = min(x̄1, ..., x̄n) (7.21)

x̄ = max(x̄1, ..., x̄n) (7.22)

x̄ =
min(x̄1, ..., x̄n) + max(x̄1, ..., x̄n)

2
(7.23)

• Weighted average method: In this method, the output is calculated as the weighted average

of the maximum membership values of fuzzy sets in the output region.

x̄ =
∑

µ(xi) ∗ xi∑
µ(xi)

(7.24)

where µ(xi) is the maximum membership value of the fuzzy set i in the output region.

7.3.2.3 Fuzzy inference

In the fuzzy inference phase, all rules in fuzzy rule-base are applied to input parameters in order

to produce an output. For each rule, first, each premise is evaluated, and then all premises

connected by an AND are combined by taking the smallest value of their degree of membership

as the combination value of rule’s truth value. The final output fuzzy set of the fuzzy rule-base

is the OR combination of results of all individual rules that fire. It is noted that the truth value

of a rule that fires is non-zero. The output fuzzy set is defuzzified to produce a crisp output

value.
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Figure 7.9: Calculation of sequence anomaly score using fuzzy inference

Figure 7.9 shows an example of sequence anomaly score calculation using fuzzy inference.

The input sequence parameters are probability Pi = e−35, distance Di = 0.60 and frequence

Fi = 0. The fuzzy inferrencing process can be described as follows:

1. Fuzzification: Represent input values (Pi, Di, Fi) by corresponding fuzzy sets:

• Pi belongs to the sequence probability High set.

• Di belongs to the sequence distance Medium and Large sets.

• Fi belongs to the sequence frequency Low set.

2. Inference process: Apply fuzzy rules to inputs; only Rule 13 and Rule 14 fire (the fuzzy

rule-base was presented in Section 7.3.1.2). It is noted that Rule 13 and Rule 14 support

only two input parameters Pi and Di. Therefore, Fi does not appear in Figure 7.9.

• Rule 13 fires: the result of this rule is an abnormal fuzzy set with the combined truth

value of 0.50.

• Rule 14 fires: the result of this rule is an normal fuzzy set with the combined truth

value of 0.10.

The final output fuzzy set is the combination of two output sets produced by Rule 13 (part

of Abnormal set) and Rule 14 (part of Normal set).
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3. Defuzzification: Determine the output anomaly score based on the output fuzzy set from

interence process. We use the Max-membership method to compute the output anomaly

score as given in equations (7.20) and (7.23). Based on equation (7.20), we have µ(x̄) =

max(0.50, 0.10) = 0.50. Based on equation (7.23), we get x̄ = (x̄min + x̄max)/2. The

output anomaly score is Ai = x̄ = (0.40 + 1.0)/2 = 0.70.

7.4 Detecting Program Anomalies: A Fuzzy-based

Detection Scheme

In this section, we incorporate the fuzzy inference engine for sequence classification, discussed

in Section 7.3 to form a fuzzy-based detection scheme. As an extension of the two-layer scheme

presented in Section 5.2, the fuzzy-based scheme utilizes fuzzy inference techniques to combine

inputs from multiple sources, in order to further increase the detection accuracy.

Figure 7.10 shows the structure of the fuzzy-based detection scheme to evaluate short seq-

uences of system calls of test traces for possible intrusions. The fuzzy-based detection scheme

is built as follows:

1. Building a normal database, an HMM model and fuzzy sets from training data:

(a) Normal database: The normal database is an ordered list of all unique short sequences

of system calls found in training data. The database is created from the training data

of normal traces of system calls using the method given in [25, 26]. All short sequences

in the normal database have the same number of system calls k, and k is used as the

short sequence length. In addition, the frequency of each short sequence, that is

the number of occurrences of that sequence in training data, is also recorded in the

normal database.

(b) HMM model: The HMM model is trained from normal traces of system calls using

HMM incremental training with optimal initialization, as discussed in Section 6.1.2.

(c) Fuzzy sets: The fuzzy sets are created, as discussed in Section 7.3.1 of this chapter.

2. Fuzzy-based testing: First, test short sequences are formed from test traces of system

calls using the sliding window method. The length of short sequences is k system calls
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Figure 7.10: Fuzzy-based detection scheme: evaluation of short sequences for anomalies

and is equal to the length of short sequences in the normal database. Then, each short

sequence is evaluated in two steps as follows:

(a) Evaluation of the short sequence by the normal database and by the HMM model: In

this step, the normal database and the HMM model are used to compute the input

parameters for fuzzy inference engine in next step. The input parameters include the

sequence probability P generated by the HMM model, and the sequence distance D

and frequency F produced by the normal database.

(b) Classification of the test sequence by the fuzzy inference engine: In this step, the fuzzy

inference engine applies the fuzzy sets and rules to interpret the input parameters in

order to produce the output which is the status of the short sequence: normal or

abnormal.

7.5 Experimental Design and Results

In order to evaluate the performance of our proposed fuzzy-based detection scheme, we conducted

experiments to measure the false positive rate and the detection rate of the fuzzy-based scheme.

Then, the performance results are compared to those of the two-layer detection scheme presented
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in Section 5.2.2 and the normal database scheme [25].

7.5.1 Data sets

We use sendmail traces of system calls collected in a synthetic environment1, as given in [132].

The format of system call traces and the data collection procedures were discussed in Section

5.1.1. The data sets include:

1. Normal traces are traces collected during the program’s normal activity. Normal traces of

sendmail program include 2 traces with the total of 1,595,612 system calls.

2. Abnormal traces are traces that come from a program’s abnormal runs generated by known

intrusions. The sendmail abnormal traces consist of 1 trace of sm5x, 1 trace of sm565a, 2

traces of syslog-local, and 2 traces of syslog-remote intrusions.

7.5.2 Experimental design

In order to measure the detection rate and the false alarm rate of our fuzzy-based detection

model, our experiments were designed as follows:

1. Measurement of the false positive rate: In this test, we use the proposed fuzzy-

based detection scheme to classify normal traces of system calls which are not used in the

construction of the normal database, the HMM model and fuzzy sets. Since the normal

traces do not contain any intrusions, any reported alarms are considered false positive

alarms. This experiment was set up as follows:

(a) Select first 1,000,000 system calls of sendmail normal traces as the full training set.

(b) Form 4 training sets which account for 30%, 50%, 80% and 100% of the size of the

full training set.

(c) Construct normal databases and HMM models from these training sets. The chosen

values for the length of short sequences are k = 5, 11 and 15 system calls.

(d) For each training set and on each selected sequence length, assign membership func-

tion values for fuzzy sets of the three sequence parameters as discussed in Section

7.3.1.
1A type of artificial or simulated environment created to test programs. Detailed description of synthetic

environments is given in [26].
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(e) Select three test traces, each trace of 50,000 system calls from sendmail normal traces,

which are not used in the training process to test for false positive alarms of our

scheme and the normal database scheme [25]. Reported abnormal short sequences

are counted for each test trace.

2. Measurement of anomaly signals and detection rate: In this test, we use the

proposed fuzzy-based scheme to classify abnormal traces to find possible intrusions. Since

the abnormal traces have been collected from the program’s abnormal runs generated by

known intrusions, reported alarms in this case can be considered true alarms or detected

intrusions. This experiment was implemented as follows:

(a) Construct a normal database and an HMM model for sendmail program from normal

traces of system calls. We choose length of short sequences k = 11 to construct the

normal database from normal traces, and to form test short sequences from abnormal

traces.

(b) Assign membership function values for fuzzy sets of the three sequence parameters,

as discussed in Section 7.3.1.

(c) Use the proposed fuzzy-based detection scheme to evaluate abnormal traces to find

abnormal sequences.

(d) Use temporally local regions to group individual abnormal sequences to measure the

anomaly signals, as discussed in Section 5.1.2. The selected region length is r = 20.

7.5.3 Experimental results

7.5.3.1 False positive rate

Table 7.1 shows the false positive rate for three test traces with total of 150,000 system calls

(each trace consists of 50,000 system calls), reported by the normal database scheme, two-

layer detection scheme and fuzzy-based detection scheme on different training sets, with short

sequence length k = 5, 11 and 15. The overall false positive rate is calculated as the ratio of

the total number of reported abnormal short sequences to the total number of short sequences

in the three test traces. The total number of short sequences in the test traces is dependent on

the short sequence length and is also given in Table 7.1.
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Table 7.1: Overall false positive rate of the normal database scheme, the two-layer

detection scheme and the fuzzy-based detection scheme with the short sequence

length, k = 5, 11 and 15.

Training data sets

(% of full data set)

Normal database

scheme (%)

Two-layer

scheme (%)

Fuzzy-based

scheme (%)

Sequence length, k = 5; 3 test traces with the total of 149,988 sequences

30% 0.131 0.112 0.067

50% 0.099 0.079 0.057

80% 0.094 0.069 0.049

100% 0.094 0.069 0.049

Sequence length, k = 11; 3 test traces with the total of 149,970 sequences

30% 0.194 0.170 0.099

50% 0.155 0.115 0.081

80% 0.150 0.107 0.077

100% 0.147 0.107 0.077

Sequence length, k = 15; 3 test traces with the total of 149,958 sequences

30% 0.225 0.164 0.107

50% 0.176 0.121 0.091

80% 0.174 0.116 0.085

100% 0.171 0.116 0.085

It can be seen from Table 7.1 that the false positive rate of the fuzzy-based detection scheme

is much lower than that of the normal database scheme [25]. For example, the fuzzy-based

detection scheme produced 48.23%, 48.89% and 50.96% fewer false positive alarms than the

normal database scheme for the training set of 80% of full set, with the sequence length k = 5,

k = 11 and k = 15, respectively.

It is also noted that there is a significant reduction in the false positive rate of the fuzzy-

based detection scheme, compared to that of the two-layer detection scheme. For example, the

fuzzy-based detection scheme produced 29.81%, 28.13% and 26.44% fewer false positive alarms

than the two-layer detection scheme for the training set of 80% of full set, with sequence length
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Figure 7.11: The relationship between the size of training

sets and the false positive rate with k = 11

Figure 7.12: The relationship between the size of training

sets and the false positive rate with k = 15

k = 5, k = 11 and k = 15, respectively (refers to Table 7.1).

Figures 7.11 and 7.12 describe the dependence of the false positive rate on the size of the

training sets with the short sequence length k = 11 and k = 15 respectively. When the size of the

training set increases, the false positive rate of the normal database scheme and the two-layer
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scheme decreases considerably, especially from the training set of 30% of the full set to the set

of 50% of the full set. Since the fuzzy-based scheme has already achieved a low false positive

rate at the set of 30% of the full set, there is only a small reduction of the false positive rate

when the size of the training set increases.

7.5.3.2 Anomaly signals and the detection rate

Table 7.2 shows a summary of the detection results of the two-layer scheme and the fuzzy-based

scheme for some abnormal traces embedded with known intrusions. The detection performance

results of the two-layer scheme are taken from Section 5.2. In both proposed methods, we

measure anomaly signals based on temporally local regions. The anomaly score A of a region is

computed as the ratio of the number of detected abnormal short sequences in the region to the

length of the region r, as given in Equation (5.1). The average of anomaly scores is computed

over abnormal regions which have the anomaly score A, with A ≥ Â, where Â is the region score

threshold, Â = 40.0%.

It can be seen from Table 7.2 that the fuzzy-based scheme produced significantly better

detection results than the two-layer scheme in terms of the number of detected abnormal regions

and the generated anomaly signal level. For “sm5x” trace, the rates of detected abnormal regions

are 31.58% and 67.11% by the two-layer scheme and fuzzy-based scheme, respectively. Also

for this test trace, the fuzzy-based scheme generated an average of anomaly scores of 72.55%,

compared to the average of anomaly scores of 60.42% produced by the two-layer scheme.

Figures 7.14, 7.13, 7.15, 7.16, 7.17, and 7.18 show the anomaly signals produced by the

two-layer scheme and the fuzzy-based scheme for some abnormal traces, namely s5mx, sm565a,

syslog-remote No1, syslog-remote No2, syslog-local No1 and syslog-local No2, respectively, at the

short sequence length k = 11. It is noted that we measure anomaly signals based on temporally

local regions for both methods, as discussed in Section 5.1.2.3. It can be seen from these figures

that the fuzzy-based scheme generated much stronger and clearer anomaly signals than the two-

layer scheme. For both schemes, all embedded intrusions are detected correctly at the region

score threshold Â = 40.0% for all tested traces.
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Table 7.2: Detection results produced by the normal database scheme [25], by the two-layer

scheme and by the fuzzy-based scheme for some abnormal traces with the short sequence

length k = 11, region length r = 20 and the score threshold of abnormal regions, Â = 40.0%.

Name

of test

abnormal

traces

% detected

abnormal

sequences

by [25] (#)

Percent of detected Average of scores of

abnormal regions (*) abnormal regions (!)

Two-

layer(%)

Fuzzy-

based(%)

Two-

layer(%)

Fuzzy-

based(%)

sm565a 0.60 38.46 76.92 68.00 88.00

sm5x 2.70 31.58 67.11 60.42 72.55

syslog-local No1 5.10 12.00 60.00 73.33 84.67

syslog-local No2 1.70 16.67 60.26 71.54 86.49

syslog-remote No1 4.00 28.26 67.39 72.31 86.53

syslog-remote No2 5.30 24.68 61.04 74.74 83.40

(#) Results produced by the normal database scheme are extracted from Table 3 of [25].

(*) The percentage of the number of detected abnormal regions out of the total number

of regions of the test trace.

(!) The average of anomaly signals is computed over abnormal regions, those with A ≥ Â.

Figure 7.13: Anomaly signal generated for sm565a abnormal trace by two-layer and

fuzzy-based schemes with short sequence length k = 11, region length r = 20.
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Figure 7.14: Anomaly signal generated for s5mx abnormal trace by two-layer and

fuzzy-based schemes with short sequence length k = 11, region length r = 20.

Figure 7.15: Anomaly signal generated for syslog-local abnormal trace No. 1 by two-

layer and fuzzy-based schemes with short sequence length k = 11, region length r = 20.
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Figure 7.16: Anomaly signal generated for syslog-local abnormal trace No. 2 by two-

layer and fuzzy-based schemes with short sequence length k = 11, region length r = 20.

Figure 7.17: Anomaly signal generated for syslog-remote abnormal trace No. 1 by

two-layer and fuzzy-based schemes with short sequence length k = 11, region length

r = 20.
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Figure 7.18: Anomaly signal generated for syslog-remote abnormal trace No. 2 by

two-layer and fuzzy-based schemes with short sequence length k = 11, region length

r = 20.

7.6 Summary

In this chapter, we presented a program anomaly detection scheme which utilizes the fuzzy

inference techniques to increase the detection rate and to reduce the false positive rate. In the

proposed fuzzy-based scheme, a normal database and an HMM model are used to produce inputs

for the fuzzy inference engine. The fuzzy inference engine evaluates each sequence of system

calls by combining the sequence’s multiple inputs through a fuzzy reasoning process to correctly

label the sequence. This in turn helps improve the detection accuracy.

Our experimental results showed that the proposed fuzzy-based scheme correctly detected

“sm5x”, “sm565a”, “syslog-local” and “syslog-remote” intrusions in all tested abnormal traces.

The fuzzy-based scheme produced about 48% fewer false positive alarms than the normal data-

base model [25], and it produced about 28% fewer false positive alarms than the the two-layer

scheme (refers to Table 7.1 (page 149), the case of k = 11 with data sets of 50%, 80% and 100%

of full data set). Futhermore, the fuzzy-based scheme generated much stronger anomaly signals

for all tested abnormal traces than the two-layer scheme and the normal database scheme, as

results presented in Table 7.2 (page 152).

In Chapter 8, we present our complete model for program anomaly detection using system

calls. The fuzzy-based detection scheme will be an important component of the complete model.



Chapter 8

Putting It All Together: The

Proposed Program Anomaly

Detection Model

In this chapter, a complete model for program anomaly detection using system calls is presented,

which is a combination of all model components, discussed in previous chapters of this part. The

HMM modelling is used to characterize normal program behaviour, and the HMM incremental

training scheme is used to construct the HMM model from training data. Instead of using crisp

conditions and thresholds to represent the normalcy and the abnormalcy of sequences of system

calls, fuzzy sets and rules are used to represent the space and combined conditions of sequence

parameters. To detect anomalies and possible intrusions, the fuzzy inference is used to combine

the input sequence information from multiple sources to evaluate sequences of system calls.

8.1 The Proposed Program Anomaly Detection Model

Figure 8.1 shows the proposed detection model developed in two stages: (a) model training and

(b) model testing. In the training stage, the detection model is constructed from the training

data which is normal traces of system calls of the program. In the testing stage, the built

detection model is used to evaluate test traces of system calls to find anomalies and possible

intrusions.
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Figure 8.1: The proposed program anomaly detection model:

(a) Training stage and (b) Testing stage

8.1.1 Model training stage

In the training stage, the proposed detection model’s components which are (i) a normal data-

base, (ii) an HMM model and (iii) fuzzy sets of sequence parameters are constructed from

training data. The training data collection and the model construction can be described as

follows:

1. Training data collection:

(a) Data collection: Training data consist of normal and abnormal traces of system calls
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collected from the normal and abnormal runs of a program. The normal traces are

used to construct the normal database and the HMM model. The normal traces and

certain abnormal traces are used to build fuzzy sets. The program’s raw data can be

collected in real working conditions or simulated conditions, as discussed in Section

5.1.1.

(b) Data pre-processing: Collected raw data must be processed to extract useful infor-

mation from raw traces of system calls. The data is also transformed to observation

sequences using HMM notations for the HMM training. The data pre-processing

procedure was discussed in Section 5.1.2.1.

2. Model construction:

(a) Building of the normal database : The normal database is an ordered list of all unique

short sequences of system calls found in training data. The database is created from

the training data of normal traces of system calls using the method given in [25, 26].

All short sequences in the normal database have the same number of system calls k,

and k is used as the short sequence length. In addition, the frequency of each short

sequence, that is the number of occurrences of that sequence in training data, is also

recorded in the normal database.

(b) HMM training: The HMM model is trained from normal traces of system calls using

the HMM incremental training scheme with optimal initialization, as discussed in

Section 6.1.2.

(c) Creation of fuzzy sets: The fuzzy sets are created from normal and abnormal traces

of system calls, as discussed in Section 7.3.1.

8.1.2 Model testing stage

In the testing stage, the constructed detection model is used to evaluate test traces of program

system calls to find anomalies and possible intrusions. There are three steps in the testing

procedure: (i) formation of short sequences of system calls from test traces, (ii) evaluation of

each short sequence, and (iii) calculation of the region anomaly score. The three steps of the

testing stage are described as follows:
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1. Formation of short sequences: Short sequences, each of which is used as the test unit in

next step, are formed from test traces of system calls using the sliding window method, as

discussed in Section 5.1.2.3. The short sequence length is k system calls, and is equal to

the short sequence length of the normal database.

2. Evaluation of each short sequence by the detection engine:

(a) First, the normal database and the HMM model are used to compute the short

sequence’s parameters which are used as the input for the fuzzy inference engine. The

input parameters consist of the sequence probability P generated by the HMM model,

and the sequence distance D and frequency F produced by the normal database.

(b) Then, the fuzzy inference engine is used to evaluate the short sequence using seq-

uence’s parameters generated by the normal database and the HMM model. The

fuzzy inference engine applies the fuzzy sets and rules to interpret the input sequence

parameters in order to produce the output which is the status of the short sequence:

normal or abnormal.

3. Calculation of the region anomaly score: As discussed in Section 5.1.2.3, we group individ-

ual abnormal short sequences into temporally local regions to measure the anomaly signal.

A region’s anomaly score A is calculated as the ratio between the number of detected

abnormal sequences in the region to the total number of sequences of the region, as given

in equation (5.1). A region with anomaly score A, is labelled as abnormal if A ≥ Â, where

Â is region score threshold. A detected abnormal region can be used to raise an intrusion

alarm.

8.1.3 Online update of the detection model

Although the behaviour of a program is relatively stable over time [25, 26, 66, 93], there are

still good reasons for the program’s anomaly detection model to be updated dynamically: (i)

the detection model may not fully represent normal program behaviour due to the shortage of

training data, (ii) updates to the program itself may change the program behaviour, and (iii)

updates to the underlying operating system may also affect the program behaviour.

We propose an online update scheme for the proposed anomaly detection model, as shown in

Figure 8.2. The proposed update scheme is capable of updating the detection model’s two main
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Figure 8.2: Online update scheme of the proposed anomaly detection model

components: the normal database and the HMM model. It is assumed that these components of

the initial detection model have been built from the program’s normal traces of system calls in

the off-line training stage, as discussed in Section 8.1.1. The proposed online update scheme uses

the detection model itself as a filter to remove noisy data (anomalies) from an online test trace

before it is used for the online update. The proposed online update scheme can be described as

follows:

1. First, online short sequences are formed from an online test trace using the sliding window

method with length of k system calls.

2. Then, each of these short sequences is evaluated by the proposed detection model. This

task is done in the model testing stage, as discussed in Section 8.1.2. Abnormal short
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sequences detected in this process are used for the anomaly signal evaluation, while normal

short sequences are added to the online training set.

3. When the online training set reaches a pre-defined size, it is used to update the normal

database and the HMM model.

• Update of the normal database: Short sequences that do not exist in the normal

database are added, and the occurrence frequency of each short sequence in the

normal database is also updated.

• Update of the HMM model: The HMM model is incrementally updated using the

HMM incremental training scheme, as discussed in Section 6.1.

4. The online training data set is reset after each successful update.

8.2 Discussion

In this section, we evaluate the proposed program anomaly detection model based on the three

most important characteristics of an anomaly intrusion detection approach: accuracy, efficiency

and adaptability.

8.2.1 Accuracy

The accuracy of an anomaly intrusion detection approach can be determined on its detection rate

and false positive rate. An effective intrusion detection approach should have a high detection

rate and a low false positive rate.

8.2.1.1 Detection rate

According to experimental results presented in Section 5.1.3.2, Section 5.2.2.3 and Section 7.5.3,

our detection models correctly detected all intrusions embedded in all abnormal traces tested.

The detected intrusions include a DoS intrusion on sendmail program, a DoS intrusion on inetd

program, and sm5x, sm565a, syslog-local and syslog-remote intrusions on sendmail program.

In contrast, the normal database scheme [25] missed the sm565a intrusion, with only 0.6% of

abnormal sequences detected. This scheme [25] possibly also missed the syslog-local intrusion

embedded in syslog-local trace No 2, with just 1.7% of abnormal sequences detected.
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The better detection performance of the proposed detection model can be explained by (i)

its application of the fuzzy inference and (ii) its ability to generate strong anomaly signals. On

one hand, the model’s fuzzy inference engine is capable of combining multiple sequence inputs

using the fuzzy reasoning for the classification of sequences of test traces, which results in better

detection rate. On the other hand, strong anomaly signals generated by the proposed model

helps it to correctly recognize abnormal sequences in the test traces, which also results in a

higher detection rate. More discussion on the gain of detection performance is given in following

sections.

8.2.1.2 False positive rate

The proposed detection model generated much fewer false positive alarms than the normal

database scheme [25], as shown in Table 7.1. For example, the false positive rate of the normal

database scheme is 0.174%, as opposed to 0.085% of the proposed model, or a reduction of

50.96%, on the training set of 50% of the full set, with k = 15.

It is also noted that the proposed detection model achieved a much lower false positive rate

on small-size training sets than the normal database scheme [25]. On the training set of 30% of

the full set, the false positive rate of proposed detection model is lower than that of the normal

database scheme on the training set of 100% of the full set. This means that the proposed

detection model requires much less training data to achieve the same level of the false positive

rate of the normal database scheme [25].

The fuzzy inference engine plays an important role in the reduction of false positive alarms.

The engine’s capability of incorporating multiple sequence information, generated by the normal

database and the HMM model, through the fuzzy reasoning process, accurately classifies the

sequence. This in turn reduces the false alarms.

8.2.1.3 Strength of anomaly signal

There are two types of anomaly signals generated by our detection models: (i) raw anomaly

signals and (ii) region-based temporal anomaly signals. We evaluate the strength of each type

of anomaly signals separately.

Raw anomaly signals

The raw anomaly signal is generated by our basic detection model for each test short sequence



CHAPTER 8. PUTTING IT ALL TOGETHER: THE PROPOSED PROGRAM 163

of system calls, which is represented by log(P) - the logarithm of the probability that the

HMM model produces a particular short sequence. Our basic detection model clearly generated

two levels of raw anomaly signals for normal and abnormal short sequences in the test trace,

according to the experimental results given in figures 5.2 and 5.3. Short sequences associated

with likely probabilites are considered normal, and those associated with unlikely probabilites

are considered abnormal. For both sendmail and inetd DoS intrusion traces, the difference

between the probabilites of normal and abnormal sequences is substantial, which is greater than

50%.

Region-based temporal anomaly signals

The region-based temporal anomaly signal is created by grouping raw anomaly signals of

individual short sequences into temporally local regions, as presented in Section 5.1.2.3. The

proposed detection model produced much higher levels of region-based temporal anomaly signals,

compared to the normal database model [25]. For example, for the sm565a trace, there are 68%

of abnormal regions detected by the proposed model, as opposed to only 0.6% of abnormal

sequences detected by the normal database model. Similar results can also be seen for other

tested traces (refer to Table 7.2).

Our method of grouping individual abnormal short sequences into temporally local regions,

generates stronger anomaly signals, because abnormal short sequences usually occur in local

groups across the test traces. On the other hand, the anomaly signal evaluation method in [25]

generates weak anomaly signals because it evaluates the anomaly signal by counting the total

number of abnormal short sequences in the whole test traces. This anomaly signal evaluation

method [25] does not properly represent the distribution of abnormal short sequences in the test

traces.

8.2.2 Efficiency

As discussed in Section 3.2.3, we focused our discussion on the efficiency of our detection models

in two aspects: (i) the cost of model construction, and (ii) the cost of testing for intrusions.

Specifically, we consider these costs in terms of time (or computation) and storage (space)

demands for model construction and model testing.
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8.2.2.1 Model construction

HMM training accounts for a major portion of the time and storage demands in the construction

of an HMM-based detection model. Therefore, we discuss the construction costs of our model,

which is based on the HMM incremental training and the construction costs of other detection

approaches, which are based on the HMM batch training.

Training time

Our detection model, based on the HMM incremental training, requires much less training

time than other detection approaches [102, 134], which are based on the Baum-Welch batch

training, using the same training data set. According to the experimental results shown in

Table 6.2 and Table 6.3, the elapsed training time of HMM models, based on the Baum-Welch

batch training, and our HMM incremental training are 201.37 and 48.47 minutes respectively.

This is a time reduction of over 4 times, using the training set of 40 subsets.

It is also noted that the training time for each incremental update of the HMM model,

using a data subset, is relatively small, which makes it possible for the online update of the

detection model. The training time for each incremental update is 1.11 minutes on average, for

the incremental training option of 50 subsets, as shown in Table 6.3.

Storage demand

As the training data set of T system calls has been broken up to K subsets of equal length

Tk, we have Tk = T/K system calls. And, since our HMM incremental training scheme only uses

one subset at a time to update the HMM model, its storage demand is reduced by a factor of K.

In other words, while the storage demand of the HMM Baum-Welch batch training scheme is

O(N2T ), the storage demand of our HMM incremental training scheme is only O(N2Tk), where

N is the number of HMM states.

Since the training data set in anomaly detection using program system calls is extremely

large, T >> N , the reduction of K times in storage demand is substantial. This in turn

improves the efficiency and applicability of our HMM-based detection model in both online

detection and offline analysis.

Amount of training data required

It can be seen in Table 7.1 that our proposed detection model requires less training data
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to achieve the same levels of false positive rate as the normal database scheme [25]. For short

sequence length k = 11, our model requires only 30% of the full training data set to achieve the

false positive rate of 0.099%, which is lower than the rate of 0.147%, produced by the normal

database scheme [25], on 100% training data set.

8.2.2.2 Model testing

In terms of computations for model testing, the proposed detection model is more expensive

than the normal database model [25] because there is an additional HMM test on all short

sequences to produce the sequence probability parameter for the fuzzy inference engine. In

addition, there are some additional overheads for the fuzzy reasoning process to produce the

output. However, the model testing costs are relatively small, compared to the model training

costs. This is because the length of each short sequence is much smaller than the length of a

training set.

8.2.3 Adaptability

An intrusion detection approach is said to be adaptable if it can (i) detect novel/unknown in-

trusions and (ii) support the dynamic update of its detection model. As anomaly detection

approaches, HMM-based anomaly detection approaches are capable of detecting unknown intru-

sions. We use HMM modelling to characterize normal program behaviour, and attempt to detect

deviations of the program’s current behaviour from its normal behaviour. Therefore, any known

and unknown intrusions, that cause significant changes to the program’s current behaviour from

its normal behaviour, can be detected by our HMM-based detection model.

In addition, the proposed detection model supports the online update of its detection model,

which is based on the incremental update of the model’s components, as discussed in Section

8.1.3. Since the online test data may include anomalies and intrusions, it needs to be cleaned

by the detection model, before it can be used. And, only clean data (normal short sequences

specifically) are added into the online training set for the periodic update. This online update

keeps our detection model up-to-date, and therefore it is able to adapt to the changes of the

program’s behaviour. This in turn maintains the model’s detection accuracy.
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8.3 Conclusion

In Part II, we presented the development process of the proposed program anomaly intrusion

detection model using system calls. The proposed anomaly detection model focuses on improv-

ing the detection accuracy, efficiency and adaptability of existing anomaly intrusion detection

approaches.

8.3.1 Reducing false alarms and increasing the detection rate

The HMM modelling was used to characterize normal program behaviour using normal traces

of system calls to improve the detection rate since HMM is a powerful modelling technique in

many research areas [103, 104]. The strong anomaly signal generated by our HMM-based basic

detection model for some abnormal traces embedded with DoS intrusions on programs indicated

that the HMM model is a good model of normal program behaviour.

Reducing false alarms is an integral part of improving detection accuracy because a high

level of false alarms will reduce the effectiveness of an intrusion detection system [81, 82]. We

introduced two detection schemes in order to reduce false alarms: a two-layer detection scheme

and a fuzzy-based detection scheme. The two-layer detection scheme is an extension of the basic

detection model, which uses a normal database [25] and an HMM model to form a double-layer

test on each sequence of system calls. Experimental results showed that the proposed two-layer

scheme detection produced about 28% fewer false alarms than the normal database scheme [25].

On the other hand, the fuzzy-based detection scheme focuses on further improving the de-

tection accuracy. It uses the fuzzy inference to combine the sequence information from multiple

sources. Like the two-layer scheme, the fuzzy-based scheme also includes a normal database

[25] and an HMM model. However, the normal database and the HMM model are only used

to generate the inputs for the fuzzy inference engine. The fuzzy inference engine uses its fuzzy

sets and rules to combine multiple sequence inputs to produce an output. Experimental results

showed that the fuzzy-based detection scheme produced about 48% fewer false alarms than the

normal database scheme [25]. Moreover, it generated a much stronger anomaly signal than the

two-layer detection scheme for all tested abnormal traces.

Our anomaly signal measurement method, which groups individual abnormal sequences into

temporally local regions, also helps produce a stronger anomaly signal since abnormal sequences

usually occur in local groups across the test traces. A strong anomaly signal helps the detection
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engine correctly classify test sequences, which in turn improves detection accuracy.

8.3.2 Improving the efficiency and adaptability

In our basic detection model, the HMM modelling of normal program behaviour generated

strong abnormal signals, and therefore it produced a high detection rate. However, the basic

detection model suffers a efficiency problem because the training of its HMM model, using

the Baum-Welch algorithm, is very expensive in terms of training time and storage demand.

Our HMM incremental training scheme with optimal initialization was designed to solve this

efficiency problem. Experimental results showed that the proposed HMM incremental training

scheme reduced training time and storage demand substantially. In addition, the proposed HMM

incremental training scheme was used to support the online update of the proposed program

anomaly detection model, which makes the detection model adaptable to the changes of the

program’s behaviour.



Chapter 9

Conclusions

9.1 Summary

This thesis developed a solution to protect computer and information systems with two lines

of defence: (i) preventing intrusions at the first line and (ii) detecting intrusions at the second

line if the prevention measures of the first line have been penetrated. We presented a security

enhancement for E-commerce applications at the first line of defence, and an improvement of the

detection accuracy, efficiency and adaptability of existing program anomaly intrusion detection

approaches at the second line of defence.

9.1.1 Security enhancement for E-commerce applications

Part I of this thesis described a hardware-based encryption model for the enhancement of com-

munication and end-system security, and performance for E-commerce applications. Although

existing software based security solutions, such as SSL/TSL protocols have been widely used,

they have problems with the protection of long-term private keys and the degradation of system

performance. Moreover, the security of these software based security solutions depends on the

security of the underlying operating system, and therefore they are vulnerable to threats caused

by security flaws of the underlying operating system.

The proposed encryption model is based on the integration of an existing web-based client/

server model and embedded hardware-based RSA encryption modules. The proposed encryption

model consists of two main components: the client and the server. The client consists of a web

browser, a hardware-based encryption engine and a client communication module. The server
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includes a web server, a hardware-based decryption engine and a server communication module.

Plaintext messages are encrypted by hardware encryption engines before they are transferred

from one end to the other through an open environment, such as the Internet. The proposed

model’s security is assured by the strength of RSA encryption at large keys, and the security of

a hardware based cryptosystem. On the other hand, the model’s performance is guaranteed by

the hardware’s high processing capability.

Hardware was selected as the platform for the implementation of the proposed encryption

model because of its advanced security features. Hardware based cryptosystems are generally

considered more secure than software based counterparts, since a hardware based cryptosystem

runs on its own physical memory space, and therefore it can effectively prevent malicious access

from external programs. This also means that the security of a hardware based cryptosystem

does not depend on the security of the underlying operating system. Furthermore, hardware

can be used to safely store sensitive information, such as long-term private keys.

A successful implementation of DSP hardware based RSA encryption modules using Texas

Instruments’ TMS320C6416 DSK boards was presented. Each encryption module at each end

of the proposed model supports both message encryption and decryption functions. We also

provided the details on how to integrate these hardware modules into an existing E-commerce

system, and how to communicate efficiently between the computer applications (the web browser

and the web server) and the DSP hardware based encryption modules.

A fully functional E-commerce system, including the web and database applications was

built to evaluate the performance and security of the proposed encryption model. According to

our experimental results, the proposed hardware based RSA encryption model performs better

than the software based RSA implemetation running on Intel Pentium 4 machines that have

almost double clock speed of the DSP’s at large RSA encryption keys. The results confirmed

that our encryption model is more scalable than software based implementations, and it can be

used to efficiently improve the security and performance of E-commerce applications.

9.1.2 Improvement of accuracy, efficiency and adaptability for program

anomaly intrusion detection

Part II of this thesis described an HMM-based program anomaly intrusion detection model

using system calls. Our goal is to improve the detection accuracy, efficiency and adaptability of
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existing anomaly detection approaches. We started with an intensive investigation of existing

anomaly intrusion detection approaches, and then focused on approaches that monitor program

behaviour to detect intrusions. Generally, anomaly detection approaches are not effective as they

usually generate a high level of false alarms. In addition, several anomaly detection approaches

[102, 134] demand excessive system resources for training and testing.

We applied the HMM modelling to represent normal program behaviour using system calls in

our basic anomaly detection model. The procedure for collecting and pre-processing raw traces

of system calls from programs’ runs was proposed. In the model training stage, an empirical

method to select the number of HMM states and the number of distinct observation symbols

for HMM training was discussed. In the model testing stage, we presented an anomaly signal

measurement method which produces strong anomaly signals by grouping individual abnormal

sequences into a temporally local regions. Our experimental results confirmed that the HMM-

based basic detection model generated strong and clear anomaly signals for a DoS intrusion

trace on the sendmail program and a DoS intrusion trace on the inetd program.

We then proposed an extension to the basic detection model, and presented a two-layer

detection scheme to reduce false alarms, since an HMM-based single-layer detection engine of

the basic detection model may generate relatively a high level of false alarms. The scheme’s

double-layer detection engine consists of a normal database [25] and an HMM model. In this

scheme, each sequence of system calls goes through two sequential tests, first against the normal

database and then against the HMM model. The HMM model test only applies to sequences

which were classified as mismatched, or rare, by the normal database. Experimental results

showed that the two-layer scheme effectively reduced false alarms by about 28%, compared to

the normal database scheme.

We next examined the HMM training efficiency problem of the basic detection model. The

basic detection model suffers an efficiency problem because the construction of its HMM model,

based on the HMM Baum-Welch batch training, was found to be very expensive in terms of

training time and storage demands, as discussed in Section 5.1.2.2. The basic detection model

must be improved in terms of efficiency, before it can be used. The proposed HMM incremental

training scheme with optimal initialization is our solution to the basic model’s efficiency problem.

Unlike the HMM batch training, our HMM incremental training scheme incrementally updates

the HMM model using one training subset at a time until convergence. Our experimental results
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showed that the proposed HMM incremental training scheme reduced training time four-fold,

compared to the HMM batch training based on the Baum-Welch algorithm. Our training scheme

also reduced the storage demand in proportion to the number of training subsets used, compared

to the HMM batch training.

We next improved the two-layer detection scheme in order to further reduce false alarms and

increase the detection rate. We were motivated by the fact that the normalcy and the abnormalcy

are not truly crisp concepts. Therefore, it is not always possible to correctly classify an object’s

behaviour as normal or abnormal using crisp conditions [18, 33, 34]. We proposed a fuzzy-based

detection scheme, in which fuzzy sets and rules were used to represent the space and combined

conditions of parameters of each test sequence. A normal database and an HMM model were

used to generate sequence parameters which are used as the input to the fuzzy inference engine.

The fuzzy inference engine evaluates each sequence of system calls, by combining the sequence

information using its fuzzy sets and rules to produce the sequence status. Our experimental

results showed that the fuzzy-based detection scheme reduced false alarms by about 28% and

48%, compared to the two-layer detection scheme and the normal database scheme, respectively.

In addition, the fuzzy-based scheme produced much stronger anomaly signals for all tested

abnormal traces, as presented in Section 7.5.3.

In Chapter 8, we presented a complete model for program anomaly intrusion detection using

system calls. The proposed detection model consists of two development stages: training stage

and testing stage. In the training stage, an HMM model and a normal database were built from

system call data to characterize normal program behaviour. The proposed HMM incremental

training scheme was used to construct and update the HMM model. Fuzzy sets were empirically

created from training data to represent the space of sequence parameters. In the testing stage,

the fuzzy-based detection scheme was used to evaluate test traces of system calls to find anomalies

and possible intrusions. In addition, the proposed detection model also supports an online update

scheme which is used to update the HMM model and the normal database using online data.

9.2 Future Work

There are some possible improvements for the proposed hardware-based RSA encryption model

and the proposed program anomaly detection model, which can be the topic of future research.
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9.2.1 Possible improvements for the proposed hardware based

RSA encryption model

• Further optimization of the RSA hardware implementation for higher performance: The

current RSA hardware implementation using the C programming language performs better

than the RSA software implementation running on Intel-based PCs at large RSA keys. The

RSA hardware implementation can be further optimized at atomic integer operations, such

as adders and multipliers, to fully exploit the processing capability of DSP hardware. In

addition, the C implementation of critical modules of the BigInt package can be replaced

with low-level languages, such as Assembler. This can reduce code size, as well as improve

performance.

• Extend the proposed DSP-based RSA encryption model to support more platforms: Cur-

rent implementation of the proposed encryption model only works on the Microsoft plat-

form, specifically on Microsoft Internet Explorer web browser on the client side, and Mi-

crosoft web server on the server side. Making the proposed encryption model able to work

on other web browsers, such as Firefox and Netscape on the client side, and other web

servers, such as Apache on the server side, are other possible extensions.

9.2.2 Possible improvements for the proposed program anomaly detection

model

• Automatic learning of fuzzy sets and rules from training data: In the current implemen-

tation of the proposed detection model, we manually created fuzzy sets and rules for the

fuzzy inference engine to evaluate each sequence of test traces of system calls. The fuzzy

rules were manually defined, based on the detection assumptions of the HMM model and

the normal database. For example, the membership functions of fuzzy sets for parame-

ters, such as sequence probability and sequence frequency, were empirically determined

by analysing the parameter distributions in the training data. An automatic learning

scheme, which can generates fuzzy sets and rules from training data, is a possible future

improvement for the proposed detection model.

• Improve the weighted merging method of HMM models of the proposed HMM incremental

training scheme to further reduce training time and storage demand: To make the weighted
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merging method simple, we chose a uniform size (the number of HMM states N and the

number of distinct observation symbols M) for the final HMM model and all HMM sub-

models. However, the size of each HMM sub-model can be significantly smaller than the

size of the final HMM model, since an HMM sub-model is trained from a training subset

which is substantially smaller than the full training set. A possible solution is to select

the size of each HMM sub-model based on the corresponding training subset. Small-size

HMM sub-models help further reduce the overall training time and storage demands. The

proposed HMM incremental scheme must be improved to support the HMM incremental

merging of two HMM models with different sizes.

• Improve the region-based anomaly signal evaluation scheme to produce a stronger anomaly

signal: We used the region-based scheme to group individual abnormal sequences into

temporally local regions, in which a region’s anomaly score is calculated as the ratio of the

number of abnormal sequences detected in the region, to the total number of sequences

in the region. This means that all abnormal sequences in a region are treated equally,

although they have different anomaly scores. We believe that, an anomaly signal evaluation

scheme, which takes the anomaly score of individual abnormal sequences into consideration,

will generate a stronger anomaly signal. A stronger anomaly signal, in turn helps to

improve detection accuracy.

9.3 Closing Remarks

This thesis developed an approach to secure computer and communication systems from intru-

sions with two lines of defence: preventing intrusions at the first line and detecting intrusions

at the second line. For the first line of defence, we proposed a hardware based RSA encryption

model. For the second line of defence, we proposed an HMM-based program anomaly intrusion

detection model. The hardware based RSA encryption model and the program anomaly intru-

sion detection model have been designed, implemented and evaluated for the proof of concepts.



Appendix A

Main Features of TMS320C6416

DSP Starter Kit

The Texas Instruments’ TMS320C6416 DSP Starter Kit (DSK) is an external DSP board with

central processing unit C6416 running at the default clock of 1000MHz. In this appendix, we

describe main technical specifications of the DSP board mentioned in Section 2.5.1. Table A.1

presents main features of the DSP board. Figures A.1 and A.2 show the board layout and the

block diaram of the DSP board respectively.

174
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Figure A.1: Texas Instruments TMS320C6416 DSK board layout [121, 128]

Figure A.2: Texas Instruments TMS320C6416 DSK block diagram [121, 128]
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Table A.1: Main Features of TMS320C6416 DSK [127]

TMS320C6416 DSK Features

Highest-Performance Fixed-Point DSPs

2.00, 1.67, 1.39, 1.18, 1.00, 0.84 ns Instruction Cycle Time

500, 600, 720, 850, 1000, 1200MHz Clock Rate

Eight 32-Bit Instructions/Cycle

Twenty-Eight Operations/Cycle

4000, 4800, 5760, 6800, 8000, 9600 MIPS

Fully Software-Compatible With C62x

C6414/15/16 Devices Pin-Compatible

VelociTI.2 Extensions to VelociTI Advanced Very-Long-Instruction-Word

(VLIW) TMS320C64x DSP Core

Eight Highly Independent Functional Units With VelociTI.2 Extensions:

- Six ALUs (32-/40-Bit), Each Supports Single 32-Bit, Dual 16-Bit,

or Quad 8-Bit Arithmetic per Clock Cycle

- Two Multipliers Support Four 16 x 16-Bit Multiplies (32-Bit Results) per

Clock Cycle or Eight 8 x 8-Bit Multiplies (16-Bit Results) per Clock Cycle

Non-Aligned Load-Store Architecture

64 32-Bit General-Purpose Registers

Instruction Packing Reduces Code Size

All Instructions Conditional

Instruction Set Features

Byte-Addressable (8-/16-/32-/64-Bit Data)

8-Bit Overflow Protection

Bit-Field Extract, Set, Clear

Normalization, Saturation, Bit-Counting

VelociTI.2 Increased Orthogonality

Viterbi Decoder Coprocessor (VCP)

Supports Over 600 7.95-Kbps AMR
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TMS320C6416 DSK Features (continued)

Programmable Code Parameters

Turbo Decoder Coprocessor (TCP)

Supports up to 7 2-Mbps or 43 384-Kbps 3GPP (6 Iterations)

Programmable Turbo Code and Decoding Parameters

L1/L2 Memory Architecture

128K-Bit (16K-Byte) L1P Program Cache (Direct Mapped)

128K-Bit (16K-Byte) L1D Data Cache (2-Way Set-Associative)

8M-Bit (1024K-Byte) L2 Unified Mapped RAM/Cache (Flexible Allocation)

Two External Memory Interfaces (EMIFs)

One 64-Bit (EMIFA), One 16-Bit (EMIFB)

Glueless Interface to Asynchronous Memories (SRAM and EPROM) and Syn-

chronous Memories (SDRAM, SBSRAM, ZBT SRAM, and FIFO)

1280M-Byte Total Addressable External Memory Space

Enhanced Direct-Memory-Access (EDMA) Controller (64 Independent Channels)

Host-Port Interface (HPI)

User-Configurable Bus Width (32-/16-Bit)

32-Bit/33-MHz, 3.3-V PCI Master/Slave Interface Conforms to PCI Specifi-

cation 2.2

Three PCI Bus Address Registers: Prefetchable Memory, and Non-Prefetchable

Memory I/O

Four-Wire Serial EEPROM Interface

PCI Interrupt Request Under DSP Program Control

DSP Interrupt Via PCI I/O Cycle

Three Multichannel Buffered Serial Ports

Direct Interface to T1/E1, MVIP, SCSA Framers

Up to 256 Channels Each

ST-Bus-Switching-, AC97-Compatible

Serial Peripheral Interface (SPI) Compatible (Motorola)

Three 32-Bit General-Purpose Timers
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TMS320C6416 DSK Features (continued)

Universal Test and Operations PHY Interface for ATM (UTOPIA)

UTOPIA Level 2 Slave ATM Controller

8-Bit Transmit and Receive Operations up to 50 MHz per Direction

User-Defined Cell Format up to 64 Bytes

Sixteen General-Purpose I/O (GPIO) Pins

Flexible PLL Clock Generator

IEEE-1149.1 (JTAG) Boundary-Scan-Compatible



Appendix B

Implementation of the DSP

Hardware RSA Encryption Model:

Major Functions

This appendix provides more details about the implementation of the major components of the

proposed DSP hardware RSA encryption model, presented in Section 2.4. Table B.1 shows

the crucial functions of the BigInt package that is the core of the implementation of the RSA

algorithm. Table B.2 lists the core RTDX built-in functions which are used to implement the

DSP RTDX Interfaces of the DSP Hardware RSA Encryption Engine and the DSP Hardware

RSA Decryption Engine. Table B.3 presents core RTDX exported functions that are used to

develop the Client DSP Communication Module and the Server DSP Communication Module.

Table B.4 shows main functions of the Client DSP Communication Module which are responsible

the communications between the client web browser and the DSP Encryption Engine. Table

B.5 shows main functions of the Server DSP Communication Module which are responsible the

communications between the web server and the DSP Decryption Engine.

179
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Table B.1: Major functions of BigInt package

=== Initialization, memory management and conversion functions ===

int BigIntInit(BigInt *bn, unsigned int initLength): initialize a big integer of

initLength digits, and assign all digits to 0.

int BigIntInitStrHex(BigInt *bn, char *inputStr): initialize a big integer from a

hexadecimal string.

int BigIntInitStrBin(BigInt *bn, char *inputStr): initialize a big integer from an

octet string.

void BigIntToChar(BigInt *bn, char *outputStr): convert a big integer to an octet

string.

void BigIntToHex(BigInt *bn, char *outputStr): convert a big integer to a hexadec-

imal string.

void BigIntRelease(BigInt *bn): deallocate memory occupied by a big integer.

=== Arithmetic functions ===

int BigIntAdd(BigInt *bn1, BigInt *bn2): add two non-negative big integers;

bn1← bn1 + bn2

int BigIntAddSign(BigInt *bn1, BigInt *bn2): add two signed big integers;

bn1← bn1 + bn2

int BigIntSub(BigInt *bn1, BigInt *bn2): substract two non-negative big integers,

bn1 ≥ bn2; bn1← bn1− bn2

int BigIntSubSign(BigInt *bn1, BigInt *bn2): substract two signed big integers;

bn1← bn1− bn2

int BigIntMulVal(BigInt *bn, unsigned short theValue, BigInt *result): mul-

tiply a non-negative big integer with a non-negative integer value;

result← bn1 ∗ theV alue

int BigIntMulVal2(BigInt *bn, unsigned short theValue): multiply a non-

negative big integer with a non-negative integer value;

bn1← bn1 ∗ theV alue

int BigIntShiftLeft(BigInt *bn, unsigned int pos): Shift all digits of a big integer

pos position to the left.
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Major functions of BigInt package (continued)

int BigIntShiftRight(BigInt *bn, unsigned int pos): Shift all digits of a big inte-

ger pos position to the right.

int BigIntDiv(BigInt *bn1, BigInt *bn2, BigInt *qt): big integer division of

bn1/bn2; results: qt is quotient and bn1 is remainder.

=== Comparison functions ===

unsigned short BigIntCmpZero(BigInt *bn): compare a big integer with 0.

unsigned short BigIntCmp(BigInt *bn1, BigInt *bn2): compare two non-negative

big integers.

unsigned short BigIntCmpSign(BigInt *bn1, BigInt *bn2): compare two signed big

integers.

=== Modular arithmetic functions ===

int BigIntMontMul(BigInt *x, BigInt *y, BigInt *modulus,

unsigned short modInverse, BigInt *a): Implementation of

Montgometry multiplication that computes a = x ∗ y ∗R−1 mod modulus, where R = Bl,

B is the radix of the big integer, and l is the number of digits of modulus; and

modInverse = −modulus−1 mod B

int BigIntMontExp(BigInt *m, BigInt *exp, BigInt *modulus,

unsigned short modInverse, BigInt *c): Implementation of

Montgomery exponentiation that computes c = mexp mod modulus
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Table B.2: Core RTDX built-in functions [62, 128]

=== Target initialization for RTDX ===

TARGET_INITIALIZE(): initialize the RTDX communications on the DSP target.

=== Create RTDX channels ===

RTDX_CreateInputChannel(ichan): create an input channel to get data from host com-

puter with provided name ‘ichan’.

RTDX_CreateOutputChannel(ochan): create an output channel to send data to host com-

puter with provided name ‘ochan’.

=== Enable/diable RTDX channels ===

void RTDX_enableOutput(RTDX_outputChannel *ochan): enable the output channel

‘ochan’.

void RTDX_disableOutput(RTDX_outputChannel *ochan): disable the output channel

‘ochan’.

void RTDX_enableInput(RTDX_outputChannel *ichan): enable the input channel

‘ichan’.

void RTDX_disableInput(RTDX_outputChannel *ichan): disable the input channel

‘ichan’.

=== Read and write data to RTDX channels ===

int RTDX_read(RTDX_inputChannel *ichan, void *buffer, int bsize): read the

bsize bytes from the input channel and put it into the buffer; return the error code.

The function causes a read request and blocks the current process until it gets the data.

int RTDX_readNB(RTDX_inputChannel *ichan, void *buffer, int bsize): read the

bsize bytes from the input channel and put it into the buffer; return the error code. The

function causes a read request, but not blocks the current process.

int RTDX_write(RTDX_outputChannel *ochan, void *buffer, int bsize): write

bsize bytes stored in buffer to the output channel. Return the error code.
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Table B.3: Core RTDX Exported functions [62, 128]

=== RTDX COM initialization ===

::CoInitialize(NULL): initialize COM.

::CoUninitialize(): uninitialize COM.

rtdx.CreateInstance(L"RTDX"): creates an RTDX instance.

rtdx.Release(): release RTDX instance.

rtdx->SetProcessor(BSTR board, BSTR processor): set the board and processor used.

=== Open/close input/output RTDX channels ===

rtdx->Open(char channel[], char mode[]): open an RTDX channel for reading or

writing data based on mode.

rtdx->Close(): close the RTDX channel.

=== Read/write data to the RTDX channels ===

long ReadSAI1(VARIANT *pArr): read a SAFEARRAY of 8 bit integer; ∗pArr is a

pointer to the array.

long ReadI1(BYTE *pData): read 8 bit integer.

long WriteI1(unsigned char data, long *numBytes): write 1 byte of data to the

channel.

long Write( VARIANT Arr, long *numBytes): Writes a message (SAFEARRAY type)

to a channel. The parameter Arr is a V ARIANT that contains a pointer to the

SAFEARRAY . The SAFEARRAY can contain: 8-bit integers, 16-bit integers, 32-bit

integers, 32-bit floats, or 64-bit floats.

=== Query functions ===

long GetMsgLength(long *pLength): returns the number of bytes in the current mes-

sage. The value is returned in ∗pLength.



APPENDIX B. IMPLEMENTATION OF THE DSP HARDWARE RSA ENCRYPTION 184

Table B.4: Major functions of the client DSP communication module

=== Interface - Public function ===

BSTR DSPEncrypt(LPCTSTR boardName, LPCTSTR processorName,

LPCTSTR rsaPublicKeys, LPCTSTR plainText): invoke the DSP encryption en-

gine to encrypt the plaintext and return the ciphertext; the function is called from the

client browser using JavaScript.

=== Private functions ===

int RTDX_Initialize(BSTR boardName, BSTR processorName): initialize the RTDX

communications with provided board name and process name.

void RTDX_Remove(): release RTDX communications.

int RTDX_OpenChannel(char channel[],char mode[]): open a communication chan-

nel. The mode can be “R” for reading or “W” for writing.

int RTDX_CloseChannel(): close a RTDX channel

char *RTDX_ReadMsg(): read a message from the RTDX channel.

long RTDX_WriteMsg(char buffer[]): write a message to the RTDX channel.

Table B.5: Major functions of the server DSP communication module

=== Interface - Public function ===

BSTR DSPDecrypt(BSTR boardName, BSTR processorName, LPCTSTR cipherText):

invoke the DSP decryption engine to decrypt the ciphertext and return the plaintext; the

function is called from the web browser using VBScript/JScript.

=== Private functions ===

The server DSP communication module uses the same privates functions used by the client

DSP communication module.
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[33] J. Gómez and D. Dasgupta. Evolving Fuzzy Classifiers for Intrusion Detection. The Third

Annual IEEE Workshop on Information Assurance, New Orleans, Louisiana, USA, June

17-19, 2002.
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