
Support Vector Machine for Network Intrusion and
Cyber-Attack Detection

Kinan Ghanem*, Francisco J. Aparicio-Navarro†, Konstantinos G. Kyriakopoulos*§, Sangarapillai Lambotharan*,
Jonathon A. Chambers†

*School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK
†School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

§Institute for Digital Technologies, Loughborough University London, London, E15 2GZ, UK
e-mails: {k.ghanem, k.kyriakopoulos, s.lambotharan}@lboro.ac.uk, {francisco.aparicio-navarro, jonathon.chambers}@ncl.ac.uk

Abstract—Cyber-security threats are a growing concern in
networked environments. The development of Intrusion Detection
Systems (IDSs) is fundamental in order to provide extra level of
security. We have developed an unsupervised anomaly-based IDS
that uses statistical techniques to conduct the detection process.
Despite providing many advantages, anomaly-based IDSs tend to
generate a high number of false alarms. Machine Learning (ML)
techniques have gained wide interest in tasks of intrusion
detection. In this work, Support Vector Machine (SVM) is deemed
as an ML technique that could complement the performance of
our IDS, providing a second line of detection to reduce the number
of false alarms, or as an alternative detection technique. We assess
the performance of our IDS against one-class and two-class SVMs,
using linear and non-linear forms. The results that we present
show that linear two-class SVM generates highly accurate results,
and the accuracy of the linear one-class SVM is very comparable,
and it does not need training datasets associated with malicious
data. Similarly, the results evidence that our IDS could benefit
from the use of ML techniques to increase its accuracy when
analysing datasets comprising of non-homogeneous features.

Keywords—Classification Algorithms; Cyber Security; Intrusion
Detection Systems; Machine Learning Techniques; Network
Security; Support Vector Machine; SVM

I. INTRODUCTION
Cyber-security threats are a growing concern in networked

environments. Therefore, providing strong and reliable security
mechanisms has become essential in all areas of society. An
Intrusion Detection System (IDS) is an effective tool to identify
the presence of attacks and intrusions in the protected system.

In [1], we previously presented an unsupervised anomaly-
based IDS, based on the combined use of multiple metrics from
multiple layers of the protocol stack to carry out the intrusion
detection. Unsupervised IDSs are able to learn the difference
between normal and malicious information autonomously.
Anomaly-based IDSs construct profiles of normal network
traffic, and calculate the level of deviation of outliners to identify
attacks. In contrast to misuse IDSs, an anomaly-based system is
able to identify previously unknown and zero-day attacks.
However, this type of IDS tends to generate higher number of
false alarms than misuse IDSs [2].

Machine Learning (ML) techniques have gained wide
interest in tasks of intrusion detection. ML-IDSs are based on
the definition of models that allow the classification of the
analysed information [2]. One of the most attractive ML

techniques is the Support Vector Machine (SVM) [3]. An SVM
is a classification technique that has proven to be effective in a
wide variety of problems, such as image processing [4], often
providing considerable improvement over competing methods.

In the area of cyber-security, the use of an SVM can improve
the accuracy of IDSs. The classifier that is created by this
technique is useful to predict between two possible outcomes
(i.e. malicious and non-malicious network traffic). The study of
ML techniques in tasks of intrusion detection would allow us to
identify a classification technique that could complement our
anomaly-based IDS, acting in a hybrid manner as a second line
of detection, and, at the same time, to facilitate the creation of a
benchmark to compare the performance of our IDS against.

In this work, we assess the performance of our IDS against
one-class and two-class SVMs. Although, a two-class SVM may
be generally more accurate, if we were able to generate a robust
one-class SVM, we would reduce the need for a thorough off-
line dataset labelling process. A one-class SVM requires only a
training dataset containing normal traffic. Therefore, the aim of
this paper is twofold. First, to evaluate which of the SVM
techniques produces the best detection results. The assessment
is conducted between a one-class SVM and two-class SVM,
using linear and non-linear with Radial Basis Function (RBF)
forms. Second, to assess the performance of our unsupervised
anomaly-based IDS [1] against the different SVM techniques in
tasks of intrusion detection.

The remainder of the paper is organised as follows. In
Section II, the most relevant previous work is reviewed. In
Section III, the networks and evaluation datasets are described.
A description of the SVM theory and the anomaly-based IDS is
given in Section IV. Section V presents the experimental results.
Finally, conclusions are given in Section VI.

II. RELATED WORK
In the area of cyber-security and IDSs, ML classification

techniques are adopted to improve the efficiency of the detection
systems distinguishing between malicious and non-malicious
network traffic. In [5], the authors propose an IDS that uses a
one-class SVM to analyse incoming Netflows. In contrast to
common procedure, the authors train their system solely with
malicious data collected using a honeypot. This one-class SVM-
based IDS produces very high detection results.

The author of [6] presents an approach that combines a linear
SVM, decision trees and Naïve Bayes to reduce the number of
false alarms of the IDS, while analysing the KDD99 dataset [7].

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) Grant number EP/K014307/2 and the MOD
University Defence Research Collaboration in Signal Processing.

The approach proposed in this work conducts an analysis, in
which each of the techniques processes the data in sequential
order. The SVM is trained based upon a new binary
classification added to the dataset to specify if the instance is an
attack or normal traffic.

In [8], the authors present an IDS that makes use of an SVM
as a classification technique. The presented IDS consists of three
main components, a one-class SVM that distinguishes between
malicious and non-malicious network traffic during an initial
analysis, a multi-class SVM that categorises the traffic classified
as malicious into one of the four classes (i.e. Denial-of-Service,
Remote to local, User to root and Probing attacks), and a final
clustering process. The experiments presented in this work are
also conducted using the KDD99. Instead of using the KDD99,
in this paper, we have evaluated the classifiers using a number
of different network traffic datasets, gathered from real
networks, both wired and wireless, at Loughborough University.

The training process of an SVM has also been carefully
researched. The authors of [9] propose a new approach for
enhancing the training process of SVM when dealing with large
training datasets. This work combines the use of SVM and
clustering analysis to reduce the number of instances used during
the computation of the support vector margin, which, in turn,
reduces the training time without affecting the final results.

III. TESTBEDS AND NETWORK TRAFFIC MEASUREMENTS
In total, five datasets1 have been gathered from an IEEE

802.11 network testbed, deployed in our laboratory. Similarly,
another dataset2 has been gathered from an Ethernet Local Area
Network (LAN) office, at Loughborough University. All the
network traffic has been gathered in pcap format using tcpdump.

A. IEEE 802.11 Network Testbed
A schematic representation of the WiFi network is shown in

Fig. 1.a, comprising of an Access Point (AP), a wireless client
accessing various websites on the Internet, a monitoring node
and an attacker. The attacker implements two type of attacks;
deauthentication attack and injection attack. Four of the datasets
gathered from this network comprise both malicious and normal
frames, while another dataset contains only normal frames.

On the one hand, we made use of the tool Airpwn [10] to
implement different modes of the injection attack. This software
can be found as part of the suite of penetration testing tools
Aircrack [11]. Airpwn eavesdrops the transmitted frames in a
WiFi network. If Airpwn identifies an HTTP request from a
legitimate wireless node, it injects its own crafted HTML code
using the spoofed MAC address of the AP. We have used two
modes of the Airpwn attack. In the dataset Attack01, the attacker
replaces the HTTP headers fields of the requested website. In the
dataset Attack02, the attacker replaces the images in the website.
Lastly, dataset Attack03 comprises the two modes of the attack.

On the other hand, the deauthentication attack has also been
investigated. The attacker injects spoofed deauthentication
frames with the purpose of forcing the client to re-establish a
connection with the AP. The suite of tools used to implement
this attack, generating the DeAuth dataset, is also Aircrack. All
these datasets1 have been described in more detail in [12].

Among all the available metrics, five metrics have been
experimentally selected as the most appropriate for detecting the
implemented attacks. These are the Received Signal Strength

Indication (RSSI), Injection Rate (RATE), Network Allocation
Vector (NAV) value, Sequence Number (SEQ), and Inter-arrival
or Delta time (ΔTime) between two consecutive frames. We
have implemented the detection using metrics extracted only
from the PHY layer and the MAC layer, which remain
unencrypted in the network frames header, even when utilising
WiFi encryption techniques.

B. Ethernet Local Area Network
The Ethernet LAN used for the implementation of a Port

Scanning attack comprises a number of PCs in two distinct
offices used to generate real background traffic, an attacker
using the network mapping tool nmap [13], and a victim. A
schematic representation of this LAN is shown in Fig. 1.b.

Port scanning, also known as probing, is a technique used to
discover possible vulnerabilities in the network through the
probing of open ports. This attack often precedes the execution
of multi-stage attacks [14]. The Probing dataset2 has been
explained in more detail in [15].

In total, four metrics have been computed and aggregated per
second to carry out the intrusion detection. These metrics are
Communication Rate (COM), number of frames transmitted;
Throughput (THR), number of transmitted bytes; Source Port
Distribution (SPD), number of source ports; and Destination
Port Distribution (DPD), number of destination ports. In contrast
to the WiFi datasets, this dataset comprises metrics with non-
homogeneous patterns that make the analysis more challenging.

Table I presents an overview of how the information in the
datasets is distributed, as well as the proportion of malicious
traffic in each dataset. By using all these datasets, comprising of
different attacks under different networks, we want to provide
variability to the experiments.

Fig. 1. Networks schematic; a) WiFi network used to implement the Airpwn
and Deauthentication attacks; b) LAN used to implement the probing attack.

TABLE I. GENERAL DESCRIPTION OF THE EVALUATED DATASETS

Dataset Total
Instances

Normal
Instances

Normal
Instances

(%)

Malicious
Instances

Malicious
Instances

(%)
Normal 3631 3631 100 n/a n/a

Attack01 1361 1350 99.2 11 0.8
Attack02 14493 13498 93.1 995 6.9
Attack03 12130 12016 99.1 114 0.9
DeAuth 228 164 71.93 64 28.07
Probing 700484 696638 99.4 4220 0.6

IV. PROPOSED CLASSIFICATION METHODOLOGIES

A. Support Vector Machine
The goal of an SVM is to find the optimal separating

hyperplane which maximises the margin of the training data and
minimises complexity and risk of overfitting. An SVM is easy

1. WiFi datasets available: https://figshare.com/s/9c116e0422eb5ddbe9ba
2. Probing dataset available: https://figshare.com/s/4bd0fe2dab7e09ce61dc

to implement, requires a small training dataset and is appropriate
for extremely large dataset analysis [16]. An SVM also requires
very limited time to perform the classification process, once the
optimal classification hyperplane has been constructed. A
complete tutorial on SVMs is presented in [3].

The SVM-based classifier that we present in this work has
been developed based on Matlab and LibSVM [17]. The
LibSVM is an integrated reliable software for support vector
classification and distribution estimation, which includes several
kernel functions. We have modified LibSVM to randomise the
selection of samples during our experiments.

1) Linear Support Vector Machine
Let us consider a binary classification of d-dimensional

feature space of linearly separable training samples S = {(x1, y1),
…, (xm, ym)}, where ! is the number of samples in the training
dataset, the input features "# ∈ %& are usually d-dimensional
vectors describing the properties of the input samples, and the
labels '# ∈ 	 {+1, −1} are the binary output of the classification
problem. An optimal discriminating function can be defined as:

f x = sign 6 ∙ " + 8 =
+1	if	9	belongs	to	class	A
−1	if	9	belongs	to	class	B 		(1)

where the vector 6 determines the orientation of a discriminant
plane or the normal of the hyperplane, and the scalar 8 is the
offset of the hyperplane from the origin in the vector space.

The target of the SVM is to find the optimal hyperplane via
maximising the margin between classes. This can be obtained by
solving the following quadratic optimisation problem:

minimise 6 ∙ 6
subject to '# 6 ∙ "E + 8 − 1 ≥ 0	H = 1, 2, … ,!											(2)
The dual of the optimisation problem in (2) can be written in

terms of the Lagrangian multipliers K# as follows [18]:

L = K#

M

#NO

−
1
2

'#'PK#KP "#. "P

M

#NO

M

PNO

																(3)

The optimal Lagrangian multipliers are obtained as the
maximiser of (3), 6 is determined as '#K#"#M

#NO and 8 is
obtained from Karush-Kuhn-Tucker (KKT) conditions.

2) Non-Linear Support Vector Machine
A linear SVM assumes that the different classes in the

dataset are clearly distinguishable. In data with no possibility for
linear separation, the use of a non-linear function may help to
make the datasets separable. An SVM which uses kernel
functions offers an efficient alternative solution to change the
non-linear approach into a linear one by projecting the data into
a highly dimensional feature space to allow the separation [3, 4].

A transformation function Φ:Rd → H can be used to map the
input into an Euclidean space T. This allows the value of the
inner-product in space T to be computed without the non-linear
mapping. This reduces the complexity of the computational
problem, without any effect on Lagrangian optimisation theory.

L = K#

M

#NO

−
1
2

'#'PK#KPU "#. "P

M

#NO

M

PNO

														(4)

The RBF is defined by (5), where the free parameter W gives
the width of the kernel.

U "H. "X = Y9Z − "H−"X
2
/W2 																				 (5)

3) One-Class Support Vector Machine
The one-class SVM is a semi-supervised technique that

constructs the classification model of normal behaviour during
the training process using only one type of samples (i.e. training
datasets comprising non-malicious data). The implementation of
a one-class SVM is to find a hyperplane that maximises the
distance of the data from the origin [19].

A one-class SVM uses an implicit transformation defined by
the kernel function Φ(i) to project the data into a higher
dimensional space. This approach separates the majority of the
data from the origin, allowing only a few points to exist on the
other side. The primary object of a one-class SVM is to achieve:

min_,`,a
6 b

2
− γ +

1
dn

εf

g

fNO

subject	to	6j	Φ 9f ≥ γ − εf	, εf ≥ 0																(6)
where l " = sign(6j	Φ " − γ) assesses whether a sample
point is inside or outside the estimated set, γ is the bias term, εf
is the loss variable of point H that allows it to lie on the other side
of the decision boundary, m is the size of the training dataset and
d is the regularisation parameter. Varying d controls the tradeoff
between εf and γ. Further details about different kernel functions
in one-class SVMs can be found in [20].

In this paper, the one-class SVM requires to fine-tune three
main parameters. These are d, d ∈ R ∶ 0 < d < 1 , which has
been empirically set to 0.01, q, q ∈ R: 0 ≤ q , which has been
set to 0.2, and lastly, t# which has been set to 0.1. It is worth
mentioning that a trade-off between the three parameters plays a
significant role in the performance of the SVM, especially in
terms of false alarms, as will be shown in Section V.

B. Support Vector Machine Training and Classification
The comparison has been performed using both linear and

non-linear forms of SVM with the RBF. Generally, the SVM
classification process consists of the initial training phase and
the classification phase. The training involves the construction
of an accurate model based on the already labelled datasets.

We have used the different training datasets for the two-class
SVM and one-class SVM. The one-class SVM has been trained
using 100% of the dataset Normal. This dataset comprises non-
malicious network traffic only. Then, the classification has been
conducted using 100% of the remaining datasets. In the case of
Probing, the training has been conducted using 35% of the
dataset, previously labelled. We found that this training datasets
comprised of normal traffic only. Then, the classification
process is conducted using the remaining 65% of the datasets.

For the two-class SVM, the SVM has been trained using
35% of each dataset. The selection of the training dataset has
been randomised to increase the probability of including a
representative distribution of malicious and non-malicious
network traffic. One model is constructed for each dataset after
the training process. Then, the classification is conducted using
the remaining 65% of the dataset. The main difference between
the classification using two-class SVM and one-class SVM is
that the two-class SVM requires the training datasets to be
previously labelled.

C. Anomaly-Based Intrusion Detection System
Our unsupervised anomaly-based IDS [1], is based on the

combined use of multiple metrics from multiple layers of the

protocol stack to carry out the intrusion detection. It uses the
Dempster-Shafer (D-S) Theory of Evidence as a data fusion
technique to merge evidence of information extracted from each
of the metrics. The main purpose is to generate an overall belief
on whether there is an attack present in the network or not.

D-S requires the assignment of belief values, also known as
Basic Probability Assignment (BPA), which expresses the
evidence attributed to the considered hypotheses. In [12], we
proposed a novel statistical framework of assigning BPA values,
which adapt the assignment of its evidence based on the current
characteristics of the network traffic, without prior training. The
proposed framework exploits a Sliding Window (SW) scheme
to compute statistical parameters from the data, which are
required to generate the different BPA values.

Three independent statistical approaches provide the belief
values on the different hypotheses. The approach that assigns
BPA values to the hypothesis Normal uses the distribution of the
network traffic within the SW. The approach that assigns BPA
values to the hypothesis Attack uses the Euclidean distance from
a defined reference of normality (i.e. mean of information within
the SW). Meanwhile, the BPA in the hypothesis Uncertainty is
assigned based on the belief values assigned to Normal and
Attack in the current SW. The different statistical techniques
used by the IDS are described in more detail in [12].

V. RESULTS AND ANALYSIS
This section evaluates the performance of the two-class

SVM and one-class SVM against the performance of our IDS.
The detection analysis is based on the performance metrics
Detection Rate (DR), False Positive Rate (FPr), False Negative
Rate (FNr), and Overall Success Rate (OSR). The experimental
results are presented in Tables II-VI.

The detection results obtained using the linear two-class
SVM technique are presented in Table II. Both the DR and OSR
reach 100% for all the datasets, which indicates that the
detection is completely accurate. Only in the case of Probing,
the DR and OSR drop to 98.8% and 83.4%, respectively. For
this dataset, the increase of FPr to 16.6% is also noticeable.
Despite the increase of FPr for Probing, the results generated by
the linear two-class SVM are very accurate. However, it is worth
noting that this is a supervised technique, and requires training
datasets, previously labelled, comprising both classes of data.

For the non-linear two-class SVM, the detection results
obtained using this technique are slightly worse than the results
generated by linear two-class SVM. However, the accuracy of
non-linear two-class SVM can be considered acceptable. Only
in Probing, does the OSR reach 81.67%. For the rest of datasets,
the OSR reaches over 99.2%. The DR for most datasets reaches
at least 93.51%, and only the dataset Probing generates false
positives, reaching a FPr of 18.32%. The most noticeable result
is the decrease in the DR for the dataset Attack01. After
analysing the results, we identified that this decrease in the DR
is caused by the metrics SEQ and ΔTime. The malicious and
non-malicious instances for these metrics overlap and the non-
linear SVM is unable to differentiate accurately between them.
For our selected features, the two classes are linearly separable.
Hence, the linear SVM is expected to outperform the non-linear
SVM. All these results are presented in Table III.

Once again, the results obtained by the linear one-class SVM
technique, shown in Table IV, are slightly worse than the results

generated by the linear two-class SVM. However, the accuracy
of this technique is very comparable to the two-class SVM.
Additionally, this SVM only needs training datasets with normal
data. Only for the dataset Probing is the OSR lower than 98%,
reaching 88.91%. In the case of DR, all datasets generate results
higher than 89%, with two cases reaching 100%. On the other
hand, for the dataset Probing, the FPr improves from 16.6% to
11.05%, in comparison to the linear two-class SVM. This is due
to the value of the parameters d, q and t#. However, these values
also increase the FNr as compared to the two-class SVM.

The results generated by the non-linear one-class SVM,
shown in Table V, are the worst results overall. We can see a
general decrease in the OSR and a noticeable decrease in the DR
for the dataset Probing, reaching 61.37%. For all the datasets,
this SVM technique also generates an increase in the FPr.

TABLE II. DETECTION RESULTS: LINEAR TWO-CLASS SVM

Linear Two-Class SVM

Dataset DR (%) FPr (%) FNr (%) OSR (%)
Attack01 100 0 0 100
Attack02 100 0 0 100
Attack03 100 0 0 100
DeAuth 100 0 0 100
Probing 98.78 16.6 1.22 83.4

TABLE III. DETECTION RESULTS: NON-LINEAR TWO-CLASS SVM

Non-Linear Two-Class SVM with Gaussian Radial Basis

Dataset DR (%) FPr (%) FNr (%) OSR (%)
Attack01 62.5 0 37.5 99.66
Attack02 99.52 0 0.48 99.97
Attack03 93.51 0 6.49 99.94
DeAuth 97.78 0 2.22 99.25
Probing 97.85 18.32 2.15 81.67

TABLE IV. DETECTION RESULTS: LINEAR ONE-CLASS SVM

Linear One-Class SVM

Dataset DR (%) FPr (%) FNr (%) OSR (%)
Attack01 100 0 0 99.93
Attack02 89.25 0.41 10.75 98.85
Attack03 99.12 2.46 0.88 97.53
DeAuth 100 1.75 0 98.25
Probing 93.78 11.05 6.22 88.91

TABLE V. DETECTION RESULTS: NON-LINEAR ONE-CLASS SVM

Non-Linear One-Class SVM with Gaussian Radial Basis

Dataset DR (%) FPr (%) FNr (%) OSR (%)
Attack01 100 14.62 0 85.38
Attack02 100 6.84 0 93.16
Attack03 100 5.82 0 94.18
DeAuth 95.38 3.07 4.62 95.61
Probing 61.37 1.15 38.63 98.61

Overall, the detection results generated by the linear two-
class SVM technique are the most accurate results. Nonetheless,
the accuracy of the linear one-class SVM performs comparably
well without the need for labelled training datasets. Therefore,
we compare the performance of our unsupervised anomaly-
based IDS against these two linear SVM techniques.

From the detection results presented in Table VI, we can see
that our anomaly-based IDS detects all the malicious traffic in
the WiFi datasets. There are several false positive alarms that
only reach 2.19% of FPr. Nonetheless, the accuracy of our IDS

is comparable to the detection results generated by the linear
two-class SVM and linear one-class SVM techniques.
Additionally, it is important to emphasise that these results are
completely unsupervised, generated without any additional
information about the nature of the network traffic dataset.

If we focus on the dataset Probing, there is a dramatic
decrease in DR and OSR, and an increase in the false alarms.
One factor that may be directly correlated to these results is the
size of this dataset. Additionally, these results align with the
reports indicating that the efficiency of IDSs that use statistical
detection techniques decreases when non-homogeneous data are
analysed [21]. In this case, where a non-homogeneous dataset is
analysed, our anomaly-based IDS could benefit from the use of
ML techniques to increase its detection accuracy.

TABLE VI. DETECTION RESULTS: UNSUPERVISED ANOMALY-BASED IDS

Unsupervised Anomaly-based IDS

Dataset DR (%) FPr (%) FNr (%) OSR (%)
Attack01 100 0 0 100
Attack02 100 0.03 0 99.97
Attack03 100 0.06 0 99.94
DeAuth 100 2.19 0 97.81
Probing 18.82 15.99 81.18 83.52

VI. CONCLUSIONS
In this paper, we considered the SVM as a ML technique that

could complement the performance of our IDS, or as an
alternative detection technique. We have assessed the
performance of our unsupervised anomaly-based IDS against
one-class and two-class SVMs, using linear and non-linear with
RBF forms. In order to provide variability to the experiments,
the analysis has been implemented with a number of network
traffic datasets, gathered from real networks, comprising
different types of attacks. First, we have assessed which of the
SVMs produces the best detection results. This assessment
analysis gives insight into the detection performance of the SVM
techniques. Then we have evaluated the performance of our IDS
against SVM techniques in tasks of intrusion detection.

The results that we present show that the linear two-class
SVM generates the most accurate results overall. This technique
reaches 100% of DR and OSR for almost all the datasets.
However, this SVM technique requires training data, previously
labelled, comprising both classes of data. On the other hand, the
accuracy of the linear one-class SVM performs comparably to
the accuracy of the linear two-class SVM without the need for
training datasets associated with malicious data. Only in the case
of Probing, the OSR reaches 81.67%. For the rest of the datasets,
the OSR reaches 99.25%. The DR for most datasets reaches at
least 93.51%, and only Probing generates false positive alarms.

Our IDS detects all the malicious traffic in the WiFi datasets.
However, the accuracy of the IDS when analysing the dataset
Probing decreases drastically. For this dataset, the DR and FPr
reach 18.82% and 15.99%, respectively. This may be due to the
size and the non-homogeneous nature of the dataset.
Additionally, it is important to emphasise that these results are
completely unsupervised, generated without any additional
information about the nature of the network traffic dataset.

Therefore, these results suggest that our anomaly-based IDS
could benefit from the use of ML techniques to increase its
detection accuracy. The use of linear SVM, both two-class and
one-class with RBF forms, could potentially complement the

performance of our IDS especially when non-homogeneous data
are analysed.

REFERENCES
[1] K. G. Kyriakopoulos, F. J. Aparicio-Navarro, and D. J. Parish, “Manual

and automatic assigned thresholds in multi-layer data fusion intrusion
detection system for 802.11 attacks,” in IET Information Security, vol. 8,
no. 1, 2014, pp. 42-50.

[2] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, E. Vázquez,
"Anomaly-based network intrusion detection: Techniques, systems and
challenges," in Computers & Security, vol. 28, no. 1, pp. 18-28, 2009.

[3] C. J. Burges, “A tutorial on support vector machines for pattern
recognition,” in Data mining and knowledge discovery, vol. 2, no. 2,
1998, pp. 121-167.

[4] T. S. Hai, and N. T. Thuy, “Image classification using support vector
machine and artificial neural network,” in Int. Journal of Information
Technology and Computer Science (IJITCS), vol.4, no.5, 2012, pp. 32-38.

[5] P. Winter, E. Hermann, and M. Zeilinger, “Inductive intrusion detection
in flow-based network data using one-class support vector machines,” in
Proc. of the 4th IFIP International Conference on New Technologies,
Mobility and Security (NTMS), 2011, pp. 1-5.

[6] K. Goeschel, “Reducing false positives in intrusion detection systems
using data-mining techniques utilizing support vector machines, decision
trees, and naive bayes for off-line analysis,” in Proc. of the Annual IEEE
SoutheastCon conference, 2016, pp. 1-6.

[7] University of California, Irvine (UCI) “KDD Cup 1999 Data”, 1999.
Available: https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
(Access date: 5 May, 2017).

[8] H. Lee, J. Song, and D. Park, “Intrusion detection system based on multi-
class SVM,” in Proc. of the International Workshop on Rough Sets, Fuzzy
Sets, Data Mining, and Granular-Soft Computing, 2005, pp. 511-519.

[9] L. Khan, M. Awad, and B. Thuraisingham, “A new intrusion detection
system using support vector machines and hierarchical clustering,” in Int.
Journal on Very Large Data Bases, vol. 16, no. 4, 2007, pp. 507-521.

[10] Airpwn Packet Injection Framework Website Available: http://airpwn.
sourceforge.net/Airpwn.html (Access Date: 21 Feb, 2017).

[11] C. Devine, and T. Otreppe, “Aircrack”, 2010. Available: https://www.
aircrack-ng.org/ (Access date: 22 Feb, 2017).

[12] F. J. Aparicio-Navarro, K. G. Kyriakopoulos, and D. J. Parish, “An
automatic and self-adaptive multi-layer data fusion system for Wi-Fi
attack detection,” in International Journal of Internet Technology and
Secured Transactions, vol. 5, no. 1, 2013, pp. 42-62.

[13] G. Lyon, “Nmap: The network mapper – Free security scanner,”
Available: http://nmap.org/ (Access Date: 21 Jun, 2016).

[14] E. Bou-Harb, M. Debbabi, and C. Assi, “Cyber scanning: A
comprehensive survey,” in IEEE Communications Surveys & Tutorials,
vol. 16, no. 3, 2014, pp. 1496-1519.

[15] F. J. Aparicio-Navarro, J. A. Chambers, K. G. Kyriakopoulos, Y. Gong,
and D. J. Parish, “Using the pattern-of-life in networks to improve the
effectiveness of intrusion detection systems,” in Proc. of the IEEE
International Conference on Communications (ICC), 2017, pp. 1-7.

[16] S. Mukkamala, A. H. Sung, and A. Abraham, “Intrusion detection using
an ensemble of intelligent paradigms,” in Journal of network and
computer applications, vol. 28, no. 2, 2005, pp. 167-182.

[17] C.-C. Chang, and C.-J. Lin, “LibSVM: A library for support vector
machines,” 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin
/libsvm.

[18] S. Boyd, and L. Vandenberghe, “Convex optimization,” Cambridge
university press, 2004.

[19] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
in Neural computation, vol. 13, no. 7, 2001, pp. 1443-1471.

[20] P. F. Evangelista, M. J. Embrechts, and B. K. Szymanski, “Some
properties of the Gaussian kernel for one class learning,” in International
Conference on Artificial Neural Networks (ICANN), 2007, pp. 269-278.

[21] D. Hongbo, "Data mining techniques and applications: An introduction,"
Course Technology Cengage Learning, 2010.

