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Abstract—Cyber-security threats are a growing concern in 
networked environments. The development of Intrusion Detection 
Systems (IDSs) is fundamental in order to provide extra level of 
security. We have developed an unsupervised anomaly-based IDS 
that uses statistical techniques to conduct the detection process. 
Despite providing many advantages, anomaly-based IDSs tend to 
generate a high number of false alarms. Machine Learning (ML) 
techniques have gained wide interest in tasks of intrusion 
detection. In this work, Support Vector Machine (SVM) is deemed 
as an ML technique that could complement the performance of 
our IDS, providing a second line of detection to reduce the number 
of false alarms, or as an alternative detection technique. We assess 
the performance of our IDS against one-class and two-class SVMs, 
using linear and non-linear forms. The results that we present 
show that linear two-class SVM generates highly accurate results, 
and the accuracy of the linear one-class SVM is very comparable, 
and it does not need training datasets associated with malicious 
data. Similarly, the results evidence that our IDS could benefit 
from the use of ML techniques to increase its accuracy when 
analysing datasets comprising of non-homogeneous features. 

Keywords—Classification Algorithms; Cyber Security; Intrusion 
Detection Systems; Machine Learning Techniques; Network 
Security; Support Vector Machine; SVM 

I.  INTRODUCTION 
Cyber-security threats are a growing concern in networked 

environments. Therefore, providing strong and reliable security 
mechanisms has become essential in all areas of society. An 
Intrusion Detection System (IDS) is an effective tool to identify 
the presence of attacks and intrusions in the protected system. 

In [1], we previously presented an unsupervised anomaly-
based IDS, based on the combined use of multiple metrics from 
multiple layers of the protocol stack to carry out the intrusion 
detection. Unsupervised IDSs are able to learn the difference 
between normal and malicious information autonomously. 
Anomaly-based IDSs construct profiles of normal network 
traffic, and calculate the level of deviation of outliners to identify 
attacks. In contrast to misuse IDSs, an anomaly-based system is 
able to identify previously unknown and zero-day attacks. 
However, this type of IDS tends to generate higher number of 
false alarms than misuse IDSs [2]. 

Machine Learning (ML) techniques have gained wide 
interest in tasks of intrusion detection. ML-IDSs are based on 
the definition of models that allow the classification of the 
analysed information [2]. One of the most attractive ML 

techniques is the Support Vector Machine (SVM) [3]. An SVM 
is a classification technique that has proven to be effective in a 
wide variety of problems, such as image processing [4], often 
providing considerable improvement over competing methods. 

In the area of cyber-security, the use of an SVM can improve 
the accuracy of IDSs. The classifier that is created by this 
technique is useful to predict between two possible outcomes 
(i.e. malicious and non-malicious network traffic). The study of 
ML techniques in tasks of intrusion detection would allow us to 
identify a classification technique that could complement our 
anomaly-based IDS, acting in a hybrid manner as a second line 
of detection, and, at the same time, to facilitate the creation of a 
benchmark to compare the performance of our IDS against. 

In this work, we assess the performance of our IDS against 
one-class and two-class SVMs. Although, a two-class SVM may 
be generally more accurate, if we were able to generate a robust 
one-class SVM, we would reduce the need for a thorough off-
line dataset labelling process. A one-class SVM requires only a 
training dataset containing normal traffic. Therefore, the aim of 
this paper is twofold. First, to evaluate which of the SVM 
techniques produces the best detection results. The assessment 
is conducted between a one-class SVM and two-class SVM, 
using linear and non-linear with Radial Basis Function (RBF) 
forms. Second, to assess the performance of our unsupervised 
anomaly-based IDS [1] against the different SVM techniques in 
tasks of intrusion detection. 

The remainder of the paper is organised as follows. In 
Section II, the most relevant previous work is reviewed. In 
Section III, the networks and evaluation datasets are described. 
A description of the SVM theory and the anomaly-based IDS is 
given in Section IV. Section V presents the experimental results. 
Finally, conclusions are given in Section VI. 

II. RELATED WORK 
In the area of cyber-security and IDSs, ML classification 

techniques are adopted to improve the efficiency of the detection 
systems distinguishing between malicious and non-malicious 
network traffic. In [5], the authors propose an IDS that uses a 
one-class SVM to analyse incoming Netflows. In contrast to 
common procedure, the authors train their system solely with 
malicious data collected using a honeypot. This one-class SVM-
based IDS produces very high detection results. 

The author of [6] presents an approach that combines a linear 
SVM, decision trees and Naïve Bayes to reduce the number of 
false alarms of the IDS, while analysing the KDD99 dataset [7]. 
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The approach proposed in this work conducts an analysis, in 
which each of the techniques processes the data in sequential 
order. The SVM is trained based upon a new binary 
classification added to the dataset to specify if the instance is an 
attack or normal traffic. 

In [8], the authors present an IDS that makes use of an SVM 
as a classification technique. The presented IDS consists of three 
main components, a one-class SVM that distinguishes between 
malicious and non-malicious network traffic during an initial 
analysis, a multi-class SVM that categorises the traffic classified 
as malicious into one of the four classes (i.e. Denial-of-Service, 
Remote to local, User to root and Probing attacks), and a final 
clustering process. The experiments presented in this work are 
also conducted using the KDD99. Instead of using the KDD99, 
in this paper, we have evaluated the classifiers using a number 
of different network traffic datasets, gathered from real 
networks, both wired and wireless, at Loughborough University. 

The training process of an SVM has also been carefully 
researched. The authors of [9] propose a new approach for 
enhancing the training process of SVM when dealing with large 
training datasets. This work combines the use of SVM and 
clustering analysis to reduce the number of instances used during 
the computation of the support vector margin, which, in turn, 
reduces the training time without affecting the final results. 

III. TESTBEDS AND NETWORK TRAFFIC MEASUREMENTS 
In total, five datasets1 have been gathered from an IEEE 

802.11 network testbed, deployed in our laboratory. Similarly, 
another dataset2 has been gathered from an Ethernet Local Area 
Network (LAN) office, at Loughborough University. All the 
network traffic has been gathered in pcap format using tcpdump. 

A. IEEE 802.11 Network Testbed 
A schematic representation of the WiFi network is shown in 

Fig. 1.a, comprising of an Access Point (AP), a wireless client 
accessing various websites on the Internet, a monitoring node 
and an attacker. The attacker implements two type of attacks; 
deauthentication attack and injection attack. Four of the datasets 
gathered from this network comprise both malicious and normal 
frames, while another dataset contains only normal frames. 

On the one hand, we made use of the tool Airpwn [10] to 
implement different modes of the injection attack. This software 
can be found as part of the suite of penetration testing tools 
Aircrack [11]. Airpwn eavesdrops the transmitted frames in a 
WiFi network. If Airpwn identifies an HTTP request from a 
legitimate wireless node, it injects its own crafted HTML code 
using the spoofed MAC address of the AP. We have used two 
modes of the Airpwn attack. In the dataset Attack01, the attacker 
replaces the HTTP headers fields of the requested website. In the 
dataset Attack02, the attacker replaces the images in the website. 
Lastly, dataset Attack03 comprises the two modes of the attack. 

On the other hand, the deauthentication attack has also been 
investigated. The attacker injects spoofed deauthentication 
frames with the purpose of forcing the client to re-establish a 
connection with the AP. The suite of tools used to implement 
this attack, generating the DeAuth dataset, is also Aircrack. All 
these datasets1 have been described in more detail in [12]. 

Among all the available metrics, five metrics have been 
experimentally selected as the most appropriate for detecting the 
implemented attacks. These are the Received Signal Strength 

Indication (RSSI), Injection Rate (RATE), Network Allocation 
Vector (NAV) value, Sequence Number (SEQ), and Inter-arrival 
or Delta time (ΔTime) between two consecutive frames. We 
have implemented the detection using metrics extracted only 
from the PHY layer and the MAC layer, which remain 
unencrypted in the network frames header, even when utilising 
WiFi encryption techniques. 

B. Ethernet Local Area Network 
The Ethernet LAN used for the implementation of a Port 

Scanning attack comprises a number of PCs in two distinct 
offices used to generate real background traffic, an attacker 
using the network mapping tool nmap [13], and a victim. A 
schematic representation of this LAN is shown in Fig. 1.b. 

Port scanning, also known as probing, is a technique used to 
discover possible vulnerabilities in the network through the 
probing of open ports. This attack often precedes the execution 
of multi-stage attacks [14]. The Probing dataset2 has been 
explained in more detail in [15]. 

In total, four metrics have been computed and aggregated per 
second to carry out the intrusion detection. These metrics are 
Communication Rate (COM), number of frames transmitted; 
Throughput (THR), number of transmitted bytes; Source Port 
Distribution (SPD), number of source ports; and Destination 
Port Distribution (DPD), number of destination ports. In contrast 
to the WiFi datasets, this dataset comprises metrics with non-
homogeneous patterns that make the analysis more challenging. 

Table I presents an overview of how the information in the 
datasets is distributed, as well as the proportion of malicious 
traffic in each dataset. By using all these datasets, comprising of 
different attacks under different networks, we want to provide 
variability to the experiments. 

 
Fig. 1. Networks schematic; a) WiFi network used to implement the Airpwn 
and Deauthentication attacks; b) LAN used to implement the probing attack. 

TABLE I.  GENERAL DESCRIPTION OF THE EVALUATED DATASETS 

Dataset Total 
Instances 

Normal 
Instances 

Normal 
Instances 

(%) 

Malicious 
Instances 

Malicious 
Instances 

(%) 
Normal 3631 3631 100 n/a n/a 

Attack01 1361 1350 99.2 11 0.8 
Attack02 14493 13498 93.1 995 6.9 
Attack03 12130 12016 99.1 114 0.9 
DeAuth 228 164 71.93 64 28.07 
Probing 700484 696638 99.4 4220 0.6 

IV. PROPOSED CLASSIFICATION METHODOLOGIES 

A. Support Vector Machine 
The goal of an SVM is to find the optimal separating 

hyperplane which maximises the margin of the training data and 
minimises complexity and risk of overfitting. An SVM is easy 

1. WiFi datasets available: https://figshare.com/s/9c116e0422eb5ddbe9ba 
2. Probing dataset available: https://figshare.com/s/4bd0fe2dab7e09ce61dc 



to implement, requires a small training dataset and is appropriate 
for extremely large dataset analysis [16]. An SVM also requires 
very limited time to perform the classification process, once the 
optimal classification hyperplane has been constructed. A 
complete tutorial on SVMs is presented in [3]. 

The SVM-based classifier that we present in this work has 
been developed based on Matlab and LibSVM [17]. The 
LibSVM is an integrated reliable software for support vector 
classification and distribution estimation, which includes several 
kernel functions. We have modified LibSVM to randomise the 
selection of samples during our experiments. 

1) Linear Support Vector Machine 
Let us consider a binary classification of d-dimensional 

feature space of linearly separable training samples S = {(x1, y1), 
…, (xm, ym)}, where ! is the number of samples in the training 
dataset, the input features "# ∈ %& are usually d-dimensional 
vectors describing the properties of the input samples, and the 
labels '# ∈ 	 {+1, −1} are the binary output of the classification 
problem. An optimal discriminating function can be defined as: 

f x = sign 6 ∙ " + 8 =
+1	if	9	belongs	to	class	A
−1	if	9	belongs	to	class	B 		(1) 

where the vector 6 determines the orientation of a discriminant 
plane or the normal of the hyperplane, and the scalar 8 is the 
offset of the hyperplane from the origin in the vector space. 

The target of the SVM is to find the optimal hyperplane via 
maximising the margin between classes. This can be obtained by 
solving the following quadratic optimisation problem: 

minimise 6 ∙ 6  
subject to '# 6 ∙ "E + 8 − 1 ≥ 0	H = 1, 2, … ,!											(2) 
The dual of the optimisation problem in (2) can be written in 

terms of the Lagrangian multipliers K# as follows [18]: 

L = K#

M

#NO

−
1
2

'#'PK#KP "#. "P

M

#NO

M

PNO

																(3) 

The optimal Lagrangian multipliers are obtained as the 
maximiser of (3), 6 is determined as '#K#"#M

#NO  and 8 is 
obtained from Karush-Kuhn-Tucker (KKT) conditions. 

2) Non-Linear Support Vector Machine 
A linear SVM assumes that the different classes in the 

dataset are clearly distinguishable. In data with no possibility for 
linear separation, the use of a non-linear function may help to 
make the datasets separable. An SVM which uses kernel 
functions offers an efficient alternative solution to change the 
non-linear approach into a linear one by projecting the data into 
a highly dimensional feature space to allow the separation [3, 4]. 

A transformation function Φ:Rd → H can be used to map the 
input into an Euclidean space T. This allows the value of the 
inner-product in space T to be computed without the non-linear 
mapping. This reduces the complexity of the computational 
problem, without any effect on Lagrangian optimisation theory. 

L = K#

M

#NO

−
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2
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														(4) 

The RBF is defined by (5), where the free parameter W gives 
the width of the kernel. 

U "H. "X = Y9Z − "H−"X
2
/W2 																				 (5) 

3) One-Class Support Vector Machine 
The one-class SVM is a semi-supervised technique that 

constructs the classification model of normal behaviour during 
the training process using only one type of samples (i.e. training 
datasets comprising non-malicious data). The implementation of 
a one-class SVM is to find a hyperplane that maximises the 
distance of the data from the origin [19]. 

A one-class SVM uses an implicit transformation defined by 
the kernel function Φ(i) to project the data into a higher 
dimensional space. This approach separates the majority of the 
data from the origin, allowing only a few points to exist on the 
other side. The primary object of a one-class SVM is to achieve: 

min_,`,a
6 b

2
− γ +

1
dn

εf

g

fNO

 

subject	to	6j	Φ 9f ≥ γ − εf	, εf ≥ 0																(6) 
where l " = sign(6j	Φ " − γ) assesses whether a sample 
point is inside or outside the estimated set, γ is the bias term, εf 
is the loss variable of point H that allows it to lie on the other side 
of the decision boundary, m is the size of the training dataset and 
d is the regularisation parameter. Varying d controls the tradeoff 
between εf and γ. Further details about different kernel functions 
in one-class SVMs can be found in [20]. 

In this paper, the one-class SVM requires to fine-tune three 
main parameters. These are d, d ∈ R ∶ 0 < d < 1 , which has 
been empirically set to 0.01, q, q ∈ R: 0 ≤ q , which has been 
set to 0.2, and lastly, t# which has been set to 0.1. It is worth 
mentioning that a trade-off between the three parameters plays a 
significant role in the performance of the SVM, especially in 
terms of false alarms, as will be shown in Section V. 

B. Support Vector Machine Training and Classification 
The comparison has been performed using both linear and 

non-linear forms of SVM with the RBF. Generally, the SVM 
classification process consists of the initial training phase and 
the classification phase. The training involves the construction 
of an accurate model based on the already labelled datasets. 

We have used the different training datasets for the two-class 
SVM and one-class SVM. The one-class SVM has been trained 
using 100% of the dataset Normal. This dataset comprises non-
malicious network traffic only. Then, the classification has been 
conducted using 100% of the remaining datasets. In the case of 
Probing, the training has been conducted using 35% of the 
dataset, previously labelled. We found that this training datasets 
comprised of normal traffic only. Then, the classification 
process is conducted using the remaining 65% of the datasets. 

For the two-class SVM, the SVM has been trained using 
35% of each dataset. The selection of the training dataset has 
been randomised to increase the probability of including a 
representative distribution of malicious and non-malicious 
network traffic. One model is constructed for each dataset after 
the training process. Then, the classification is conducted using 
the remaining 65% of the dataset. The main difference between 
the classification using two-class SVM and one-class SVM is 
that the two-class SVM requires the training datasets to be 
previously labelled. 

C. Anomaly-Based Intrusion Detection System 
Our unsupervised anomaly-based IDS [1], is based on the 

combined use of multiple metrics from multiple layers of the 



protocol stack to carry out the intrusion detection. It uses the 
Dempster-Shafer (D-S) Theory of Evidence as a data fusion 
technique to merge evidence of information extracted from each 
of the metrics. The main purpose is to generate an overall belief 
on whether there is an attack present in the network or not. 

D-S requires the assignment of belief values, also known as 
Basic Probability Assignment (BPA), which expresses the 
evidence attributed to the considered hypotheses. In [12], we 
proposed a novel statistical framework of assigning BPA values, 
which adapt the assignment of its evidence based on the current 
characteristics of the network traffic, without prior training. The 
proposed framework exploits a Sliding Window (SW) scheme 
to compute statistical parameters from the data, which are 
required to generate the different BPA values. 

Three independent statistical approaches provide the belief 
values on the different hypotheses. The approach that assigns 
BPA values to the hypothesis Normal uses the distribution of the 
network traffic within the SW. The approach that assigns BPA 
values to the hypothesis Attack uses the Euclidean distance from 
a defined reference of normality (i.e. mean of information within 
the SW). Meanwhile, the BPA in the hypothesis Uncertainty is 
assigned based on the belief values assigned to Normal and 
Attack in the current SW. The different statistical techniques 
used by the IDS are described in more detail in [12]. 

V. RESULTS AND ANALYSIS 
This section evaluates the performance of the two-class 

SVM and one-class SVM against the performance of our IDS. 
The detection analysis is based on the performance metrics 
Detection Rate (DR), False Positive Rate (FPr), False Negative 
Rate (FNr), and Overall Success Rate (OSR). The experimental 
results are presented in Tables II-VI. 

The detection results obtained using the linear two-class 
SVM technique are presented in Table II. Both the DR and OSR 
reach 100% for all the datasets, which indicates that the 
detection is completely accurate. Only in the case of Probing, 
the DR and OSR drop to 98.8% and 83.4%, respectively. For 
this dataset, the increase of FPr to 16.6% is also noticeable. 
Despite the increase of FPr for Probing, the results generated by 
the linear two-class SVM are very accurate. However, it is worth 
noting that this is a supervised technique, and requires training 
datasets, previously labelled, comprising both classes of data. 

For the non-linear two-class SVM, the detection results 
obtained using this technique are slightly worse than the results 
generated by linear two-class SVM. However, the accuracy of 
non-linear two-class SVM can be considered acceptable. Only 
in Probing, does the OSR reach 81.67%. For the rest of datasets, 
the OSR reaches over 99.2%. The DR for most datasets reaches 
at least 93.51%, and only the dataset Probing generates false 
positives, reaching a FPr of 18.32%. The most noticeable result 
is the decrease in the DR for the dataset Attack01. After 
analysing the results, we identified that this decrease in the DR 
is caused by the metrics SEQ and ΔTime. The malicious and 
non-malicious instances for these metrics overlap and the non-
linear SVM is unable to differentiate accurately between them. 
For our selected features, the two classes are linearly separable. 
Hence, the linear SVM is expected to outperform the non-linear 
SVM. All these results are presented in Table III. 

Once again, the results obtained by the linear one-class SVM 
technique, shown in Table IV, are slightly worse than the results 

generated by the linear two-class SVM. However, the accuracy 
of this technique is very comparable to the two-class SVM. 
Additionally, this SVM only needs training datasets with normal 
data. Only for the dataset Probing is the OSR lower than 98%, 
reaching 88.91%. In the case of DR, all datasets generate results 
higher than 89%, with two cases reaching 100%. On the other 
hand, for the dataset Probing, the FPr improves from 16.6% to 
11.05%, in comparison to the linear two-class SVM. This is due 
to the value of the parameters d, q and t#. However, these values 
also increase the FNr as compared to the two-class SVM. 

The results generated by the non-linear one-class SVM, 
shown in Table V, are the worst results overall. We can see a 
general decrease in the OSR and a noticeable decrease in the DR 
for the dataset Probing, reaching 61.37%. For all the datasets, 
this SVM technique also generates an increase in the FPr. 

TABLE II.  DETECTION RESULTS: LINEAR TWO-CLASS SVM 

Linear Two-Class SVM 

Dataset DR (%) FPr (%) FNr (%) OSR (%) 
Attack01 100 0 0 100 
Attack02 100 0 0 100 
Attack03 100 0 0 100 
DeAuth 100 0 0 100 
Probing 98.78 16.6 1.22 83.4 

TABLE III.  DETECTION RESULTS: NON-LINEAR TWO-CLASS SVM 

Non-Linear Two-Class SVM with Gaussian Radial Basis 

Dataset DR (%) FPr (%) FNr (%) OSR (%) 
Attack01 62.5 0 37.5 99.66 
Attack02 99.52 0 0.48 99.97 
Attack03 93.51 0 6.49 99.94 
DeAuth 97.78 0 2.22 99.25 
Probing 97.85 18.32 2.15 81.67 

TABLE IV.  DETECTION RESULTS: LINEAR ONE-CLASS SVM 

Linear One-Class SVM 

Dataset DR (%) FPr (%) FNr (%) OSR (%) 
Attack01 100 0 0 99.93 
Attack02 89.25 0.41 10.75 98.85 
Attack03 99.12 2.46 0.88 97.53 
DeAuth 100 1.75 0 98.25 
Probing 93.78 11.05 6.22 88.91 

TABLE V.  DETECTION RESULTS: NON-LINEAR ONE-CLASS SVM 

Non-Linear One-Class SVM with Gaussian Radial Basis 

Dataset DR (%) FPr (%) FNr (%) OSR (%) 
Attack01 100 14.62 0 85.38 
Attack02 100 6.84 0 93.16 
Attack03 100 5.82 0 94.18 
DeAuth 95.38 3.07 4.62 95.61 
Probing 61.37 1.15 38.63 98.61 

Overall, the detection results generated by the linear two-
class SVM technique are the most accurate results. Nonetheless, 
the accuracy of the linear one-class SVM performs comparably 
well without the need for labelled training datasets. Therefore, 
we compare the performance of our unsupervised anomaly-
based IDS against these two linear SVM techniques. 

From the detection results presented in Table VI, we can see 
that our anomaly-based IDS detects all the malicious traffic in 
the WiFi datasets. There are several false positive alarms that 
only reach 2.19% of FPr. Nonetheless, the accuracy of our IDS 



is comparable to the detection results generated by the linear 
two-class SVM and linear one-class SVM techniques. 
Additionally, it is important to emphasise that these results are 
completely unsupervised, generated without any additional 
information about the nature of the network traffic dataset. 

If we focus on the dataset Probing, there is a dramatic 
decrease in DR and OSR, and an increase in the false alarms. 
One factor that may be directly correlated to these results is the 
size of this dataset. Additionally, these results align with the 
reports indicating that the efficiency of IDSs that use statistical 
detection techniques decreases when non-homogeneous data are 
analysed [21]. In this case, where a non-homogeneous dataset is 
analysed, our anomaly-based IDS could benefit from the use of 
ML techniques to increase its detection accuracy. 

TABLE VI.  DETECTION RESULTS: UNSUPERVISED ANOMALY-BASED IDS 

Unsupervised Anomaly-based IDS 

Dataset DR (%) FPr (%) FNr (%) OSR (%) 
Attack01 100 0 0 100 
Attack02 100 0.03 0 99.97 
Attack03 100 0.06 0 99.94 
DeAuth 100 2.19 0 97.81 
Probing 18.82 15.99 81.18 83.52 

VI. CONCLUSIONS 
In this paper, we considered the SVM as a ML technique that 

could complement the performance of our IDS, or as an 
alternative detection technique. We have assessed the 
performance of our unsupervised anomaly-based IDS against 
one-class and two-class SVMs, using linear and non-linear with 
RBF forms. In order to provide variability to the experiments, 
the analysis has been implemented with a number of network 
traffic datasets, gathered from real networks, comprising 
different types of attacks. First, we have assessed which of the 
SVMs produces the best detection results. This assessment 
analysis gives insight into the detection performance of the SVM 
techniques. Then we have evaluated the performance of our IDS 
against SVM techniques in tasks of intrusion detection. 

The results that we present show that the linear two-class 
SVM generates the most accurate results overall. This technique 
reaches 100% of DR and OSR for almost all the datasets. 
However, this SVM technique requires training data, previously 
labelled, comprising both classes of data. On the other hand, the 
accuracy of the linear one-class SVM performs comparably to 
the accuracy of the linear two-class SVM without the need for 
training datasets associated with malicious data. Only in the case 
of Probing, the OSR reaches 81.67%. For the rest of the datasets, 
the OSR reaches 99.25%. The DR for most datasets reaches at 
least 93.51%, and only Probing generates false positive alarms. 

Our IDS detects all the malicious traffic in the WiFi datasets. 
However, the accuracy of the IDS when analysing the dataset 
Probing decreases drastically. For this dataset, the DR and FPr 
reach 18.82% and 15.99%, respectively. This may be due to the 
size and the non-homogeneous nature of the dataset. 
Additionally, it is important to emphasise that these results are 
completely unsupervised, generated without any additional 
information about the nature of the network traffic dataset. 

Therefore, these results suggest that our anomaly-based IDS 
could benefit from the use of ML techniques to increase its 
detection accuracy. The use of linear SVM, both two-class and 
one-class with RBF forms, could potentially complement the 

performance of our IDS especially when non-homogeneous data 
are analysed. 
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