5,370 research outputs found

    How Regular Business Has Becomes Mobile Business. A Mobile Agent Approach

    Get PDF
    The age of static business and slow information flow, when most decision was based on day-or week-old data, has come to an end. Now new technology helps organizations provide a more agile, flexible approach to business that was not technologically available five years ago. As a result, organizations are paying more attentions to supporting business process with the ability to adapt to the dynamic environment. This paper describes how the action of mobile agent enabled decision support in conjunction with the organizational trends, enables new practice in the field of e-Business. This is done to understand the magnitude of the e-business context problem and to suggest possible ways around the problem when building mobile agents. Therefore, a mobile agent approach is proposed in this paper to offer solution for mobile business and to manage complex business activities.mobile agent, mobile technologies, mobility, business

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    Improving Collaborative Learning Using Pervasive Embedded System-Based Multi-Agent Information and Retrieval Framework in Educational Systems

    Get PDF
    E-learning is a form of Technology SupportedEducation where the medium of instruction is throughDigital Technologies, particularly Computer Technology.An instance is the use of search engines like Google andYahoo, which aid Collaborative Learning. However, thewidespread provision of distributed, semi-structuredinformation resources such as the Web has obviouslybrought a lot of benefits; but it also has a number ofdifficulties. These difficulties include people gettingoverwhelmed by the sheer amount of information available,making it hard for them to filter out the junk andirrelevancies and focus on what is important, and also toactively search for the right information. Also, people easilyget bored or confused while browsing the Web because ofthe hypertext nature of the web, while making it easy to linkrelated documents together, it can also be disorienting. Toalleviate these problems, the Web Information Food ChainModel was introduced. How effective has this been with thedynamic nature of computing technologies? Pervasivecomputing devices enable people to gain immediate accessto information and services anywhere, anytime, withouthaving to carry around heavy and impractical computingdevices. Thus, the bulky PCs become less attractive andbeing slowly eroded with the development of a newgeneration of smart devices like wireless PDAs, smartphones, etc. These embedded devices are characterized bybeing unobtrusively embedded; completely connected;intuitively intelligent; effortlessly portable and mobile; andconstantly on and available. This paper presents the use ofembedded systems and Intelligent Agent-Based WebInformation Food Chain Model in Multi-Agent Informationand Retrieval Framework (IIFCEMAF), to realizing fullpotentials of the internet, for users’ improved system ofcollaborative e-learning in education

    Context-Aware and Adaptable eLearning Systems

    Get PDF
    The full text file attached to this record contains a copy of the thesis without the authors publications attached. The list of publications that are attached to the complete thesis can be found on pages 6-7 in the thesis.This thesis proposed solutions to some shortcomings to current eLearning architectures. The proposed DeLC architecture supports context-aware and adaptable provision of eLearning services and electronic content. The architecture is fully distributed and integrates service-oriented development with agent technology. Central to this architecture is that a node is our unit of computation (known as eLearning node) which can have purely service-oriented architecture, agent-oriented architecture or mixed architecture. Three eLeaerning Nodes have been implemented in order to demonstrate the vitality of the DeLC concept. The Mobile eLearning Node uses a three-level communication network, called InfoStations network, supporting mobile service provision. The services, displayed on this node, are to be aware of its context, gather required learning material and adapted to the learner request. This is supported trough a multi-layered hybrid (service- and agent-oriented) architecture whose kernel is implemented as middleware. For testing of the middleware a simulation environment has been developed. In addition, the DeLC development approach is proposed. The second eLearning node has been implemented as Education Portal. The architecture of this node is poorly service-oriented and it adopts a client-server architecture. In the education portal, there are incorporated education services and system services, called engines. The electronic content is kept in Digital Libraries. Furthermore, in order to facilitate content creators in DeLC, the environment Selbo2 was developed. The environment allows for creating new content, editing available content, as well as generating educational units out of preexisting standardized elements. In the last two years, the portal is used in actual education at the Faculty of Mathematics and Informatics, University of Plovdiv. The third eLearning node, known as Agent Village, exhibits a purely agent-oriented architecture. The purpose of this node is to provide intelligent assistance to the services deployed on the Education Pportal. Currently, two kinds of assistants are implemented in the node - eTesting Assistants and Refactoring eLearning Environment (ReLE). A more complex architecture, known as Education Cluster, is presented in this thesis as well. The Education Cluster incorporates two eLearning nodes, namely the Education Portal and the Agent Village. eLearning services and intelligent agents interact in the cluster

    Middleware for Internet of Things: A Survey

    Get PDF

    Enabling Personalized Composition and Adaptive Provisioning of Web Services

    Get PDF
    The proliferation of interconnected computing devices is fostering the emergence of environments where Web services made available to mobile users are a commodity. Unfortunately, inherent limitations of mobile devices still hinder the seamless access to Web services, and their use in supporting complex user activities. In this paper, we describe the design and implementation of a distributed, adaptive, and context-aware framework for personalized service composition and provisioning adapted to mobile users. Users specify their preferences by annotating existing process templates, leading to personalized service-based processes. To cater for the possibility of low bandwidth communication channels and frequent disconnections, an execution model is proposed whereby the responsibility of orchestrating personalized processes is spread across the participating services and user agents. In addition, the execution model is adaptive in the sense that the runtime environment is able to detect exceptions and react to them according to a set of rules

    Fourth Generation Wireless Systems: Requirements and Challenges for the Next Frontier

    Get PDF
    Fourth generation wireless systems (4G) are likely to reach the consumer market in another 4-5 years. 4G comes with the promise of increased bandwidth, higher speeds, greater interoperability across communication protocols, and user friendly, innovative, and secure applications. In this article, I list the requirements of the 4G systems by considering the needs of the users in the future. These requirements can be met if technical and business challenges can be overcome. Technical challenges include mobility management, quality of service, interoperability, high data rate, security, survivability, spectrum, intelligent mobile devices, middleware, and network access. I discuss the most plausible solutions to these technical challenges in this paper. Business-related challenges include billing, payment methods, pricing, size of investments, content provision and mediation, and the trade-off between richness and reach. If these technical and business challenges can be met, then 4G will become the next frontier in data and voice communication infrastructure
    corecore