158 research outputs found

    Development of Multi-Agent Control Systems using UML/SysML

    Get PDF

    Developing Agent Interaction Protocols with PRALU

    Get PDF
    The purpose of the paper is to explore the possibility of applying existing formal theories of description and design of distributed and concurrent systems to interaction protocols for real-time multi-agent systems. In particular it is shown how the language PRALU, proposed for description of parallel logical control algorithms and rooted in the Petri net formalism, can be used for the modeling of complex concurrent conversations between agents in a multi-agent system. It is demonstrated with a known example of English auction on how to specify an agent interaction protocol using considered means

    A systematic approach for detecting faults in agent designs

    Get PDF
    This thesis proposes a mechanism, including automated tool support, for early-phase defect detection by comparing the plan structures of a belief-desire-intention (BDI) agent design against the following: (1) requirement models, specified in terms of scenarios and goals; and (2) agent communication models. The intuition of our approach is to extract sets of possible behaviour runs from the agent-behaviour models and to verify whether these runs conform to the specifications of the system-to-be. The proposed approach in this thesis is applicable at design time and does not require source code. Our approach is based on the Prometheus agent-design methodology but is applicable to other methodologies that support the same notions. We evaluate the proposed verification framework on designs, ranging from student projects to case studies of industry-level projects. Our evaluation demonstrates that even a simple specification developed by relatively experienced developers is prone to defects, and our approach is successful in uncovering most of these defects. In addition, we conduct a scalability analysis of our methods, and the outcomes reveal that our approach can scale when designs grow in size

    Debugging multi-agent systems with design documents

    Get PDF
    Debugging multi-agent systems, which are concurrent, distributed, and consist of complex components is difficult, yet crucial. The development of these complex systems is supported by agent-oriented software engineering methodologies which utilise agents as the central design metaphor. The systems that are developed are inherently complex since the components of these systems may interact in flexible and sophisticated ways and traditional debugging techniques are not appropriate. Despite this, very little effort has been applied to developing appropriate debugging tools and techniques. Debugging multi-agent systems without good debugging tools is highly impractical and without suitable debugging support developing and maintaining multi-agent systems will be more difficult than it need be. In this thesis we propose that the debugging process can be supported by following an agent-oriented design methodology, and then using the developed design artifacts in the debugging phase. We propose a domain independent debugging framework which comprises the developed processes and components that are necessary in using design artifacts as debugging artifacts. Our approach is to take a non-formal design artifact, such as an AUML protocol design, and encode it in a machine interpretable manner such that the design can be used as a model of correct system behaviour. These models are used by a run-time debugging system to compare observed behaviour against specified behaviour. We provide details for transforming two design artifact types into equivalent debugging artifacts and show how these can be used to detect bugs. During a debugging episode in which a bug has been identified our debugging approach can provide detailed information about the possible reason for the bug occurring. To determine if this information was useful in helping to debug programs we undertook a thorough empirical study and identified that use of the debugging tool translated to an improvement in debugging performance. We conclude that the debugging techniques developed in this thesis provide effective debugging support for multi-agent systems and by having an extensible framework new design artifacts can be explored and as translations are developed they can be added to the debugging system

    Scenario-Based Modeling of Multi-Agent Systems

    Get PDF

    Extending the gaia methodology for the design and development of agent-based software systems

    Get PDF
    Over the past decade, agent-based computing has emerged as a new and popular paradigm for design, implementation and analysis of distributed information systems. In this paper, the participant researchers in Health Care Computing Group at University of Westminster concentrate on the agent-oriented methodology for the analysis and design of agentbased systems and identify how methodology can support both the levels of "agent structure" and of "agent society" in the agent-oriented software design and development process. The research reported here takes one leading agent-oriented methodology-Gaia, and then extended it by the creation of innovative design tools which aimed at better supporting application to real-world domains. In discussion section, agent-oriented methodology and AUML approaches are compared and evaluated in great detail; the strengths and weaknesses of the current agent-oriented methodology are explored and discussed; the importance of effectively using methodology to improve agents and their productivity potential also is emphasized. Finally, we draw conclusions from the work presented and the experience gained in this research and look into the future possible improvements on agent-oriented software engineering in the agent technology research field

    Modelling learning behaviour of intelligent agents using UML 2.0

    Get PDF
    This thesis aims to explore and demonstrate the ability of the new standard of structural and behavioural components in Unified Modelling Language (UML 2.0 / 2004) to model the learning behaviour of Intelligent Agents. The thesis adopts the research direction that views agent-oriented systems as an extension to object-oriented systems. In view of the fact that UML has been the de facto standard for modelling object-oriented systems, this thesis concentrates on exploring such modelling potential with Intelligent Agent-oriented systems. Intelligent Agents are Agents that have the capability to learn and reach agreement with other Agents or users. The research focuses on modelling the learning behaviour of a single Intelligent Agent, as it is the core of multi-agent systems. During the writing of the thesis, the only work done to use UML 2.0 to model structural components of Agents was from the Foundation for Intelligent Physical Agent (FIPA). The research builds upon, explores, and utilises this work and provides further development to model the structural components of learning behaviour of Intelligent Agents. The research also shows the ability of UML version 2.0 behaviour diagrams, namely activity diagrams and sequence diagrams, to model the learning behaviour of Intelligent Agents that use learning from observation and discovery as well as learning from examples of strategies. The research also evaluates if UML 2.0 state machine diagrams can model specific reinforcement learning algorithms, namely dynamic programming, Monte Carlo, and temporal difference algorithms. The thesis includes user guides of UML 2.0 activity, sequence, and state machine diagrams to allow researchers in agent-oriented systems to use the UML 2.0 diagrams in modelling the learning components of Intelligent Agents. The capacity for learning is a crucial feature of Intelligent Agents. The research identifies different learning components required to model the learning behaviour of Intelligent Agents such as learning goals, learning strategies, and learning feedback methods. In recent years, the Agent-oriented research has been geared towards the agency dimension of Intelligent Agents. Thus, there is a need to conduct more research on the intelligence dimension of Intelligent Agents, such as negotiation and argumentation skills. The research shows that behavioural components of UML 2.0 are capable of modelling the learning behaviour of Intelligent Agents while structural components of UML 2.0 need extension to cover structural requirements of Agents and Intelligent Agents. UML 2.0 has an extension mechanism to fulfil Agents and Intelligent Agents for such requirements. This thesis will lead to increasing interest in the intelligence dimension rather than the agency dimension of Intelligent Agents, and pave the way for objectoriented methodologies to shift more easily to paradigms of Intelligent Agent-oriented systems.The British Council, the University of Plymouth and the Arab-British Chamber Charitable Foundation

    Requirements Modeling for Multi-Agent Systems

    Get PDF
    Different approaches for building modern software systems in complex and open environments have been proposed in the last few years. Some efforts try to take advantage of the agent-oriented paradigm to model/engineer complex information systems in terms of independent agents. These agents may collaborate in a computational organization (Multi-Agent Systems, MAS) by playing some specific roles having to interact with others in order to reach a global or individual goal. In addition, due to the complex nature of this type of systems, dealing with the classical functional and structural perspectives of software systems are not enough. The organizational perspective, that describes the context where these agents need to collaborate, and the social behavior perspective, that describes the different "intelligent" manners in which these agents can collaborate, need to be identified and properly specified. Several methodologies have been proposed to drive the development of MAS (e.g., Ingenias, Gaia, Tropos) although most of them mainly focus on the design and implementation phases and do not provide adequate mechanisms for capturing, defining, and specifying software requirements. Poor requirements engineering is recognized as the root of most errors in current software development projects, and as a means for improving the quality of current practices in the development of MAS, the main objective of this work is to propose a requirements modeling process to deal with software requirements covering the functional, structural, organizational, and social behavior perspectives of MAS. The requirements modeling proposed is developed within the model-driven engineering context defining the corresponding metamodel and its graphical syntax. In addition, a MAS requirements modeling process is specified using the Object Management Group's (OMG) Software Process Engineering Metamodel (SPEM). Finally, in order to illustrate the feasibility of our approach, we specified the software requirements of a strategic board game (the Diplomacy game).Rodríguez Viruel, ML. (2011). Requirements Modeling for Multi-Agent Systems. http://hdl.handle.net/10251/11416Archivo delegad
    • …
    corecore