
This copy of the thesis has been supplied on condition that
anyone who consults it is understood to recognise that its
copyright rests with its author and that no quotation from the
thesis and no information derived from it may be published without
the author's prior consent.

Modelling Learning Behaviour of Intelligent Agents Using UML 2.0

by

Hossam Allam

A thesis submitted to the University of Plymouth

In partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing, Communications, and Electronics

Faculty of Technology

University of Plymouth

t Rt

Alp

At 0'0

2005

Modelling Learning Behaviour of Intelligent Agents Using UML 2.0

Hossam Allam

Abstract

This thesis aims to explore and demonstrate the ability of the new standard of
structural and behavioural components in Unified Modelling Language (UML 2.0 / 2004)

to model the learning behaviour of Intelligent Agents. The thesis adopts the research
direction that views agent-oriented systems as an extension to object-oriented systems. In

view of the fact that UML has been the de facto standard for modelling object-oriented
systems, this thesis concentrates on exploring such modelling potential with Intelligent
Agent-oriented systems. Intelligent Agents are Agents that have the capability to learn and
reach agreement with other Agents or users. The research focuses on modelling the
learning behaviour of a single Intelligent Agent, as it is the core of multi-agent systems.

During the writing of the thesis, the only work done to use UML 2.0 to model
structural components of Agents was from the Foundation for Intelligent Physical Agent
(FIPA). The research builds upon, explores, and utilises this work and provides further
development to model the structural components of learning behaviour of Intelligent
Agents. The research also shows the ability of UML version 2.0 behaviour diagrams,
namely activity diagrams and sequence diagrams, to model the learning behaviour of
Intelligent Agents that use learning from observation and discovery as well as learning
from examples of strategies. The research also evaluates if UML 2.0 state machine
diagrams can model specific reinforcement learning algorithms, namely dynamic
programming, Monte Carlo, and temporal difference algorithms. The thesis includes user
guides of UML 2.0 activity, sequence, and state machine diagrams to allow researchers in
agent-oriented systems to use the UML 2.0 diagrams in modelling the learning components
of Intelligent Agents.

The capacity for learning is a crucial feature of Intelligent Agents. The research
identifies different learning components required to model the learning behaviour of
Intelligent Agents such as learning goals, learning strategies, and learning feedback
methods. In recent years, the Agent-oriented research has been geared towards the agency
dimension of Intelligent Agents. Thus, there is a need to conduct more research on the
intelligence dimension of Intelligent Agents, such as negotiation and argumentation skills.

The research shows that behavioural components of UML 2.0 are capable of
modelling the learning behaviour of Intelligent Agents while structural components of
UML 2.0 need extension to cover structural requirements of Agents and Intelligent Agents.
UML 2.0 has an extension mechanism to fulfil Agents and Intelligent Agents for such
requirements. This thesis will lead to increasing interest in the intelligence dimension
rather than the agency dimension of Intelligent Agents, and pave the way for object-
oriented methodologies to shift more easily to paradigms of Intelligent Agent-oriented
systems.

Table of Contents

Table of Contents ». »». ».. »»».. »»»»»». » », »»,.. ».... ».. ». »»»,,.,,, », ».,,.. »»». ». ».. » 2

List of Figures .. »........ ».. »....... ».. » »... ».............. »...... ».. ». ».. »...... »»»...... »». »».

AcknowIedgments..... ». ». »»»». ».. ».. ».. ». »..... »....... »... » ». »..... »....... ».. »........... »». ». 11

Chapter 1: Introduction ». »»»»». ». » ». ».. ».. ». ».. »»...... ». »».. »........ »............... ». » 13

1.1 AGENT-ORIENTED RESEARCH DIRECTIONS
... 14

1.2 AGENTS AND OBJECTS
... 14

1.3 INTELLIGENT AGENTS
.. 17

1.4 UNIFIED MODELLING LANGUAGE (UML 2.0) DIAGRAMS ... 17

1.5 OVERVIEW OF THE THESIS
... 29

Chapter 2: Learning Capabilities of Intelligent Agents........ »... »... »....... » »»..... ». ». »31

2.1 INTRODUCTION 31
2.2 LEARNING

............................ 32
2.3 LEARNING COAL

... .
33

2.4 KNOWLEDGE "TYPES AND REPRESENTATIONS OF THE LEARNING PROCESS
.............................. 36

2.4.1 Knowledge Types 36
2.4.2 Knowledge Representations

.. 37

2.4.3 Background Knowledge
.. 40

2.4.4 Relation between Background Knowledge and Input Knowledge
................................... 40

2.5 TYPES OF LEARNING STRATEGIES
... 43

Z5.1 Rote Learning .. 43

2.5.2 Learning from Instructions
... 44

2.5.3 Learning from Examples
... 44

2.5.4 Learningfrom Observation and Discovery
.. 46

2.5.5 Learning by Analogy ... 47

2.6 LEARNING FEEDBACK METHODS
... 48

2.6.1 Supervised Learning ... 49

Z62 Unsupervised Learning ... 49

2.6.3 Reinforcement Learning .. 49

2.7 LEARNING LOCATION
..

52

2.8 LEARNING SCHEDULE AND DURATION
..

52

2.9 EXECUTING THE NEW HYPOTHESIS ...
53

2.10 LEARNING AND COMMUNICATION ...
53

2.11 CONCLUSION ...
54

Chapter 3: Research Directions of Extending UMML to Model Agent-Oriented Systems __. _56

3.1 INTRODUCTION ..
56

3.2 AGENT UNIFIED MODELLING LANGUAGE (AUML)
.. 57

3.2.1 Extending UML Behaviour Component
..

57

3.2.2 Extending UML Structural Component
..

68

3.3 AGENT GRAPH TRANSFORMATION MODELLING ... 72

3.4 MESSAGE / UML
...

75

3.5 AGENT-OBJECT RELATION MODELS ...
78

3.6 CONCLUSION
..

81

Chapter 4: Exploring UAML 2.0 to Model Structural Components of Intelligent Agents.....
»... 83

4.1 INTRODUCTION
.. 83

4.2 MODELLING INTELLIGENT AGENTS
...

84

4.3 LEARNING COMPARTMENT ATTRIBUTES:
.................................... 86

4.3.1 Learning Goal Attribute
.. 88

4.3.2 Commitment Strategy Attribute
... 88

4.3.3 Background Knowledge Attribute
... 89

4.3.4 Learning Strategy Attribute
.. 90

4.3.5 Learning Feedback Attribute
.. 94

4.3.6 Learning Location Attribute
... 96

4.3.7 Learning Schedule Attribute
... 97

4.3.8 Knowledge Representation Attribute .. 97

4.4 CONCLUSION
97

Chapter 5: Exploring UML 2.0 to Model the Learning Behaviour of Intelligent Agents--99

5.1 INTRODUCTION ..
99

5.2 MODELLING LEARNING STRATEGIES OF INTELLIGENT AGENTS
..

100

5.2.1 Learning from Observation and Discovery Strategy ...
101

3

5.2.2 Learning from Examples Strategy
..

119

5.3 MODELLING LEARNING FEEDBACK METHODS OF INTELLIGENT AGENT
................................

128

5.3.1 Reinforcement Learning Feedback Methods
..

128

5.4 CONCLUSION ..
151

Chapter 6: Conclusions and Future Research Directions ».......................... 153

6.1 THESIS CONCLUSIONS
..

153

6.2 FUTURE RESEARCH DIRECTIONS ...
156

References ... »............... ».... »... 158

Further Reading ... 165

Appendix A: UML 2.0 Activity Diagram User Guide. --.... --173

SECTION A. 1: ACTIVITY DIAGRAM COMPONENTS GUIDE
... 173

SECTION A. 2: STEP BY STEP UML 2 ACTIVITY DIAGRAM DRAWING GUIDE
................................

181

SECTION A. 3: TABLE OF ACTIVITY DIAGRAM COMPONENTS .. 184

Appendix B: UML 2.0 Sequence Diagram User Guide »..... »»».. ».. »... »... ». 187

SECTION B 1: SEQUENCE DIAGRAM COMPONENTS GUIDE
.. 187

SECTION B. 2: STEP BY STEP UML 2 SEQUENCE DRAWING GUIDE:
.. 195

SECTION B. 3: TABLE OF SEQUENCE DIAGRAM COMPONENTS .. 198

Appendix C: UML 2.0 State Machine Diagram User Guide .. 202

SECTION C. 1 STATE MACHINE DIAGRAM COMPONENTS GUIDE
... 202

SECTION C. 2: STEP-BY-STEP STATE MACHINE DIAGRAM DRAWING GUIDE
................................ 212

SECTION C. 3: TABLE OF STATE MACHINE DIAGRAM COMPONENTS
... 214

4

List of Figures

Figure 1.1 UML structure and behaviour diagrams ...
18

Figure 1.2 Class notations ..
19

Figure 13 Class Diagram ...
20

Figure 1.4 Class Diagram ...
20

Figure 1.5 Object diagram ... 21

Figure 1.6 Example of component diagram .. 21

Figure 1.7 Example of Composite structure .. 22

Figure 1.8 Example of deployment diagram
.. 23

Figure 1.9 Package diagram ... 23

Figure 1.10 Example of Use case and actors for an ATM system ... 24

Figure 1.11 Example of activity diagram of process order that utilizes multi-partitions 25

Figure 1.12 Example of state machine diagram for a telephone ... 26

Figure 1.13 Example of sequence diagram
.. 27

Figure 1.14 Example of communication diagram for displaying seminar screen ... 28

Figure 1.15 Example of timing diagram
.. 28

Figure 1.16 Example of compact timing diagram ... 29

Figure 2.1 Conceptual graph and frame descriptions of a hotel bed ... 38

Figure 3.1 English-Auction protocol for surplus flight ticket ... 58

Figure 3.2 And, XOR, and Or connectors .. 59

Figure 3.3 Full and abbreviated notation of XOR connection ... 60

Figure 3.4 A generic AIP expressed as a template package .. 61

Figure 3.5 Multiple techniques to express concurrent communication with an Agent playing multiple roles or

responding to different CAs ... 62

Figure 3.6 Huget extensions to AUML protocol diagrams ... 63

Figure 3.7 Huget extensions to AUML protocol diagrams ... 64

Figure 3.8 Augmented Activity diagram ...
65

Figure 3.9 Synchronization Point ..
66

Figure 3.10 FIPA Request Interaction Protocol ...
67

Figure 3.11 Agent class diagram and its abbreviation .. 69

Figure 3.12 Different Kinds of Agent classes .. 69

Figure 3.13 using UML class diagrams to specify Agent behaviour and its abbreviations
70

Figure 3.14 incoming and outgoing messages ... 70

Figure 3.15 FIPA proposed Agent class abstract syntax ... 72

Figure 3.16 Use Case diagram for banking example ... 73

Figure 3.17 Graph transformation rule ...
74

Figure 3.18 Three rules specifying the possible result of each interaction ... 75

Figure 3.19 Agent centric MESSAGE concepts .. 76

Figure 3.20 The core elements of External AOR modelling ... 79

Figure 3.21 A comparison of some important concepts of ER, UML, and AORML 80

Figure 4.1 FIPA proposed Agent class abstract syntax ...
84

Figure 4.2 Active Class ... 85

Figure 4.3 : FIPA Agent notation (FIPA, 2004) and proposed Intelligent Agent notation 85

Figure 4.4 Agent class and Agent Physical Classifier
...

86

Figure 5.1 Activity diagram of scenario 1.1 .. 102

Figure 5.2 Activity diagram of email filter Intelligent Agent ... 103

Figure 5.3 cluster-actions activity diagram .. 104

Figure 5.4 Sequence diagram of scenario 1.1 .. 105

Figure 5.5 Activity diagram of scenario 1.2 ..
107

Figure 5.6 Activity diagram of internet proxy server Intelligent Agent
..

108

Figure 5.7 UML Sequence diagram for scenario 1.2 ...
109

Figure 5.8 UML activity diagram for Scenario 1.3 ...
111

Figure 5.9 UML activity diagram for Internet Proxy Server
...

112

Figure 5.10 UML sequence diagram for scenario 13 ...
113

6

Figure 5.11 UML activity diagram for Scenario 1.4 ...
114

Figure 5.12 UML Sequence diagram for scenario 1.4
...

116

Figure 5.13 UML activity diagram for Scenario 1.5
... 117

Figure 5.14 UML sequence diagram for scenario 1.5 ... 119

Figure 5.15 UML activity diagram for scenario 2.1 .. 121

Figure 5.16 UML sequence diagram for scenario 2.1 ... 122

Figure 5.17 UML activity diagram of scenario 2.2 ... 123

Figure 5.18 UML sequence diagram for scenario 2.2 ... 124

Figure 5.19 UML activity diagram for scenario 2.3 .. 126

Figure 5.20 UML sequence diagram for scenario 23 ... 127

Figure 5.21 Policy iteration algorithm .. 129

Figure 5.22 UML State machine diagram for policy iteration algorithm ... 130

Figure 5.23 Iterative policy evaluation algorithm ... 131

Figure 5.24 State Machine Diagram for policy evaluation algorithm .. 132

Figure 5.25 UML State machine diagram for policy improvement algorithm .. 133

Figure 5.26 Value iteration algorithm ... 134

Figure 5.27 UML state machine diagram for value evaluation algorithm .. 136

Figure 5.28 First-visit Monte Carlo method for V estimating V"... 137

Figure 5.29 UML state machine diagram for first-visit Monte Carlo policy evaluation algorithm 137

Figure 5.30 UML state machine diagram for Black Jack game .. 139

Figure 5.31 Monte Carlo control algorithm assuming exploring starts ... 140

Figure 5.32 UML state machine diagram for the Monte Carlo control algorithm assuming exploring starts 141

Figure 5.33 Tabular TD(O) for estimating V"
..

142

Figure 5.34 UML state machine diagram for TD algorithm of figure 5.33 ..
143

Figure 5.35 Sarsa: An on-policy TD control algorithm .. 144

Figure 5.36 UML state machine diagram for sarsa algorithm ...
145

Figure 5.37 Q-learning Algorithm ...
146

7

Figure 5.38 UML state machine diagram for q-learning algorithm ...
146

Figure 5.39 Tabular Sarsa (A) Algorithm ...
147

Figure 5.40 UML state machine diagram for tabular Sarsa (A) algorithm ..
148

Figure 5.41 Tabular version of Watkins's Q(X) algorithm ..
149

Figure 5.42 UML state machine diagram for Watkins's Q(X) algorithm ..
150

Figure A. 0.1 Example of activity diagram
..

173

Figure A. 0.2 illustration of activity ..
174

Figure A. 0.3 Illustration of Action ...
174

Figure A. 0.4 Example of action constraints ...
175

Figure A. 0.5 Illustration of control flow
..

175

Figure A. 0.6 Illustration of initial node ...
175

Figure A. 0.7 Illustration of final node ...
176

Figure A. 0.8 Illustration of flow final node ...
176

Figure A. 0.9 Example of an object ..
176

Figure A. 0.10 Object flow .. 177

Figure A. 0.11 Another illustration of object flow
...

177

Figure A. 0.12 Data store example ..
177

Figure A. 0.13 Example of decision and merge nodes ...
178

Figure A. 0.14 Example of Fork and Join nodes ..
178

Figure A. 0.15 Example of expansion region ...
179

Figure A. 0.16 Illustration of exception ..
179

Figure A. 0.17 Example of interruptible activity region ...
180

i i 180 on .. t Figure A. 0.18 Example of activity diagram with part

Figure A. 0.19 Example of activity diagram ..
181

Figure A. 0.20 Example of decision node ...
182

Figure A. 0.21 Fork nodes ..
183

Figure A. 0.22 Notation of join and merge Nodes ..
183

Figure B. 0.1 Example of lifelines
..

188

Figure 0.2 Example of actor lifeline
..

188

Figure B. 0.3 Examples of message exchange ..
189

Figure B. 0.4 Example of self message ...
189

Figure B. 0.5 Example of lost and found messages ...
190

Figure B. 0.6 Example of creating and destroying an object .. 190

Figure B. 0.7 Example of duration and time constraints notation .. 191

Figure B. 0.8 Example of loop fragment .. 193

Figure B. 0.9 Example of a gate .. 193

Figure B. 0.10 Example of part decomposition
..

194

Figure B. 0.11 Example of state invariant
..

194

Figure B. 0.12 Example of sequence diagram
..

195

Figure B. 0.13 Example of lifelines .. 196

Figure B. 0.14 Example of transferring message through a gate ..
196

Figure B. 0.15 Example of start and end of lifline
..

197

Figure C. 0.1 Example of state machine diagram for a door ..
202

Figure B. 0.2 Notation of a state ... 203

Figure C. 0.3 Example of initial and final states ... 203

Figure C. 0.4 Notation of a transition ... 204

Figure C. 0.5 Notation of state actions .. 204

Figure C. 0.6 Example of self-transition ..
205

Figure C. 0.7 Example of state machine with compound state .. 205

Figure C. 0.8 Example of state machine diagram with composite state ...
206

Figure C. 0.9 Example of entry points ..
206

Figure C. 0.10 Example of entry point ..
207

Figure C. 0.11 Example of exit point ..
207

Figure C. 0.12 Example of choice pseudo-state ..
208

9

Figure C. 0.13 Example of Junction Pesudo-state ..
209

Figure C. 0.14 Example of terminate pseudo-state ...
209

Figure C. 0.15 Example of history state ..
210

Figure C. 0.16 Example of concurrent regions ...
211

Figure C. 0.17 UML state machine diagram for Black Jack game ...
212

10

Acknowledgments

I owe my deep interest in Intelligent Agents to my Director of Studies, Prof. M.

Denham of the University of Plymouth, UK, whose patience and enthusiastic supervision

have been invaluable to me. I am extremely grateful to Prof. J. Odell who voluntarily

provided me with his precious feedback about my research. I also owe a great deal to Dr.

Amal Elhadary, Assistant Professor of English, Ain Shams University, who contributed her

valuable time and experience in the proofreading process for this thesis.

My appreciation goes to the British Council which awarded me a Chevening

Scholarship to study in the UK during the academic years, 1997-1999. I would also like to

thank the School of Computing, University of Plymouth which waived my tuition fees for

the academic year, 1999-2000, and the Arab-British Chamber Charitable Foundation for

their financial support towards my tuition fees during the academic years, 2000-2004.

I am grateful to Mrs. Carole Watson, Research Administrator, University of

Plymouth and Ms. Nehad Wahba, American University in Cairo, for their support and

attention during my postgraduate study.

My Parents, Prof. Esmat Allam and Prof. Olfat Elbagoury, have been a constant

source of support-emotional and moral. Thanks to my parents, I have become interested in

pursuing my postgraduate studies.

My wife Hanan has been, always, my pillar, my joy, and my guiding light, and I

thank her.

11

AUTHOR'S DECLARATION

At no time during the registration for the degree of Doctor of Philosophy has the

author been registered for any other University award.

This research has been co-financed with the aid of a scholarship from the British

Council, the University of Plymouth and the Arab-British Chamber Charitable Foundation.

The thesis contains 41,435 words, 1371 paragraphs, and 218 pages.

Signed:

Date X\ /1`/0

12

Chapter 1: Introduction

This thesis explores the capability of the latest proposed version of the Unified

Modelling Language, UML 2.0, to model the learning behaviour of Intelligent Agents.

The thesis adopts the research direction that views agent-oriented systems as an extension

to object-oriented systems. In view of the fact that UML has been the de facto standard for

modelling object-oriented systems, this research concentrates on exploring such modelling

potential with Intelligent Agent-oriented systems. The thesis also highlights that

Intelligent Agents are Agents which have the capability to learn and to reach agreement

with others. The research focuses on the learning capabilities of a single Agent, as it is the

core of multi-agent systems. Advancement in information and communication technologies

during the last two decades, especially the introduction of the Internet, have triggered the

need for new software applications that are capable of performing new tasks that were not

available in the past. The Agent-oriented paradigm has emerged as a solution to meet such

requirements as working autonomously, acquiring adaptive behaviour, and assisting users

in performing their complex tasks. Agent-oriented research has made a considerable effort

to describe standard methods and languages for developing Agent-oriented systems;

however, the agent-oriented research community did not adopt any of them as a global

standard such as the Unified Modelling Language (UML) for object-oriented systems.

There is a need to identify a standard method for developing Agent-oriented systems. It is

expected that future information systems will contain objects, Agents, and Intelligent

Agents.

Section 1.1 introduces Agent-oriented research directions. Section 1.2 highlights

the differences between objects and Agents. Section 1.3 discusses the features of

Intelligent Agents, such as their ability to learn and reach agreement with others. Section

1.4 introduces the Unified Modelling Language 2.0 structural and behavioural diagrams.

Section 1.5 provides an overview of the Thesis.

13

1.1 Agent-oriented Research Directions

Currently there is no global standard definition for Agents; but there is global

agreement on their capabilities. Software applications that have Agent-oriented features

are marked by autonomy, proactivity, reactivity, and social ability (Wooldridge, 2000).

Agent-oriented research has established two directions to develop Agent-oriented methods

and languages. The first direction treats Agent-oriented systems as an extension to object-

oriented systems. The second direction views Agent-oriented systems as a new software

species with exceptional features. This thesis adopts the first research direction, as linking

Agent-oriented standards to object-oriented ones will allow Agent-oriented systems to gain

wide acceptance in the software industry (Bauer et al., 2001).

Most of the available literature does not differentiate between Agents and

Intelligent Agents. This research highlights that Intelligent Agents are Agents with the

ability to learn and to reach agreement with others. Intelligent Agents are best deployed in

dynamic environments where they can adapt to new situations. The learning capabilities

of Intelligent Agents are crucial for them to sustain successful performance.

1.2 Agents and Objects

This research adopts the first research direction that views Agent-oriented systems

as an extension of object-oriented systems. Booch (1994) presents an interesting

classification for actor, server, and Agents from the object-oriented point of view. An

actor is an active object that uses other objects while a server is a passive object that is

used by other objects. Agents are objects that can use other objects and be used by them.

However, Booch's classification does not elucidate the main differences between objects

and Agents; he only explains that the difference lies in the way objects interact with other

objects. Wooldridge (2002) highlights the main differences between Agents and objects as

being differing degrees of autonomous behaviour. Agents have a higher degree of

14

autonomous behaviour than objects. Objects exhibit autonomous behaviour over the state

but do not exhibit control over their behaviour. Objects execute their method when they

receive a message from another object without having the ability to refuse the execution of

their method while Agents can refuse such requests based on their own decision. Agents

do not invoke methods on each other like objects; rather, they initiate a request for action

from other Agents. In object-oriented cases, the decision to execute depends on the object

that invoked the method, while the Agent-oriented case decision to execute depends on the

Agent that receives the request for action. Analysts can identify whether the entity under

analysis has an Agent's feature by identifying whether the entity has the power of decision

in executing its method or not. Odell (2002) points out that Agents employ some degree of

unpredictable autonomy in their behaviour, while a conventional object tends toward a

more predictable approach.

Brenner et al. (1998) highlight the fact that the internal structure of Agents is more

complex than objects. Agents have mental states and concepts in addition to attributes and

methods while objects only have attributes and methods. The belief, desire, and intentions

of Agents can describe their mental states (Wooldridge, 2002). The belief of Agents

corresponds with the information the Agents have about their environment. The desire of

Agents represents the states of affairs the Agents wish to bring about. The intention of

Agents represents the desire that the Agents are committed to achieve (Wooldridge, 2000).

The method of communication is another major difference between Agents and

objects: objects communicate at a low language level (Brenner et al., 1998). Object "A"

sends a message to object "B"; so, "B" executes its method. In Agent-oriented systems,

Agents use complex communicative language, protocols, and dialogue structures. Agent-

oriented analysts would identify the skills of Agents as being able to interact with others.

These skills can be negotiation, argumentation, and/or speech act skills. However, analysts

do not consider such skills when designing object-oriented systems.

15

The number of threads in the Agent-oriented systems is different from object-

oriented systems. Each Agent has its own thread; but there is only one thread for the

whole system in the standard object-oriented systems. Only active objects may have a

thread to exhibit some autonomous behaviour just like Agents (Flores-Mendez, 1999).

Some researchers consider an active object as an Agent that does not exhibit flexible

autonomous behaviour (Wooldridge, 2002). Active objects lack agency features such as

the types of interaction as mentioned above. Thus, active objects communicate as objects

and not as Agents.

Some of the computer science community consider Agent-oriented programming as

a specialisation of object-oriented programming (Flores-Mendez, 1999). Object-oriented

programming views systems as consisting of objects communicating with one another to

perform internal computation, while Agent-oriented programming specialises this view to

have Agents with internal structure based on beliefs, capabilities, and choices that

communicate with each other using messages adopted from speech-act theory. Greneserth

(1994) emphasises that the meaning of a message in object-oriented programming can vary

from one object to another, but in Agent-based programming, Agents use a common

language with Agent-independent semantics. Object-oriented programming lies in the

fundamentals of object encapsulation, inheritance, and polymorphism, while Agent-

oriented programming fundamentals concentrate on a goal-directed execution.

Clear understanding of the differences between agents and objects would allow the

extension of object-oriented methods and languages to be used for developing Agent-

oriented systems. Unified Modelling Language (UML) is the de facto standard for

modelling object-oriented systems. UML unifies and formalizes the methods of

developing the object-oriented software life cycle (Bauer, 2002). Object Management

Group, an open consortium of companies, has proposed a new release of UML, UML 2.0,

which has new behaviour components allowing smooth extension for UML to model

Agent-oriented systems.

16

1.3 Intelligent Agents

This research argues that there are differences between Intelligent Agents and

Agents. Intelligent Agents are Agents that have capabilities to learn and to reach

agreement with others. To describe the learning behaviour of an Intelligent Agent,

analysts should clearly define the learning goal, the knowledge type and representation, the

learning strategy, the learning feedback method, the learning location, the learning

schedule and duration, the relation between learning and communication, and when the

new hypothesis executes. The ability to reach agreement would depend on Intelligent

Agents' communication and interaction skills. Analysts should identify whether the

Intelligent Agents use speech acts, negotiation, and /or argumentation skills.

This research focuses on the learning components with emphasis on modelling

Intelligent Agents' learning behaviour. The research explores the ability of the latest

proposed UML 2.0 structural and behavioural component to model the learning behaviour.

It also explores the latest extension of UML 2.0 proposed by the Foundation for Intelligent

Physical Agent (FIPA, 2004) to model structural components of agent-oriented systems if

it is able to model the structural component of the learning behaviour of Intelligent Agents.

1.4 Unified Modelling Language (UML 2.0) Diagrams

Object Management Group' (OMG) has adopted UML to act as the standard

modelling language for object-oriented systems. UML started by unifying three object-

oriented methods developed by Grady Booch, Jim Rumbaugh, and Ivar Jackobson (Fowler,

M., 2004). The UML development process started in 1997; The OMG has adopted UML

I The Object Management Group (OMG) is an open membership, not-profit consortium that

produces and maintains computer industry specifications for interoperable enterprise applications.

17

1.1, then revision 1.2,1.3,1.4,1.5, and currently the latest version UML 2.0. UML

contains graphic diagrams backed by a single meta-model that are collectively capable of

modelling structural and behaviour components of object-oriented systems as shown in

figure I. I. UML is capable of providing sketches, blueprints, and programming language.

UML allows specifying, visualising, and documenting models of software systems,

including their structure and design. UML is language-independent and vendor-

independent; these are the main factors that stimulated OMG to take a leading role in

accelerating the development of object-oriented modelling standards. UML has an

extensible mechanism that allows it to perform business modelling and modelling of other

non-software systems (Object Management Group, 2005).

UML Diagrams

Structure
Diagrams

Behaviour
Diagrams

Class Object Component
Use Case IL Activity

[state
Machine interaction

Composite
Structure

pePtoyment Package

Communication Sequence

'tinting
Interaction H
(Overview

Figure 1.1 UML structure and behaviour diagrams

Structure diagrams depict the static structure components of systems; they show

those elements with no consideration of time. The behaviour diagrams illustrate the

dynamic behaviour of the system components including their methods, collaborations,

activities, and their states history (Object Management Group, 2004). The dynamic

behaviour describes the system components over time. Structure diagrams of UML 2.0

ý#

18

have six types of graphs; class, object, component, composite structure, deployment, and

package diagrams. Behaviour diagrams have four types of graphs: use case, activity, state

machine, and interaction diagrams. Interactions diagram have four types of graphs:

sequence, communication, timing, and interaction overview diagrams. Analysts can use all

or some of these diagrams to model systems.

Class diagrams describe the basic modelling concepts in UML and especially

classes and their relationships. The notation of the class is a rectangle with three

compartments; the first holds the name of the class, the second lists the attributes of the

class, and operations of the class occupy the last compartment. Figure 1.2 illustrates

different notations of classes, according to the level details, and figure 1.3 depicts an

example of a class diagram.

Wfldow

Window

size. Area
Visibility: Boolean

display{j
hide(

Window

+ size: Area = (100,100)
visibiety: Boolean = true

+ defaueSize: Rectangle

- Main: XWindow

display()
hide()

- attachX(xWirt: XWindow)

Figure 1.2 Class notations (Object Management Group, 2004)

19

Enrollment
Student

I enrolled I I.. * in
o Marks Received Seminar

Name Got Average To Date Name
Address Got Final Mark Seminar Number
Phone Number

Jordered FIFO) Fees
Email Address ,.. , on waitinq list 0..
Student Number Add Student
Average Mark Drop Student
Is Eflaitile, To Enroll
Get Seminars Taken Professor

Name instructs
Address 0.. 1 Phone Number
Emall Address

? Some NmIsiars may

not kavw an
Mstmctor?

Figure 13 Class Diagram (Ambler, 2005b)

Object diagrams provide a snapshot of objects in a system at a point of time. The

Object-oriented community often calls an object diagram an instance diagram as it shows

instances of classes. They are useful for exploring examples of "real world" objects and the

relationships between them (Ambler, 2005a). Object diagrams describe the static structure

of a system at a particular time and they test the accuracy of class diagrams. The notation

of the object is like a class, but its name is underlined. Figure 1.4 shows a class diagram for

association between Plane class and Flight class, while figure 1.5 depicts the object

diagram of this class diagram.

Flight

flightNumber : Integer
departxeTime : Date
flightDuration : Minutes
departingAirpcxt: String
arrivingAirport : String

delayFlight (numberOfMinutes : Mirxýroes)
getArrivarrime (): Date

0.. "
assilights

Plane

airPlaneType : String
assignedPlane maximumSpeed : MPH

0.. 1 maximumDistance : Miles
taiad : String

Figure 1.4 Class Diagram (Bell, 2004)

20

AA 4700: Flitfht
risk iedFli rts

flic , ftmber : Integer = 4700
deparbxeTime : Date = 8/412004
flI , . ratbn : A+tirutes 240 as ieWW*

W0337, Plane

AA 832: Flight

fllghftmber : Integer, = 832
deparbs'eTin : Date = 813/2004 assignedFtights
flight Dixation : Mattes = 168

Figure 1.5 Object diagram (Bell, 2004)

I airPlaneType : String = S8O
tafUd : Srtrg =NX0337

assignedPLv e

Component diagrams illustrate the physical software components of the system.

Coetzee (2005) has highlighted that component diagrams depict the relationship between

software components, their dependencies, communication, location, and other conditions.

OMG (2004,170) define components as "a modular part of a system that encapsulates its

contents and whose manifestation is replaceable within its environment. " Figure 1.6 shows

an example of a component diagram.

payment

4

Accouit
a ccount details

Figure 1.6 Example of component diagram (Coetzee, 2005).

21

Composite structure diagrams explore run-time instances of interconnected

instances collaborating over communication links (Ambler, 2005). The composite structure

diagrams assist in describing relationships between elements that collaborate within a

classifier (Coetzee, 2005). It is similar to class diagrams but illustrates parts and

connectors. Figure 1.7 depicts the composite structure of an invoice.

cd Composite stnxturr Example I

Invoice

Header

1. "

Detail

Figure 1.7 Example of Composite structure (Coetzee, 2005)

Deployment diagrams depict the physical layout of a system, indicating which

pieces of software are executing, on which pieces of hardware (Fowler, 2004). The

deployment diagram shows nodes, components, and connections. The nodes are the

physical resources that execute code components. Nodes can be a hardware device or a

software execution environment. They contain artifacts, which are usually physical files.

Figure 1.8 shows a deployment diagram of financial application (Coetzee, 2005).

22

dd 6poymrnt Yo1rI: enrlpN

011x/. Nrwr

wnmw compost

oppacatwn arwr

WMGI l ! NI 11r. nr. fat ýt+rý
.

Ell

{06ürlr

TCºiº TCº9º

Firants
AFpI Ion cI. nt

, s-ý OnrN t. 1.1 ý lt

 sQ1i00M

EIPI11Il
rnelora

Figure 1.8 Example of deployment diagram (Coetzee, 2005)

Package diagrams depict packages of the system and their relationship. "A package

is used to group elements, and provides a namespace for the grouped elements" (OMG,

2004), where elements can be use cases, classes, activities, states, or other packages.

Packages enable analysts to organise model into groups, thus making UML diagrams

easier to represent and to understand. The notation of a package is a large rectangle with a

tab that shows the name of the package. Figure 1.9 shows an example of a package

diagram for bank accounts.

BarAAcrowt

owner
balance : DOLL"

deposit (amount : Dollars)
witd'awal (anm" : LbBaf

CheckingAccount SavI gsAcuu t

tiauff¢i r see : Dollars amua3nierevRam : Percentage

procoucheck (c f>eckTOPr cs: C7wCk
wiörtawal (arrant : Dofa s)

d@M IVAMe*Dtwest ()
!! awai (arrant : Dollars)

Figure 1.9 Package diagram (Bell, 2004)

23

Use case diagrams show the different functions available within a system. The

diagram depicts the interaction between the users of a system and the system itself A Use

case diagram contains use cases, actors, and subject. The system under construction is the

subject, users and other systems that are interacting with the system. Under construction

are the actors. Analysts model the behaviour of the system under construction by one or

more use cases. Actors are always entities outside the system (OMG, 2004). Figure 1.10

shows a use case diagram for ATM system that contains three actors and five use cases.

subsystem
ATMsystem

0_1
Withdrew

Transfer Funds

Deposit
Money 0.. '

Bank
/ 0.. 1 RegistarATM

at Bank 0. '

Administrator
0.. 1

Read Lop

Figure 1.10 Example of Use case and actors for an ATM system (OMG, 2004)

Activity diagrams model behaviour of the system under construction. They are able

to describe procedural logic, business process, and workflow (Fowler, 2004). They

illustrate the flow of control from activity to activity. Activity diagrams show activities that

can be broken down into actions. Activity diagrams can show concurrence behaviour of

activities and actions by using the fork notation. They also use partitions to show who does

what. Activity diagrams are a main UML behaviour diagram that allows designers to know

in detail the sequence behaviour of all the activities and actions of the system under

24

construction. Figure 1.11 shows an example of an activity diagram of process order

activity that utilises multidimensional partition (OMG, 2004).

Figure 1.11 Example of activity diagram of process order that utilizes multi-partitions (OMG, 2004)

State machine diagrams depict the life cycle of objects, sub-systems, and systems

(Coetzee, 2005). They are efficient in describing the behaviour of an object across several

use cases (Fowler, 2004). The diagrams show different types of states, such as activity

states, super states, sub states, or concurrent states. The notation of a state is a rounded

rectangle with optional compartments for events, attributes, and internal activities. Figure

1.12 shows an example of state machine diagrams of a telephone (OMG, 2004). State

flows or transitions connect states with a guard to identify when and where an object may

transfer from one state to another.

25

«attribute* perfonningLocation: Location

activeEntry
0___. "

litt
receiver
/get dial tone

Idle

Active

do/ play dial
Dialing

dal digit{n)jvalid]
lconnect

Connecting

busy
co cted

rime-out
do/ play message

after (15 sec.)
after (15 se

dial digit(n)

dial digrt(n)[invalid

Invalid

da play message

Pinned Busy

canes dot play busy

caller callee hangs up tone

hangs up
answers

/disconnect
TelLinn

! enable speech l_

abort terminate

i aborted "

Figure 1.12 Example of state machine diagram for a telephone (OMG, 2004)

Interaction diagrams have four types; communication, sequence, timing, and

interaction overview diagrams. Sequence diagrams are the best known interaction diagram

used. They show message interchange between lifelines such as objects and actors. The

sequence diagrams are able to model different behaviours such as concurrency,

synchronous, and asynchronous behaviour. Figure 1.13 shows an example of a sequence

diagram that depicts an example of the 'if-then' rule by the alternative frame labelled alt.

Ringing
" p1 '""' I- eAllaa nmtuwan I eiM

26

sd a_cV_bCtnt x. Inout int w): Verdict
. 11, teturn parameter as

Lifeline
a.

op.
o

SI(x) ----,, tnout parameter as
Lifeline

: xx. xc=a util b(31, vr
InteractionUse
with valuereturn

ixt 8J put(zt) iii lýýý argument with output

(xc<sj

put(pass)

Figure 1.13 Example of sequence diagram (ONIG, 2004)

Communication diagrams focus on the interactions among entities, they are similar

to sequence diagrams but they emphasise the data links between the various participants

(Fowler, 2004). Analysts use communication diagrams when the demonstration of the

context is important rather than the sequence of events (Coetzee, 2005). Communication

diagrams show a number of objects along with the relationships between them. Message

arrows are drawn between them to show the flow of messages between the objects. The

sequencing of Messages is given through a sequence-numbering scheme (OMG, 2004).

Figure 1.14 shows an example of a communication diagram for seminar displaying screen

(Ambler, 2005).

27

1: SdName(). seminarName
2: gctDescriptionO

3: getLocationO 1.1: get. Namco: string
A- -OZeiml e-ft(k 1.2: gctN'urnlwq): string

: Seminar 5: gc7StudentListo 2.1: yetDcsaiptiono: string
Details Seminar ou Me

<<U[>>
I

" 5.1: getlnfo

cnroIImcnt
: Enrollment

Actually a series of
7 getter invocations.

5.1.1: goldo

tu n
: Student

5.1.1.1: getFullNameO I

Figure 1.14 Example of communication diagram for displaying seminar screen (Ambler, 2005)

Timing diagrams are the fourth type of interaction diagram with the primary role of

reasoning about time (OMG, 2004). The diagrams provide a visual representation of

entities changing states and interacting over time. Timing diagrams show the behaviour of

one or more entity during a specific duration (Ambler, 2005). There are two notations for

timing diagrams; one is time-based as shown in figure 1.15 and the other is value-based as

shown in figure 1.16 (Coetzee, 2005).

L4 ne Sta! e or oor&an o'-rat . iConettaw ftm* cwrstra nt

ad U erA%U P.. 3'd} I

WaitCard CardOut

Ids
, Code OK

t+3

o, z t event a smvAm
` kA rosa veho" gmnq wer

Figure 1.15 Example of timing diagram (OMG, 2004)

28

The available diagrams of UML 2.0 are able to model structural and behavioural

features of object-oriented systems, this research focuses on exploring the capability of

some of these diagrams to model the structural and behavioural learning characteristics of

Intelligent Agents.

Lifeline State or condition Durationconstraint

Figure 1.16 Example of compact timing diagram (OMG, 2004)

1.5 Overview of the Thesis

This thesis consists of six chapters. Chapter I is an introduction. Chapter 2

discusses the components required to describe the learning behaviour of Intelligent Agents.

It also discusses the effects of each component of the learning capabilities on the

performance of Intelligent Agents and the requirements for these capabilities.

Chapter 3 reviews four research directions that use UML to model Agent-oriented

systems. Two possible approaches are available to allow UML to fit some of the Agent-

oriented software requirements: either to extend UML with new structural elements and

diagrams or to use UML base language to describe Agent-specif ic aspects of the software

systems. The first approach provides new structural elements and diagrams to enhance the

expressive power of the base language while the second approach adheres to the

boundaries of the original language, and uses only those extension mechanisms that UML

admits. The four research directions include examples from both approaches.

29

Chapter 4 explores the capability of UML 2.0 to model structural features of

Intelligent Agents. This chapter utilises FIPA Agent Class Superstructure Meta-model to

model Intelligent Agents structural components. Chapter 4 discusses two scenarios to

model Intelligent Agent structural features by using the FIPA Agent Class Superstructure

Meta-model. It also proposes the leaming compartment that describes the learning features

of Intelligent Agents.

Chapter 5 investigates the capability of the behaviour components of Unified

Modelling Language (UML) version 2.0 to model learning behaviour of Intelligent Agents.

Chapter 5 uses UML 2.0 activity and sequence diagrams to model different scenarios of

learning strategies, namely learning from observation and learning from examples. It also

evaluates if UML 2.0 state machine diagrams can model specific reinforcement learning

algorithms, namely dynamic programming, Monte Carlo, and temporal difference

algorithms. Chapter 6 provides the conclusion of this thesis and future research directions.

Appendices A, B, and C provide user guides of UML 2.0 activity, sequence, and state

machine diagrams to allow researchers in agent-oriented systems to use these diagrams in

modelling the learning components of Intelligent Agents.

The thesis aims to explore the ability of the structural and behavioural components

of the Unified Modelling Language (UML 2.0 / 2004) to model the learning behaviour of

Intelligent Agents. The research shows that the behavioural components of UML 2.0 are

capable of modelling the learning behaviour of Intelligent Agents while structural

components need to be extended to cover the structural requirements of Agents and

Intelligent Agents. This thesis will lead to increasing interest in the intelligence dimension

rather than the agency dimension of Intelligent Agents, and pave the way for object-

oriented methodologies to migrate more easily to paradigms of Intelligent Agent-oriented

systems.

30

Chapter 2: Learning Capabilities of Intelligent Agents

This chapter presents an overview of the required components to describe the

learning behaviour of Intelligent Agents. It also discusses the effects of each component of

the learning capabilities on the performance of Intelligent Agents and the requirement for

these capabilities. Section 2.2 discusses the description of learning behaviour. Section 2.3

outlines learning goal properties and types. Section 2.4 provides an overview of

knowledge types and representations that Intelligent Agents use during the learning

process. It further outlines the forms of background knowledge and their relation with the

input knowledge. Section 2.4 highlights how different types of learning use background

knowledge. Section 2.5 explains the different types of learning strategies that Intelligent

Agents can use during the learning process. Section 2.6 discusses learning feedback

methods, through which Intelligent Agents receive feedback about their performance.

Section 2.7 highlights the importance for identifying the mobility feature of Intelligent

Agents, that is whether Intelligent Agents are static or mobile. Section 2.8 discusses the

identification of scheduling for the learning process. Section 2.9 outlines the relation

between learning and communication that is whether the Intelligent Agents learn to

communicate or communicate to learn.

2.1 Introduction

Computer science community uses the phrase "Intelligent Agents" or "Agents" for

the same entities while such usage indicates different meanings. What distinguishes

Intelligent Agents from Agents is their ability to learn and to reach agreement. Sein and

Weiss (1999) define learning as "the acquisition of new knowledge, motor, and cognitive

skills and the incorporation of the acquired knowledge and skills in future system activities

provided that this acquisition and incorporation is conducted by the system itself and leads

31

to improvement in the performance. " In addition, Intelligent Agents should exhibit

negotiation skills and/or argumentation skills, as they are vital to achieve agreement with

other Agents or users (Wooldridge, 2002). The lack of ability to learn or to reach

agreement would reduce the efficiency of Intelligent Agents especially in dynamic multi-

Agent environments. Analysts should provide unambiguous description about learning

goals, leaming strategy, appropriate knowledge the Intelligent Agents need for leaming,

knowledge representation used by the Intelligent Agents, learning location, learning

schedule, and when the Intelligent Agents use the new hypothesis.

2.2 Learning

Learning is a key aspect of intelligence; systems that are capable of learning

deserve to be classified as intelligent systems (Sein and Weiss, 1999). Schank and Kass

(2000) claim that a machine is intelligent if it has the capability to explain, to learn, and to

be creative. Michalski (1993) introduces inferential theory of learning that identifies

leaming as a process that carries out inference from the infori-nation provided, the learner's

background knowledge, and subsequently memorizing useful results. As Michalski (1993)

puts it: "Learning = Inferencing + Memorizing. " Michalski (1993) highlights three

components that describe a learning task: types of information acquired, background

knowledge relevant to the learning goal, and aim of learning.

Brenner et al. (1998) highlight the need to identify six aspects to model learning

capabilities of Reactive Agents 2 that are as follows:

* Identify the mechanism that Intelligent Agents use to select the action to

perform;

2 Reactive Agents: Agents that "possess no explicit internal knowledge representation and react to

specific, standard events, by using sensors to monitor their environment and to look for specific situations

that agree with their internal recognition patterns" (Brenner, 1998,40).

32

" Identify which principle Intelligent Agents use for the actual learning

activity;

" Identify the method that Intelligent Agents use to decide which information

it saves and which it destroys;

" Identify previous situations in which the Intelligent Agents gain

knowledge;

" Identify when the Intelligent Agents attempt to learn, and

" Define how Intelligent Agents evaluate the results of actions.

The minimum required features that an analyst should identify to model the

learning behaviour of Intelligent Agents are learning goals, type of knowledge acquired,

knowledge representations used, type of learning strategy, learning feedback mechanism,

learning location, learning schedule, learning triggers, and when the new hypothesis

should take effect.

Learning is a central feature of intelligence; it involves inference and memorizing

capability. Agents that exhibit capabilities to learn and to reach agreement with other

Agents or users deserve to be called Intelligent Agent. To model learning behaviour of

Intelligent Agents analysts should identify features relevant to the learning process, such as

learning goals, the use of background knowledge, and the type of knowledge the Intelligent

Agent uses during the learning process.

2.3 Learning Goal

The learning goal of Intelligent Agents is the first type of information that analysts

identify to model their learning behaviour. Michalski (1994) explains that the Inferential

Theory of Learning "assumes that learning is a goal-guided process of improving the

learnees knowledge by exploring the learnees experience and prior knowledge. " The

learning goal has two types: either to increase the amount of learnees knowledge (synthetic

33

learning) or to increase the effectiveness of the knowledge already possessed (analytic

learning). The Intelligent Agents may use one or both types through the learning process

(Michalski, 1993). Synthetic learning aims to acquire new knowledge that is not available

within the current hypothesis while analytic learning transfers knowledge, already

available in the current hypothesis, into the form that is most desirable and/or effective for

achieving the learning goal. Synthetic learning employs induction and/or analogy as the

primary inference while analytic learning employs deduction as the primary inference.

The learning goal can be either a domain-independent or a domain-dependent goal.

Domain-independent learning goal describes a certain generic type of learning activity,

independent of the topic of discourse while domain-dependent goal acquires specific

knowledge (Michalski, 1993). Different domains can use Intelligent Agents with domain-

independent learning goal while specific domains can only use domain-dependent

Intelligent Agents.

In multi-Agent systems, analysts should identify if a learning goal requires the

improvement of a single Intelligent Agent or a group of Intelligent Agents. In addition,

they should determine the compatibility of learning goals among Intelligent Agents

working in multi-Agent environments. Learning goals of Intelligent Agents can

complement or conflict with each other (Sein and Weiss, 1999). Synchronisation of

learning is an important issue in multi-Agent environments when the learning goals of

Intelligent Agents complement each other. Analysts should clearly identify the sequence

of learning among the different Intelligent Agents. On the other hand, with conflict-based

learning Intelligent Agents, analysts should identify as much as possible what constraints

affect the learning requirements of Intelligent Agents and what scenarios occur to

overcome such constraints are.

Commitment strategy is the mechanism that Agents use to determine when and

how to drop their intensions (Wooldridge, 2000). Commitment strategy of Intelligent

Agents affects their behaviour to achieve the learning goal. There are three types of

34

commitment strategies: blind, single-minded, and open-minded commitment strategies.

Intelligent Agents which use blind commitment strategy will continue to maintain an

intention to achieve their learning goal until they believe that they have achieved the

learning goal. Intelligent Agents which use single-minded commitment strategies

terminate trials to achieve their learning goal either when they believe that they achieved

the learning goal or when it is no longer possible to achieve the learning goal. However,

Intelligent Agents using open-minded commitment strategy will continue to achieve their

learning goal as long as they believe that their learning goal has not changed.

Intelligent Agents that use blind commitment strategy consume their efforts without

realising that they cannot achieve their learning goal. Static environment is the most

appropriate for using such strategy. Analysts can produce predicates for all or most of the

states that will face Intelligent Agents working in static environment. For single-minded

commitment strategy, analysts can choose such type for Intelligent Agents working in

dynamic environment such as the Internet. Intelligent Agents stop the process of learning

when they believe that they have accomplished the learning goal, or it is no longer possible

for them to achieve the learning goal. Intelligent Agents with open-minded commitment

strategy continue to try to achieve that learning goal as long as they believe that the

learning goal has not changed. When Intelligent Agents realise that the learning goal has

changed, they start to achieve the new learning goal. Analysts may identify constraints for

Intelligent Agents using open-minded commitment strategy such as the duration after

which the learning goal is no longer relevant; so, the Intelligent Agent can reconsider its

learning goal.

The identification of the learning goal of intelligent Agents is a key issue to model

their learning behaviour. Learning can be either synthetic or analytic learning. The

learning goal can be domain-dependent used by specific domains or domain-independent

that could be utilised by any domain area. In multi-Agent environments, analysts need to

identify if the leaning goals of different Agents complement each other or conflict with

35

each other. Commitment strategy of Intelligent Agents has a direct impact on their

performance to achieve the required learning goal.

2.4 Knowledge Types and Representations of the Learning Process

Knowledge is "facts or conditions of knowing something with familiarity gained

through experience or associations" (Bigus, 2001). Knowledge can be simple facts,

complex relationships, mathematical formulas, rules for natural language syntax,

associations between related concepts, and inheritance hierarchies between classes of

objects (Bigus, 2001). Knowledge is a key issue that should be clearly analysed and

described. Analysts should define four issues to describe knowledge essential for the

learning process: knowledge type, knowledge representation, the level of using background

knowledge, and relation between input knowledge and background knowledge.

2.4.1 Knowledge Types

According to Bigus (2001), there are three types of Knowledge: procedural,

relational, and hierarchal. Procedural knowledge is a popular technique for representing

knowledge in computers. Knowledge analysts encode facts and definitions of the sequence

of operation which use and manipulate such facts. Relational knowledge defines a record

of information about an item such as relational databases. Each record contains a set of

attributes and values for different items. Data definition language defines the format of

tables, parameters, and relationships while data manipulation language manipulates the

values of the parameters. Structured query language is the most popular language for

manipulating relational data. Hierarchal knowledge type depends on the ability to inherit

knowledge that focuses on relationships and shared attributes between classes of objects.

36

2.4.2 Knowledize Representations

Knowledge can have different representations, and Intelligent Agents should be

capable of manipulating and reasoning such different types. Knowledge representations

can be parameters in algebraic expressions, decision trees, formal grammars, production

rules, fonnal logic-based expressions, predicate logic, graphs and networks, frames and

schemas, computer programs, taxonomies, Bayesian networks, or multiple representations

(Carbonell et al., 1983). Knowledge representation is a very complex issue; each of the

above-mentioned types can have different variants. Analysts should be capable of

understanding the properties of each representation and its variants.

Parameters in algebraic expressions representation obtain the desired performance

by adjusting numerical parameters or coefficients in algebraic expression of a fixed

function. Decision trees discriminate among classes and objects. The nodes in a decision

tree correspond with selected object attributes while the edges correspond with a

predetermined alternative value for these attributes. Leaves of the tree correspond with

sets of objects with identical classification. In learning to recognise a particular language,

the sequence of expression in the language induces formal grammars. These grammars

represent regular expressions, finite-state automata, context-free grammar rules, or

transformation rules. Production rules representation is a condition-pair (C => A) where

C is a set of conditions and A is a sequence of actions. When production rule satisfies all

conditions, a sequence of actions will be executed. In formal logic-based expressions

representation, the components can be propositions, arbitrary predicates, finite-value

variables, statements restricting ranges of variables, or embedded logical expressions

(Carbonell et al., 1983).

Formal logic is a language with its own syntax and corresponding semantics. The

language syntax defines how to make sentences, and the corresponding semantics

describes the meaning of the sentences (Bigus, 2001). Predicate logic allows predicating

on objects to define attributes and relations between objects. Predicate logic introduces the

37

concepts of quantifiers that allow refereeing a set of objects. Two types of quantifiers

exist: existential and universal. Existential qualifiers define that some objects of certain

types have specified attributes, while universal quantifiers define that all objects of this

type have these attributes (Bigus, 2001). Intelligent Agent use resolution and unification

techniques to process predicate statements to conf inn whether a particular statement is true

or not, depending on other known facts. Resolution is an algorithm for proving that facts

are true or false by virtue of contradiction, while unification is a technique for taking two

sentences in predicate logic, and finding a substitution that makes them look the same.

Carbonell et al. (1983) consider graphs and networks representations more suitable and

efficient than logical expressions in many domains. Graph-matching and graph-

transformation schemes are being used by some learning techniques to compare and to

index knowledge efficiently. Frames and schemas representations provide larger

expressions or production rules. Frames and schemas representations collect labelled

entities ("slots"); each slot plays a certain prescribed role in the representations. Figure 2.1

shows example of describing Hotel beds by using graphs and frames representations.

hotel bed use steeping

size king

part
_

mattress
ý firmness

part frame firm

hotel bed

superclass: bed

use: weeping

size: king

parr (mattress
frame)

mattress

superclass: cushion
firmness: firm

Figure 2.1 Conceptual graph and frame descriptions of a hotel bed (Luger and Stubblefield, 1993)

38

Computer programs and procedural encoding representation are more concerned

about acquiring an ability to carry out a specific process efficiently rather than to reason

about the internal structure of the process. Procedural encodings include human motor

skills, instruction sequence to robot manipulators, and other "compiled" human or machine

skills. Such representation type is different from logical description, networks, or frames

representations in terms of the detailed internal structure of the resultant procedural

encodings. Procedural encodings do not need to be comprehensive to a human or to an

automated reasoning system. The external behaviour of the acquired procedural skills

becomes directly available to the reasoning system. Learning from observation may result

in global structuring of domain objects into a hierarchy or taxonomy representation.

Clustering object descriptions into newly proposed categories and framing hierarchical

classifications require the system to formulate relevant criteria for classification.

Bayesian network is data that represents dependence between variables. Each

variable has a corresponding node with a conditional probability table defining the

relationships between its parent nodes (Bigus, 2001). The primary use of Bayesian

networks is to utilize probability theory to reason with uncertainty. Some knowledge

acquisition systems may use multiple representations for newly acquired knowledge such

as discovery and theory-formation systems. Discovery and theory-formation acquire

concepts, operations on those concepts, and heuristic rules for a new domain. Such

systems should select appropriate combinations of representation schemes applicable to the

different forms of knowledge acquired.

Analysts should identify the knowledge representation that Intelligent Agents will

use during learning. Knowledge representation types highlight major aspects such as the

space of storing the newly acquired knowledge, the type of inference, the source of

knowledge from which the Intelligent Agents will receive their knowledge such as users,

Agents, or databases as well as accessibility to the source of knowledge.

39

2.4.3 Background Knowledge

Russell and Norvig (1995) emphasise that the use of prior knowledge in learning

improves Intelligent Agents learning ability. They highlight that background knowledge

assists in developing consistent hypotheses. Analysts should identify the level of using

background knowledge during the leaming process (Michalski, 1993). The level of using

background knowledge can range from the need to use intensive background knowledge to

the use of none of the available background knowledge. The form of background

knowledge can be declarative, procedural, or both. The declarative form is a collection of

statements representing conceptual knowledge while the procedural form is a sequence of

instructions for performing some skills (Michalski, 1993).

Empirical learning methods rely on relatively small amounts of background

knowledge while constructive learning methods are knowledge intensive learning methods

that use background knowledge and / or search techniques to create new attribute terms or

predicates that are more relevant to the leaming task (Michalski, 1993). Constructive

leaming techniques use the new attributes or predicate to drive characterization of the input

where such characterisations can be generalised, explained or both.

2.4.4 Relation between Backgound Knowledge and Input Knowledge

Michalski (1993) introduces five relationships between the input knowledge and

background knowledge as follows:

* The first relationship exists when the input knowledge is a new knowledge that has

no relationship with the current background knowledge.

9 The second relationship exists when the background knowledge accounts for the

input knowledge or is a special case of it.

9 The third relationship exists when Intelligent Agents identify that part of the

background knowledge contradicts with part or all of the input knowledge.

40

" The fourth relationship exists when the input knowledge does not match any

background fact or rule exactly or when it is not related to any part of the

background knowledge; however, there is a similarity between the background fact

and some parts of the background knowledge at some level of abstraction.

" The fifth and last relationship exists when some parts of the background knowledge

match exactly the input knowledge.

The Intelligent Agents act according to the identified relationship between the input

knowledge and the background knowledge. For the first case where the input is new

information, Intelligent Agents try to identify parts of the background knowledge that are

sibling of the input under the same node in some hierarchy. If the Intelligent Agents

succeed in such process, the Intelligent Agents generalise the related knowledge

components and evaluate the input facts in terms of their importance to the learning goal.

The Intelligent Agents store the input facts that pass threshold criteria. If the Intelligent

Agents fail in the identification process, they store the input facts and pass control to case 4

where the input invokes an analogy to part of the background knowledge. This case

involves some forms of synthetic learning (Michalski, 1994).

The second case occurs when the background knowledge accounts for the input or

a special case of the input. Intelligent Agents create a deviational explanatory structure

that links the input with the invoked part of background knowledge. Based on the learning

task, Intelligent Agents use this structure to create new knowledge that is more adequate

for future handling of such cases. Intelligent Agents store the new knowledge for future

use if it passes an "importance criterion. " The second case handles situations requiring

some forms of analytic learning (Michalski, 1994). The third case exists when the input

knowledge contradicts the current background knowledge. Intelligent Agents identify the

part of the background knowledge that contradicts the input knowledge and then attempts

to classify this part in terms of specialisation. Intelligent Agents make no changes to this

part of the background knowledge if the specialisation involves too much restructuring, or

41

the confidence in the input is low. This requires Intelligent Agents to set "input confidence

parameter. " The value of such parameter provides information about the noise in the input

knowledge that ranges from "no noise" to "noisy" information. The Intelligent Agents

restructure some parts of the background knowledge to accommodate the input, and it

stores the input if it passes "importance criterion. " This case requires some form of

synthetic leaming (Michalski, 1994).

The fourth case exists when the input neither matches any background fact or rule

exactly, or when it is not related to any part of the background knowledge in the sense of

case 1; however, there is a similarity between the fact and some part of background

knowledge at some level of abstraction. In this case, Intelligent Agents conduct a

matching process at this level of abstraction by using generalised attributes or relations

(Michalski, 1994). If the new facts pass "importance criterion, " Intelligent Agents save the

input with an indication of a similarity to a background knowledge component. This case

uses a combination of synthetic and analytic leaming. The last relation between the input

and background knowledge exists when the input matches exactly some part of the

background knowledge. Intelligent Agents can update a measure of confidence and a

frequency parameter associated with this part. In a dynamic environment, such as the

internet, it is difficult for analysts to predict which case will occur. Analysts should

provide a description for the actions of Intelligent Agents in each of the five cases. In

addition, Intelligent Agents should be able to update procedures according to results

obtained from executing them.

Knowledge is a key aspect to describe the learning features of Intelligent Agents.

Analysts should identify type(s) of knowledge used during the learning process, knowledge

representation, the level of using background knowledge, and the relation between input

knowledge and background knowledge. Knowledge can be procedural, relational, and

hierarchical. Intelligent Agents can manipulate single or multiple representations of

knowledge, required during the learning process. Intelligent Agents can also use

42

background knowledge during the learning process, or depend only on the new acquired

knowledge. Relations between acquired knowledge and background knowledge can

provide designers with scenarios for Intelligent Agents' behaviour.

2.5 Types of Learning Strategies

Intelligent Agent uses either mono-strategy learning or act like human beings in

using multi-strategy learning. The type of learning strategy used by Intelligent Agents is a

key aspect for designing their learning capabilities. Mono-strategy learning Intelligent

Agents are intrinsically limited to solving only certain classes of learning problems,

defined by the type of input information they can learn from, the type of operations they

are able to perform on the given knowledge, and the type of output knowledge they can

produce (Michalski, 1993). Multi-strategy learning Intelligent Agents are more competent

and have a greater ability to solve diverse learning problems than mono-strategy Intelligent

Agents; but they are more complex. The choice of creating a mono-strategy or a multi-

strategy Intelligent Agents is crucial. Analysts should investigate different aspects before

deciding which strategy to adopt, such as the type of input, the role of the background

knowledge in learning, the mobility of the Intelligent Agent, and the available processing

power of the host computer. Sein and Weiss (1999) highlight five main learning strategies

that Intelligent Agents can use: rote learning, learning from instruction, learning from

examples, learning by observation, and learning by analogy.

2.5.1 Rote Learning

Rote learning is a direct implantation of knowledge and skill without further

inference or transformation from the leamer (Sein and Weiss, 1999). Rote learning

corresponds to storing each observed training example in memory. Intelligent Agents

classify subsequent instances by looking them up in memory. If Intelligent Agents finds

43

instance in memory, the memory returns the stored classification; otherwise, the system

refuses to classify the new instances (Mitchell, 1997). Carbonell et al. (1983) emphasise

two main variants of rote leaming: the first variant is learning by being programmed,

constructed, or modified by an external entity such as the usual style of computer

programming. The second variant is learning by memorising given facts and data with no

inference drawn from the incoming infori-nation. Analysts should consider three main

issues when designing rote learning Intelligent Agents: Memory-searching mechanism,

indexing used to retrieve the memorised data, and the capacity to memorise the acquired

knowledge (Michalski et al., 1986).

2.5.2 Leaming from Instructions

Learning from instruction transforms new information, like an instruction or

advice, which is not directly executable by the learner, into an internal representation, and

integrate new information with prior knowledge and skill. The learner acquires the new

knowledge from a teacher or other organised source requiring that the learner transforms

the knowledge from the input language to an internally usable representation. The

Intelligent Agent integrates new information with prior knowledge for effective use

(Carbonell et al., 1983). Learning from instructions can be unidirectional or interactive.

Unidirectional learning occurs when a tutor provides Intelligent Agents with knowledge in

a sequential series of instructions. in interactive learning, the tutor provides Intelligent

Agents with knowledge when Intelligent Agents lack the knowledge or request instructions

(Lemon et al., 2004).

2.5.3 Leaminjz from Examples

Leaming from examples exists when there is extraction and refinement of

knowledge and skills like a general concept and a standardised pattern of motion either

44

from positive and negative examples or from practical experience (Sein and Weiss, 1999).

Michalski et al. (1986) highlight that the main task of learning from examples is to

determine a general description, explain all positive examples, and exclude all negative

examples of the target concept. Michalski (1993) identifies two types of learning from

examples: instance-to-class and part-to-whole. Instance-to-class type examples are

independent entities that represent a given class or a set of concepts. The goal of instance-

to-class generalization is to induce a general description of the class. The part-to-whole

examples are independent components that have to be investigated together to generate a

concept description. The goal of part-to-whole is to hypothesize a description of a whole

object by giving selected parts.

Carbonell et al. (1983) identify two main categories to classify learning from

examples: classification according to the type of examples available to the learner and rate

of supplying the examples. The type of examples can be either positive examples only or

positive and negative examples. The rate of supplying the examples can be incremental

learning rate or a non-incremental learning one. For sources of knowledge that provide

positive examples, Intelligent Agents acquire instances of a concept but they do not acquire

information for preventing overgeneralization of the inferred concept. Intelligent Agents

can avoid overgeneralisations by considering only the minimal generalisation necessary, or

by relying upon prior domain knowledge to constrain the overgeneralized concept to be

inferred. Intelligent Agents that use positive and negative examples for learning act in two

parallel ways: they use positive examples to force generalisation and negative examples to

prevent overgeneralisations (Carbonell et al., 1983). Non-incremental learning is like

training salesmen new skills in a private workshop and they go back to work after finishing

the workshop. On the other hand, incremental learning allows Intelligent Agents to form

one or more hypotheses of the concept, which are consistent with the available data, and

subsequently refines the hypotheses after considering additional examples. In this type of

45

learning Intelligent Agents involve in on-the-job training; they acquire the new skills while

they are working.

Analysts should define when the new hypothesis should be executable. In addition,

they should identify if the incremental learning will be concurrent with work or sequential.

Unlike sequential learning, Concurrent incremental learning requires the Intelligent Agents

to work on a multi-processor host computer.

Learning from examples is a synthetic learning type that aims to create new

knowledge and use induction as the primary inference (Michalski, 1993). Learning from

examples is not adequate for Intelligent Agents that are working in dynamic environment

such as the internet; it will be very difficult to provide examples for all states that might

happen in the dynamic environment.

2.5.4 Leaming from Observation and Discovery

In this type of leaming, Intelligent Agents gather new knowledge and skills by

conducting observations, experimentations, as well as generating and testing hypotheses,

or theories based on observational and experimental results (Sein and Weiss, 1999).

Michalski (1993) highlights that leaming from observation occurs when the input to the

synthetic leaming method includes facts that Intelligent Agents use to describe or to

organise into knowledge structure without the benefit of advice from a source of

knowledge. Neither Intelligent Agents receives a set of instances of particular concepts

nor are they given access to Oracle that can classify internally generated instances as

positive or negative instances of any given concept. Carbonell et al. (1983) classify

leaming from observation according to its degree of interaction with the environment; the

two extremes are passive observation and active experimentation. Passive-observer

Intelligent Agents classify taxonomies observations of multiple aspects of the environment

while active-experimentation Intelligent Agents act on stimulating the environment to

46

observe the results of its stimulation. Experimentation may be random, dynamically

focused according to general criteria of importance, or strongly guided by theoretical

constraints. Such interaction with the environment would confirm or disconfirm the

Intelligent Agents' hypothesis. Learning from observation and discovery includes different

types such as conceptual clustering, constructing classifications, fitting equations to data,

discovering laws explaining a set of observations, and formulating theories accounting for

the behaviour of a system (Michalski et al., 1986).

2.5.5 Leaming by Analogy

Intelligent Agents that learn by analogy perform solution-preserving transformation

of knowledge and skills from a solved problem to a similar but unsolved problem (Sein

and Weiss, 1999). Carbonell et a]. (1983) identify learning by analogy as "acquiring new

facts or skills by transforming and augmenting existing knowledge that bears strong

similarity to a desired new concept or skill into a form effectively useful in the new

situation. " Carbonell (1986) classifies learning by analogy as transformation analogy and

derivational analogy. Transformational analogy exists when Intelligent Agents find a

particular solution to work on a problem similar to the one at hand which they might use

with minor modification. Derivational analogy formulates plans and solves problems

where a considerable amount of intermediate information is available to the resultant plan

or specific solution. The main difference between transformation and derivational analogy

lies in the learnees background knowledge. In transformation analogy a person receives

C++ code of a program, and transforms it to C# while in the derivational analogy the same

person is the one who programmes the C++ version. The more experience Intelligent

Agents have, the better understanding for conducting learning by analogy they develop.

Learning by analogy is a combination of deductive and inductive learning.

Learning from examples and learning by observation is an example of inductive learning.

47

Deduction learning includes knowledge reformulation, knowledge compilation, caching,

chunking, equivalence preserving operations and another truth-preserving transformation

(Michalski et al., 1986). Learning by analogy is a multi-strategy method which increases

the load of inference conduct by Intelligent Agents. Human leaming is intrinsically

multiple learning strategies where people can learn from a great variety of inputs, engage

any kind of prior knowledge relevant to the problem, and perform all types of inference,

using a multitude of knowledge representation. It is a challenge to develop Intelligent

Agents that can mimic the leaming capabilities of their users (Michalski, 1994).

Leaming strategy is the essence of describing the learning mechanism that

Intelligent Agents use. Intelligent Agents can have mono-strategy or multiple strategies

like humans. Intelligent Agents that use multiple learning strategies are more complex

than those who use mono-leaming strategies. Learning strategies can be rote learning,

learning from observations, learning from instructions, learning from examples, learning

from observations, and learning from analogy. Each type of these strategies employs

inference as inductive, deductive or analogy. Designers should choose the right strategies

for their Intelligent Agents according to their learning goals, sources of knowledge, and

working environments features.

2.6 Learning Feedback Methods

The feedback that Intelligent Agents receive on their performance, allow Intelligent

Agents to update their hypothesis. Analysts should identify a feedback method to

Intelligent Agents' performance and identify when Intelligent Agents receive the feedback.

Sein and Weiss (1999) classify learning feedback methods as supervised, unsupervised,

and reinforcement learning. The source of knowledge, which provides feedback about the

performance of the Intelligent Agent, can be a user, an environment, or an Agent. In

48

addition, Intelligent Agents can receive the feedback immediately or after a period of

delay.

2.6.1 Supervised Leaming

Michalski (1993) classifies learning from examples and instructions as supervised

learning where the feedback specifies the desired activity of the Intelligent Agents. For

dynamic environment, it will be an impractical task for the source of knowledge to provide

all the desired behaviour of an Intelligent Agent for all situations. Analysts should identify

the method of communication between the Intelligent Agent and the source of knowledge

that is providing the feedback. If the source is a user, communication can be through user-

friendly interface. If the environment is the critic then the Intelligent Agent should be able

to access the environment whereas if the source is another Agent, the Intelligent Agent

should be able to communicate with other Agents by using a specific Agent

communication language.

2.6.2 Unsupervised Leaminjz

Michalski (1993) classifies Leaming from observation as unsupervised leaming

where there is no source of knowledge to criticise the performance of the Intelligent Agent.

The Intelligent Agent receives no explicit feedback and the objective is to find useful and

desired activities based on trial-and-error and self-organisation (Send and Weiss, 1999).

Unlike supervised learning, the environment or the Agent that is providing feedback is

acting as observer.

2.6.3 Reinforcement Learning

Sutton and Barto(1998) highlight that Intelligent Agents use reinforcement learning

to learn what to do and how to map situations to actions by maximising a numerical reward
49

signal. Intelligent Agents do not receive which actions to take; instead, they should

discover which actions yield the most reward by trying them. Reinforcement learning is

adequate for learning from interaction and dynamic environment. Intelligent Agents

receive neither the correct action nor the source of knowledge provides which rewards are

given which actions (Russell and Norvig, 1995). They only receive some evaluation of

their actions

Reinforcement learning has four components: policy, reward function, value

function, and environment model (Sutton and Barto, 1998). The policy defines the

Intelligent Agent's behaviour at a given time, and maps perceived states of the environment

to actions. A reward function defines the goal in a reinforcement-learning problem. It

maps each perceived state of the environment to a single number, that is a reward,

indicating the intrinsic desirability of that state. The Agent's sole objective is to maximise

the reward it receives on the long run. The value function specifies what is good on the

long run. The value of a state is the total amount of rewards an Intelligent Agent can

expect to accumulate over the future, starting from that state. The model of the

environment mimics the behaviour of the environment. The working environment has a

direct impact on the required skills for Intelligent Agent that uses reinforcement learning

feedback method. The environment can be accessible or inaccessible (Russell and Norvig,

1995). Intelligent Agents working in an accessible environment can preset different states

of the environment while Intelligent Agents working in an inaccessible environment need

to maintain some internal state to try to keep track of the environment. Background

knowledge about the working environment is an important issue for Intelligent Agents to

perform efficiently. If Intelligent Agents do not have knowledge about the working

environment model, they need to learn the model of the environment as well as the utility

function-state histories.

Analysts should identify when Intelligent Agents receive rewards; Intelligent

Agents can receive rewards at the end of accomplishing the task, at a terminal state, or at

50

any state. While the Intelligent Agents that receive their reward at the end of the task or at

terminal state executing their tasks, they do not need to monitor their source of knowledge

concurrently. Rewards can be component of the actual utility that Agents are trying to

maximise, or they can be hints as to the actual utility (Russell and Norvig, 1995).

Intelligent Agents that utilise a reinforcement learning feedback method can be

passive or active learners (Russell and Norvig, 1995). A passive learner simply watches

the world going, and tries to learn the utility in various states while an active learner should

act using the learned information, and can use its problem generator to suggest exploration

of unknown portions of the environment. Passive-learning Intelligent Agents have a fixed

policy, and they do not need to worry about which actions to take. Active Intelligent

Agents should consider what actions to take, what their outcome may be and how they will

affect the rewards received. Intelligent Agents have to exploit what it already knows in

order to obtain rewards; but it also has to explore in order to make a better selection of

actions. The dilemma is whether Intelligent Agents pursue exploration or exploitation

exclusively without deteriorating the task.

Intelligent Agents should take a trade-off between their immediate good as

reflected in their current utility estimates and their long-term well-being. An Intelligent

Agent that simply chooses to maximise its rewards on the current sequence can easily be

stuck in a nut. At the other end of the extreme, continually acting to improve its

knowledge is useless if it never practices the knowledge (Russell and Norvig, 1995).

Reinforcement learning is an appropriate learning feedback method for Intelligent Agents

working in dynamic environment. One of the main features of Intelligent Agents is their

capabilities to work in a dynamic environment as the Internet.

Learning feedback methods has a direct impact on the performance of Intelligent

Agents. The methods can be supervised, unsupervised or based on reinforcement learning

feedback method. In supervised learning methods Intelligent Agents receive the correct

answer from a source of knowledge about their performance while in unsupervised

51

learning method no source of knowledge is available to guide the learning behaviour. For

reinforcement learning the source of knowledge provides some feedback about the

performance of Intelligent Agents without providing what is the right answer. Designers

should identify which method will be available to Intelligent Agents in order to develop

their learning features.

2.7 Learning Location

Intelligent Agents can be static or mobile. Static Intelligent Agents work in a

single host while mobile Intelligent Agents travel between different hosts. Analysts should

identify at which host Intelligent Agents will conduct learning. Mobile Intelligent Agents

should be able to access the host where they will conduct leaming. Static Intelligent

Agents will learn at the same place where they live.

2.8 Learning Schedule and Duration

Analysts should identify the duration and schedule of Intelligent Agents learning

activities. Failure to do so might allow the Intelligent Agents to start learning at the wrong

time where needed resources may not be available to conduct the learning activity.

Intelligent Agents have two methods of executing leaming: concurrently or sequentially

with the execution of their tasks. In concurrent learning, Intelligent Agents will need a

multi-processor host to conduct learning. On the other hand, in sequential learning

Intelligent Agents can conduct learning on a single processor host. In addition, analysts

should identify learning schedule and constraints. The learning schedule will identify

when learning will start, end, and trigger. Learning triggers can be categorised as schedule

triggers, hardware triggers, or software triggers. In schedule triggers, learning initiates at a

specific time or date. For hardware triggers, learning starts when a hardware resource is

available such as specific processor, host etc... For software triggers, learning initiates

52

when a specific variable exceeds the trigger threshold such as a negative value of

reinforcement learning reward function. Analysts should identify learning constraints such

as the availability of specific resource, internet access or the learning location where the

Intelligent Agents execute learning only at a specific host.

2.9 Executing the New Hypothesis

Another important issue is the timing for the new hypothesis to execute. The new

hypothesis can execute immediately or after specific conditions. New hypothesis can

immediately execute when such immediate execution does not have a hazardous effect on

the performance of the Intelligent Agents or the environment. For non-immediate

hypothesis, analysts should clearly define the conditions when the new hypothesis should

take place.

2.10 Learning and Communication

There are two types of relationships between learning and communication: learning

to communicate and communicating to learn (Sein and Weiss, 1999). For the first type,

leaming is a method for reducing the load of communication among individual Agents

while in the second type communication is a method for exchanging information that

allows Agents to continue or refine their learning activities. Learning can be low-level

communication which is relatively a simple-query-and-answer interaction for exchanging

missing pieces of information that result in shared information. On the other hand,

learning can be high-level communication which is a complex communicative interaction.

Negotiation and mutual explanation is a complex communicative interaction with

the purpose of combining and synthesizing pieces of information that result in shared

understanding or agreement. The ability to reach agreement and the ability to learn are the

main features of Intelligent Agents that allow such Agent to be intelligent. Intelligent

53

Agents with a limited low ability to communicate with users and Intelligent Agents will

have a limited ability to benefit from the knowledge and experiences of others. This might

allow Intelligent Agents to make the same mistakes that other Agents do.

2.11 Conclusion

Intelligent Agent is an Agent that can learn and reach agreement with other Agents

or users. To describe learning behaviour of an Intelligent Agent, analysts should clearly

define the learning goal, the knowledge type and representation, the learning strategy, the

learning feedback method, the learning location, the learning schedule and duration, the

relation between learning and communication, and when the new hypothesis executes.

The identification of the learning goals of Intelligent Agents is a key issue to model

their learning behaviour. Leaming can be either synthetic or analytic. The learning goal

can be domain-dependent used by specific domains or domain-independent utilised by any

domain area. In multi-Agent environment analysts need to identify if the leaning goals of

different Agents complement or conflict with each other. Commitment strategy of

Intelligent Agents has a direct impact on their performance to achieve the required learning

goal.

Knowledge is a key aspect to describe the learning features of Intelligent Agents.

Analysts should identify type(s) of knowledge used during the learning process, knowledge

representation, the level of using background knowledge, and the relation between input

knowledge and background knowledge. Knowledge can be procedural, relational, and

hierarchical. Intelligent Agents can manipulate single or multiple representations of

knowledge required during the learning process. In addition, Intelligent Agents can use

background knowledge during the learning process or depend only on the new acquired

knowledge. Relations between acquired knowledge and background knowledge can

provide designers with scenarios for Intelligent Agents behaviour.

54

Learning feedback methods have a direct impact on the performance of Intelligent

Agents. The methods can be supervised, unsupervised or based on reinforcement learning

feedback. Intelligent Agents receive the correct answer from a source of knowledge about

their performance while no source of knowledge is available for unsupervised method to

guide the learning behaviour. For reinforcement learning, the source of knowledge

provides some feedback about the performance of Intelligent Agents without providing

what the right answer is. Designers should identify which method will be available to

Intelligent Agents as to develop their learning features.

Analysts should identify where and when Intelligent Agents will conduct learning

to allow designers to provide learning requirements at the learning location and time. Such

identification is crucial for mobile Intelligent Agents that work in a multi-Agent

environment. Analysts should also identify whether Intelligent Agents use learning to

reduce the load of communication among individual Agents or they communicate to

exchange information to refine learning.

The clear identification of the learning features described above has a crucial

impact on the performance of Intelligent Agents. Failure to do so would allow Intelligent

Agents to consume available resources and create difficult working environment for other

Agents to perform efficiently.

55

Chapter 3: Research Directions of Extending UML to Model Agent-Oriented Systems

This chapter reviews four research directions that use UML to model Agent-

oriented systems. Section 3.2 describes the first direction, Agent Unified Modelling

Language (AUML) that extends UML base language to describe behaviour and structural

aspects of Agents, especially interaction among Agents and the description of Agent class

diagrams. Section 3.3 introduces the second direction, Agent Graph Transformation

Modelling, which is an Agent-oriented modelling technique that uses UNIL notation, and

integrates the theory of graph transformation in the proposed modelling technique. Section

3.4 reviews the third direction, Methodology for Engineering Software Agent (Message),

which has a modelling language related to UML by sharing a common Meta modelling

language and Meta Object Facility (MOF). Section 3.5 describes the fourth direction,

Agent-object relation models (AOR), which extends UML, and provides a framework for

the existence of Agents and objects in the same system under development.

3.1 Introduction

Wooldridge and Cinancaini (2001) recognise software Agents as complex systems

that exhibit autonomy, reactivity, pro-activity, and social ability capabilities. Interaction is

one of the most important characteristics of software Agents. Bauer et al. (2001) highlight

that linking Agent-oriented standards to object-oriented ones will allow Agent-oriented

systems to gain wide acceptance in the software industry. Unified Modelling Language

(UML) is the de facto standard for modelling object-oriented systems. UML unifies and

formalizes the methods of developing object-oriented software life cycle (Bauer, 2002).

Lind (2002) identifies two possible approaches to allow UML fits some of the Agent-

oriented software requirements: either to extend UML with new structural elements and

diagrams or to use UML base language to describe Agent-specific aspects of the software

56

systems. The first approach provides new structural elements and diagrams to enhance the

expressive power of the base language while the second approach adheres to the

boundaries of the original language, and uses only those extension mechanisms that UML

admits.

3.2 Agent Unified Modelling Language (AUML)

AUML, one of the intensive research directions, uses UML to model Agent-

oriented systems comparable to the other above-mentioned directions. The early AUML

research mostly concentrates on interaction among Agents. Currently AUML research

extends UML 2.0 structural and behavioural diagrams to model Agent-oriented systems.

The Foundation for Intelligent Physical Agent (FIPA) is an international organisation that

promotes the industry of Intelligent Agents by openly developing specifications and

supporting interoperability among Agents as well as Agent-based applications. FIPA

establishes a Modelling technical committee (TC) to develop vendor-neutral common

semantics, meta-model, and abstract syntax for Agent-based methodologies. While this

research study was still in process, FIPA issued two main documents for AUML Agent

class metamodel (2003a, 2004) and AUML interaction diagrams (2003b). AUML uses in

both documents an extension to UML 2.0 that Object Management Group (OMG)

proposes. Currently, the FIPA modelling TC is the only approach that uses the new

proposed UML 2.0 standards.

3.2.1 Extending UML Behaviour Component

Recent research on extending UML concentrates on modelling interaction among

Agents. Bauer et al. (2001) have developed one of the first approaches to extend UML by

providing new structural elements and diagrams that enhance the expressive power of the

base language. They have introduced Agents as an extension of active objects. They view

57

Agents as an object that can initiate tasks, and refuse requests from other objects or

Agents. Bauer et al. (2001) have proposed to extend UML with a new diagram called

protocol diagram. Figure 3.1 represents an interaction protocol diagram of English-auction

protocol for surplus flight tickets. The Protocol diagram combines UML sequence

diagram and notation of UML state diagrams to provide the specification of interaction

protocols among Agents. Protocol diagrams extend UML sequence diagrams by

introducing Agent roles, multithreaded lifelines, extended message semantics,

parameterised nested protocols, and protocol templates.

U ML-Airlines I
Auctioneer: Seller

start cfp time

{m ? 0) not-
understood(syntax-arror)

(m ? 0) nct-understood

AuctionParticipants
ConsLrner

2rt-aucton,
re, arrival)
lal-price) n*H"n

I propose(pdce, k

k

start cfp ti
r:

t me

Ic

+I min

7DHnce)L-%ý c f4p)-2

accept-proposal(correct-

I cfp(new-price)

IrinfonTiend-
departufe,

(OA) [actualprice >=
I reserved Dricel

i
i

}

n ýý

1-

Figure 3.1 English-Auction protocol for surplus flight ticket (Bauer et a], 2001)

58

Bauer et al. (2001) identify Agent interaction protocol (AIP) as a communication

pattern with an allowed sequence of messages between Agents that have different roles and

constraints on the content of the messages. The messages semantics are consistent with the

communicative (speech) acts (CAs) within a communication pattern. Speech acts are

certain class of natural language utterances that have the characteristics of actions where

they change the state of the world in a way analogous to physical actions, such as accept-

proposal performative from the FIPA Agent communication language protocol that allows

an Agent to accept a proposal made by another Agent (Wooldridge, 2002).

AND XOR OR

Figure 3.2 And, XOP, and Or connectors (Bauer et al, 2001)

Bauer et al. (2001) propose Agent roles as one of the extensions to UML. Agent

roles are a set of Agents that satisfy distinguished properties, interfaces, service

description, or have a distinguished behaviour. Agent roles can perform various roles

within one interaction protocol. The general form for describing Agent roles in Agent

UML is "instance-I ... instance-n / role-I role-m: class" that distinguish a set of Agent

instances instance- 1,..., instance-n satisfying the Agent roles role- 1,.., role-m, n, m >= 0 and

the class it belongs to. Bauer et al. (200 1) propose new logical connectors for the protocol

diagram, AND, OR, and XOR connectors, that can represent parallelism and decisions

corresponding to branches in message flows. Figure 3.2 shows the proposed logical

connectors. The XOR connector interrupts the threads of interaction by splitting it up into

different threads of interaction; figure 3.3 shows different usage of XOR connector. The

AND connector combines the inputs while the OR chooses either one or nothing from the

input.
59

Figure 3.3 Full and abbreviated notation of XOR connection (Bauer et al. , 200 1)

In addition, Bauer et al. (2001) identify that protocols do not only codify as

recognizable patterns of Agents' interaction that can be reusable modules of processing;

rather, they are also treated as first-class notations. Protocol diagrams can allow nesting

and interleaving of protocols. Bauer et al. (2001) extend the semantics of UML messages

by introducing the repetition of a part of a protocol. An arrow, or one of its variations, that

is usually marked with some guards or constraints, represents a repetition part. Bauer et al.

(2001) emphasise that AUML provides the user who is familiar with object-oriented

software development with an easy method to understand multi-Agent systems. Analysts

view such systems like a society of Agents rather than a distributed collection of objects.

In addition, designers spend much less time for designing Agent-oriented system by a

minor amount that grows with the number of Agent-based projects.

Odell et al. (2001) further edit and explain how AUML is useful for representing

Agent interaction protocols by providing three-layers approach. The first layer represents

the protocol by extending sequence diagrams to act as protocol diagrams. Protocol

diagrams indicate with the proposed XOR connector the Agent's feature of the freedom to

choose to respond or not to the received request. Furthermore, Odell etal. (2001) highlight

that analysts can codify protocols as recognisable patterns of Agent interaction. Protocols

become reusable modules of processing that analysts can treat them as first-class notations.

60

Odell et a]. (2001) use UML package diagram to treat protocols as templates for

custornisation of analogous problem domains (figure 3.4).

conhad
FIPA Contract Net Protocol

Irutiabon

call-for-proposal

refuse

& fomi

In+afor. Pajigivant
Nadine

call4or-proposal, reiUw*.
not-urxJarslaod*, pmpose, I

reject-proposal,, accept-proposar, I

Figure 3.4 A generic AIP expressed as a template package (Odell et al, 2001).

Odell et al. (2001) describe that the second layer represents interaction among

Agents. They extend sequence diagrams to represent Agents or roles of Agents. Similar to

objects in UML, they use the Agent-name/role: class syntax to describe Agents. They

extend UML to support concurrent threads of interactions similar to those identified by

Bauer et al. (2001). Although the connectors are similar to those described by Bauer ct al.

(2001), they provide more examples for using concurrent communications as shown in

figure 3.5.

61

ml > CA-1

CA12 CX2

CA-3 CA-3

frole-11
u ýu

or

(b)

L t

CA-2 M2

CA, 3 CA-3

or

(C) (d)

&mOL

rx

CA-1 CA-1

CA-2 CA. 2

CA-3

:

cA-231- n

I
or

Ye

-

ýU. 3,

M

Figure 3.5 Multiple techniques to express concurrent communication with an Agent playing multiple roles or

responding to different CAs (Odell et al., 2001).

Odell et al. (2001) emphasise that activity diagrams provide simple graphical

representations to visualise processes and concurrent asynchronous processing being an

important feature for some Agents. Odell et al. (2001) use state chart diagrams to

represent state-centric views that emphasise permissible states more prominently than the

transitions Agent processing does. The third layer represents internal Agent processing

Odell et al. (2001) point out that activity diagrams and statechart diagrams can describe

the internal processing of a single Agent. Their version of AUML does not only

concentrate on interaction among Agents by specifying protocols as a whole but also

62

conveys the interaction pattern within a protocol, and expresses the internal behaviour of

Agents.

Huget (2003) proposes to extend AUML protocol diagrams with features that are

useftil to work in the domain of reliability, electronic commerce, and supply chain

management that previous AUML features lack. He provides extensions for AUML

protocol diagrams to describe broadcasting messages, synchronization, triggering actions,

exception handling, time management, atomic transactions, and message sending until the

receiver acknowledges receipt features. Figures 3.6 and 3.7 depict the different extensions

that Huget proposes for AUML protocol diagram that can fulfil the features he indicates.

proposc bid

a) Broadcast

cuffent bid > max. mount, with
TM

c) Triggering actions

b) Synchronization

exception timcout

not exception timeout

d) Exceptions

Figure 3.6 Huget extensions to AUML protocol diagrams (Huget, 2003)

63

job

a) Sending messages until delivery

time= 10

bid

n]

atoýlic
propose date

b) Atomic transactions

propose

c) Time management

Figure 3.7 Huget extensions to AUML protocol diagrams (Huget, 2003)

Lind (2002) uses the second approach, adhering to the boundaries of UML, to

model Agent-oriented systems. He proposes a notation for an Agent-interaction protocol,

based on the basic elements of UML activity diagram. He highlights that extending UML

by new structural elements and diagrams would provide a major risk, as the new

extensions will not be universally understandable. He extends the idea of swim lanes 3 of

activity diagrams as a means to describe the roles as <<stereotypes>> that occur within the

3 Swim lanes: Activity diagram can be divided into partitions, referred to as swim lanes, to show

who does which action.

64

application. Figure 3.8 depicts an example of augmented activity diagram. The roles

within the diagrams link each other in explicit communication channels (<<channels>>)

that manage the message exchange between two roles.

-role>> Role II <<channel-> I -role- Role 2

<<send>A I-ccreceive>>

Figure 3.8 Augmented Activity diagram (Lind, 2002).

Synchronisation points (figure 3.9) illustrate message exchange that models

sending and receiving of messages. The <<synchronization point>> stereotype includes a

semantic extension of the UML, <<timeout>>. Lind (2002) highlights the importance of

<<timeout>> stereotype, as it protects either the sender or receiver from infinite blocking.

As AUML is gaining more recognition within the Agent-oriented research

community, Koning and Romero-Hernandez (2003) introduce a textual notation for the

AUML modelling specification, and show how one could translate it in order to generate

both an extended finite state machine and a specification that model-checker can directly

process.

65

lt;. >

Figure 3.9 Synchronization Point (Lind, 2002).

Koning and Romero-Hernandez (2003) present the Atos system that takes AUML

sequence (protocol) diagram specifications from text files as input and translates them into

a single Promela specification, C-like process modelling language. Next, a SpIN 4 model

checker tests them. The Atos system policy uses "as is" policy regarding translation of

input specification, and allows the developer to change the input specifications, the final

Promela specifications, or even the intermediate specifications. The author tries to use

Atos for developing Agent-oriented CASE tool.

3.2.1.1 FIPA, 4gent Interaction Diagrams

FIPA Modelling TC uses UML 2.0 interaction diagrams, namely sequence

diagram, interaction overview diagram, communication diagram, and timing diagram to

model Agent-oriented interactions (FIPA, 2003b). Through this AUML version, FIPA

extends UML sequence diagram to act as AUML sequence diagram. In a previous version,

FIPA Modelling TC calls the AUML extension of sequence diagram a protocol diagram.

AUML sequence diagrams consider two parts: the first is a frame, which delimits the

sequence and the second is a message flow between roles through a set of lifelines and

4 Spin is a generic verification system that supports the design and verification of asynchronous

process system (Holzmann, 1997).

66

cceend>> ccreceive>;.,

messages. FIPA modelling TC tries as much as possible to use UML 2.0 notations while it

does add new structural or behavioural components. AUML connectors, for AND, OR,

and XOR proposed in previous versions, are eliminated with the use of the standard UML

2.0 notations of splitting or merging. Unlike UML, FIPA modelling TC extends UML

lifelines to represent several Agents. Figure 3.10 depicts an example of AUML sequence

diagram for FIPA request Interaction protocol.

;E ni ti ator
II ; PartLeipant

alternatLvej
query-if

quoary-ref

144 not-understood

=GfUG43,

failure

inform

Figure 3.10 FIPA Request Interaction Protocol (FIPA, 2003b)

UML Interactive overview diagram focuses on the overview of the flow of control

where the nodes are Interactions or InteractionOccurrences fragments. FIPA modelling TC

highlights the usefulness of the interaction overview diagrams to express the flow of

interactions that are clearer rather than using the frame of an interaction operand. FIPA

67

also suggests that UML communication diagrams are useful to express Agent-oriented

interaction by focusing on the interaction between lifelines where the architecture of the

internal structure and how this corresponds with the message passing is central.

Furthermore, the UML Timing diagram is useful to show the change in the lifeline state or

condition of a classifier instance or classifier role over linear time.

3.2.2 Extending UML Structural Component

UML structural components such as class diagrams are vital UML components that

need extending to model Agents and Agent roles. Bauer (2002) emphasises that there is a

need to extend UML class diagram to support in relating the definition of Agent interaction

protocol and the internal behaviour of an Agent. He expresses that an Agent has three

components: communicator, head, and body. The communicator is responsible for doing

physical communications by using speech acts; the head deals with goals, states, and

beliefs while the body do the pure actions of an Agent.

Figures 3.11,3.12, and 3.13 depict the Agent class diagrams that the author

proposes. Figures 3.11 and 3.13 show the internal structure of the Agent while figure 3.12

shows the extension for UML classes to accommodate Agents. Bauer (2002) describes the

Agent roles as in his previous work (Bauer, 2001) to have general fonn "instance-

I..... instance-n / role- I role-m: Class", which denotes a distinguished set of Agent

instances instance-1, ... ' instance-m satisfying the Agent roles role-I,.., role-m with n, m

>= 0 and class it belongs to. He identifies that sending and receiving of communicative

acts are the main interface of an Agent to its environment. Figure 3.14 illustrates incoming

and outgoing messages respectively. To trigger the required behaviour, the Agent matches

the incoming message against incoming communicative acts of the Agent. He provides an

extension to distinguish class for "well formed formula" (wft) for all kinds of logical

descriptions of the state, independent of the underlying logic. Bauer (2002) highlights the

68

need to define two variables of type wff for a pure goal-oriented semantics: permanent-

goals and actual goals, while BDI semantics need four variables: beliefs, desires,

intentions, and goals.

apnt-clau-nm= I rolenaincl, rolcnarne-2, ...

slaw-desmption

actions

methods

capabilities. service dcsmptiort. supported
PrOtOODIS

[constr2int]

CA-I / CA-1 I
protocol protocol

CA-21 N CA-V
! protocol

agent-head- protocol !V

sixornata-riaine I

ckf3ult
not- I
undemood

ff
RPApent

fix shoM e. g.

Figure 3.11 Agent class diagrarn and its abbreviation (Bauer, 2002)

AgentClass

AgentClass / role-1, role-2,

A gentlnstance / role-l. rote-2.... -
AizentClass

1

Figure 3.12 Different Kinds of Agent classes (Bauer, 2002)
69

Icimstraint]
swx: io--ly. nuw

cguhilifies, savioe
ikumjAion. xurq%onod
PTLlttxxjlg

CA- I 'Prol"I

CA. 2, *riotocoA

&-f. Ull

aWnl-diss4utirjo ff c4emml,
-agent-

fields

M, tlwg
<eýim->>

nwayAq

ror shod

IT
RPAICnt

4: e*gmt>>

IT
Momforing

Agoit
<-, ARerj>>

-<)
CA4 Ilmocol

p CALctl

---0 deräult

Figure 3.13 using UML class diagrams to specify Agent behaviour and its abbreviations (Bauer, 2002)

Bauer (2002) emphasises that UML sequence and collaborating diagrams are

suitable for the definitions of an Agent's head behaviour while state and activity diagrams

are more suitable for abstract specification of the behaviour of an Agent's head. He

highlights that analysts can define pro-active behaviour through two different ways: using

pro-active actions or using the Agent head automata. The Agent itself triggers Pro-active

actions by using a timer or by reaching a special state. Incoming messages do not trigger

Pro-active behaviour.

> CA-1 /
I protocol

CA-1
protocol

>

Figure 3.14 incoming and outgoing messages

70

3.2.2.1 FIPA, 4gent Class Superstructure Metamodel

FIPA modelling Technical Committee (TC) (FIPA, 2004) extends UML 2.0 class

specification to accomplish the relative complexity and differences between Agent-

oriented and object-oriented systems. FIPA modelling TC extends UML 2.0 classifier to

have Agent Classifier that provides classification of Agent instances (figure 3.15). In

addition, Agent Classifier specialises in two ways: Agent Physical Classifier and Agent

Role Classifier. Agent Role Classifier describes sets of normative features or roles that

Agents may hold or request to play. While Agent Physical Classifier describes sets of core

or primitive features for those associated instances of the Agents it classifies. A man can

be a father, a manager, or a husband; Agents Role Classifier will describe such roles.

Agent Physical classifier describes the feature of the man: height, eyes colour, etc.

FIPA Modelling TC identifies that Agent classifier is the core modelling constructs.

Such constructs define the instance of Agents for a system and the classification for those

Agents (FIPA, 2004). FIPA Modelling TC defines Agent Class description, as "an Agent

is an instance specification specifying the existence of an entity that is classified by an

Agent Classifier; which completely or partially describes the entity" (FIPA, 2004). In

addition, FIPA Modelling TC identifies groups as a set of Agents that associates together

by some common interest or purpose. Groups encourage and support interaction among

those Agents that are members of the same Group class extends UML 2.0 structured

classifier. Thus, each Group is a UML composite structure. Groups can act as Agents,

Agentified groUP5, or establish a set of Agents for a purpose, that is non-Agentificd group 6.

5 "An Agentified group is a group that is also a subclass of Agent" (FIPA 2004,14).

6 "A Non-Agentified group is a group that is not a subclass of Agent" (FIPA 2004,14).

71

(kom KemeO L

/classified

Agent /classifier instance
Classifier

clas-s-M-e
instancE

Agent Role
Assignment

classifying role
I supporting perinitted

Physical Classifier 0.. *
group

I
Agent physical class roles Agent Role

ical ClHassifier

sOI
I

0. - Classifier 0... group
roles

Ins, Lance Structured Classifierl
fl,

fm
Spealflcatfon MCO Sle
rom Keme

"Ostrucimulpeo)

/group /assigtne assigned
ember grou group

Agent Group
O. A

context]

Non-Agenfified
Gr(wp

Figure 3.15 FEPA proposed Agent class abstract syntax (FIPA, 2004)

Agent Unified Modelling Language research is the most intensive research area for

using UML to model Agent-oriented systems. The research in this direction has influenced

the new standards of UML 2.0 to include notations for more complex behaviours than

offered in UML Lx to be able to model some of the Agent-oriented system requirements

such as concurrency, parallelism, and branching processes. The importance of the latest

attempt by FIPA Modelling TC (June 2004) is currently the only research conducted to use

UML 2.0 to model Agent-oriented systems. This research direction does not concentrate

on developing a methodology; rather, it uses and extends the basic language of UML 2.0.

The AUML research direction focuses on interaction behaviour of Agents with a recent

attempt to model Agent Class Superstructure Metamodel.

3.3 Agent Graph Transformation Modelling

Depke et al. (2001) introduce Agent-oriented modelling techniques that use UML

version Lx notation. They divide the modelling process of Agent-based systems like

modelling of object-oriented systems: requirements specifications, analysis, and design

phases. They express that the informal descriptions of the system functionality identifies

the requirements of the system during the requirement specification phase. Through that

72

phase, Depke et al. (2001) use UML Use case diagrams to describe the functionality and

actors of the system. They have introduced an extension to Use Case diagram by adding

Agents that are UML actors but with a square head. The Use case diagram shows Agents

required for the system and their Use Cases (figure 3.16). Then analysts describe each use

case by proposing graph transformation rule that shows modelling a before-after scenario

of the use case (figure 3.17). Depke et al. (2001) use the UML sequence diagram to

describe communication between actors participating in a Use case.

Bank

mnimiza,
h9uto

paymoni Cu

-fc:)

pp
[larking

Agent (PRA)

Cos

-U05-
1
ýbl

lmy M,

AoGnl

Figure 3.16 Use Case diagram for banking example (Depke et al. 2001,108)

Similar to object-oriented analysis phase, the analysis phase consists of a structural

model, a dynamic model, and a functional model. The structural model -Agent class

diagram specifies the types of objects and Agents, their attributes, associations, and

messages. Agent classes depict an active class with bold borders that have an extra

compartment for messages.

73

IPI: Pmpasal I

WftymenqS) \\ [ý. PBA

acwpte-d\\-7
uses uses

I uses), 4,
Arri - A-IýMtintAZ-OCJ Ace I. A^-COynIAMPrj

Mn7, Act2 - AtcountAtiont

Figure 3.17 Graph transformation rule (Dcpke et al, 2001)

The functional model specifies the overall effect of a use case on the state of the

system. They use a theory of graph transformation act as a mechanism to specify the pairs

of graphs that represent before-after scenarios of use cases. Figure 3.18 illustrates three

rules specifying the possible effect of the use case "Select account" shown in figure 3.16.

The dynamic model focuses on the communication required to execute a certain protocol.

Sequence diagram describes communication that occurs in each graph transformation

resulting from the functional model. The Design phase concentrates on how the system

will conduct the functions that the analysis phase describes. Similar to the analysis phase,

the design phase describes three models: a structural model, a dynamic model, and a

functional model.

In the structural model, Depke et a]. (2001) refine the class diagram of the analysis

phase and add the Agent's autonomous operations in an extra compartment. They

distinguish between the Agent's message and operation notations, whereas in objects, the

notion of method integrates both notions. The dynamic model specifies the ordering of

operations an Agent of this class may perforin. They use state diagrams to represent the

ordering of operations. The functional model shows how operations declared in the design

model affects the state of the system. Graph transformation rules specify operations

declared in the structural model.
74

initPayment(b) acc)
selected

: ProDosal
b ccep

Exý uses
acc: AccountAqent

a: PBA uses
acc: AccountAqeni

pays

hLEM

Rejoct (. Tf AFCC)
initPayment(b) l9, j7orv (. a, -WO

M
ae PB acc, AccountAgent

paysusesoýýý

b;
-Euu

Figure 3.18 Three rules specifying the possible result of each interaction (Depke et a], 2001)

The effort exerted by Depke et al. (2001) focuses on developing a method for

processing Agent-oriented systems. Similar to object-oriented methods process, their

method process starts with identifying system requirements. Then the analysis phases and

ends up with the design phase. The method uses and extend components from UML Lx,

which needs to be revised after the publication of the new UML standard, UML 2.0.

Software developers of object-oriented systems will also need to learn more about graph

transformation rules in order to be able to use the methods for developing Agent-oriented

systems.

3.4 MESSAGE / UML

Caire et a]. (2002) claim that they present a methodology for engineering systems

of software Agents (MESSAGE) by integrating the best of the two approaches: the first

approach applies existing software engineering methodologies to develop Agent-oriented

systems, and the second develop a new methodology based on Agent theories. They

highlight that MESSAGE has well defined concepts and a notation that uses UML

75

notations whenever possible. They extend UML by modelling the concepts and diagrams

for the Agent knowledge level. The diagrams extend UML class and activity diagrams.

Caire et al. (2002) argue that the MESSAGE modelling language shares a common Meta

modelling language with UML and a Meta Object Facility (MOF). They extend the UML

metamodel with "knowledge level 0 Agent-oriented concepts. Caire et al. (2002) use UML

as starting point and append entities and relationship concepts required for Agent-oriented

modelling. MESSAGE uses standard UML as "data level" modelling language but

provides additional "knowledge level" concepts that MESSAGE metamodel defines.

Goal II Role

AimsToAchicvcAk
Plays

Information
Entity

ýdd
Agent

-
"q' Pcrccives

Describes I Perfonns

Describcs
StatcOf

GcncratcdBy
ChangcOfState

Resource I Affccts I DirectAction

Provides
ServiccTo Service

t] Implements

Acquaintance

I Action I I Task I

Gcncrates

Communicativc

Figure 3.19 Agent centric MESSAGE concepts (Caire et al, 2002)

7 Knowledge Level System is a system that "rationally brings to bear all its knowledge onto every

problem it attempts to solve" (Lemon et al. 2004, cogarcb4/toe-defs/defs-theory/knowlevel. htmi)

76

MESSAGE Knowledge level entity concepts have mainly three categories of

entities: concrete, activity, and mental-state entities. The main types of the concrete entity

category are Agent, organisation, role, and resources. The major types of the activity

category are tasks, interactions, and interaction protocols. Goal is one type of mental-state

entity category. Figure 3.19 shows the links between these knowledge level concepts.

The analysis model identifies first the top level of decomposition; level "0" with

subsequent stages of refinement that result in the creation of models at level " L" Level "0"

identifies the system stakeholders and environment. Then the analyst drafts the

Organisation and Goal/task views. Caire et al. (2002) highlight that level "0" focuses on

the identification of entities and their relationships according to the metamodel. Level "I"

concentrates on identifying the structure and behaviour of entities.

Caire et al. (2002) introduce different refinement strategies that analysts can use to

refine level "0" models such as organisation-centred approaches, Agent-centred

approaches, interaction oriented approaches, or goal / task decomposition approaches.

Organisation-centred approaches concentrate on analysing overall system properties such

as the system structure and the services offered. Agent-centred approaches concentrate on

identifying the required Agents. Interaction-centred approaches concentrate on suggesting

progressive refinements of interaction scenarios that describe the internal and external

behaviour of organisations and Agents. Goal/task decomposition approach focuses on

functional decomposition. Caire et al. (2002) suggest that it is preferable to use a

combination of different refinement approaches with frequent loop-backs among them.

Similar to the second direction, Caire et al. use UML Lx for their MESSAGE

methodology. MESSAGE uses some of UML diagrams but also identify new views to

model Agent-oriented features. The diagrams extend UML class and activity diagrams. It

will not be direct transformation for well-trained object-oriented systems analysts using

UML to work with the MESSAGE methodology. MESSAGE needs to review UML 2.0

77

diagrams to identify similarity. It will be better to adhere, as much as possible, to the core

UML diagrams.

3.5 Agent-Object Relation Models

Wagner (2003a, b) proposes an Agent-oriented modelling language for the analysis

and design of organizational information system called Agent-Object-Relationship

modelling language (AORML or AOR), where an entity is an Agent, an event, an action, a

claim, a commitment, or an ordinary object. Special relationships between Agents and

events, actions, claims and commitments supplement the fundamental association,

generalization, and aggregation relationships of UML class diagrams. Wagner (2003a,

138) emphasises that AORML or AOR is an extension of UML. AOR models have two

types: external and internal models. External models adopt the perspective of an external

observer who is observing the Agents and their interaction in the problem domain under

consideration. The internal model adopts the internal view of a particular Agent under

modelling process. External AOR model consists of Agents, communicative and non-

communicative action events, non-action events, commitments, / claims between Agents,

ordinary objects, various designated relationships, and ordinary associations. External

AOR model represents a conceptual analysis view of the problem domain without

mentioning any software artefact. External AOR diagrams include one or combination of

Agent diagrams: interaction frame diagrams, interaction sequence diagrams, and

interaction pattern diagrams (Wagner, 2003a, and 2003b).

78

MessageType

Agent Type

receives

...................
Internal
Object T e

S
Non-Communic; ýr

does / Action Event Type
Commitment/Claira

yp

Type
perceives

Action Event Type Non-Acton
Event Type perceives

Figure 3.20 The core elements of External AOR modelling (Wagner 2003a, b)

Agent diagrams depict Agent types of the domains, certain relevant object types,

and relationships among them. Interaction frame diagrams represent the action event types

and commitment/claim types that determine the possible interactions between two Agent

types. Interaction sequence diagrams illustrate prototypical instances of interaction

processes. Interaction pattern diagrams focus on general interaction patterns expressed by

means of a set of reaction rules defining an interaction process type. Figure 3.20 shows the

core elements of external AOR modelling (Wagner, 2003a, b).

Internal AOR model consists of the following: other Agents, actions, commitments,

events, claims, objects, designated relationships, and associations. Internal AOR models

may consist of one or a combination of reaction frame diagrams, reaction sequence

diagrams, and reaction pattern diagrams. Reaction frame diagrams depict other Agents,

actions, and event types as well as the commitment and claim types that determine the

possible interactions with them. Reaction sequence diagrams depict prototypical instances

of interaction processes in the internal perspective. Reaction pattern diagrams focus on the

reaction patterns of the Agent under consideration expressed by means of reaction rules.

Figure 3.21 illustrates a comparison between entity relationship modelling, UML, and

AOR (Wagner, 2003a, b).

79

(Extended) ER UML Extemal AORML IrAernal AORML
entity type class object type object type

active claw agent type agent type
sent signal message type outgoing xnessap

type
xeceived 61g: W incoming message

type
commitment/claim commitment type
type

claim type
re4tionship type association association association

senda isSentTo
zecelves L-ReceivedFrom
does isPercelvedBy
perceives isCreatedBy
hasCommitment hasCommitment;

Thwaxds
liasclaim, hasClaim. Against
reaction rule reaction

ER diagram clam diagram agent diagam
interaction frame reaction frame dia-
&gram gram

sequence diagram interaction se- reaction sequence
quenze diagam, diagram,

activity diagram activity diagain. activity diagram
state machine d. state macline d.

interaction pattem reaction patt
diagram agram

Figure 3.21 A comparison of some important concepts of ER, UML, and AORML (Wagner 2003a, b)

Wagner (2003a, b) highlights the strengths of AOR, with respect to UML, lies in

the availability of a richer set of basic ontological concepts as compared to UML. This

allows capturing more semantics of a domain. AOR allows integrating state and behaviour

modelling in one diagram. He identifies that a major weaknesses of the approach is the

lack of an entire development path from analysis to implementation and AOR does not

allow modelling the proactive behaviour of Agents.

Agent-Object Relation Modelling language (AOR), fourth direction, is one of the

few methods that integrate objects and Agent in the same model. AOR uses and extends

UML Lx components, but it will not be a direct transformation for object-oriented

developers to use such method. The approach is still lacking important aspects such as the
80

lacking of defined entire development path from analysis to implementation. AOR needs

more work to be able to act as a standard approach for developing Agent-oriented systems.

In addition, AOR should review UML 2.0, similar to MESSAGE, to identify similarity,

and use the core language as much as possible.

3.6 Conclusion

This chapter discusses four directions to model Agent-oriented systems by using

Unified Modelling language. The four directions are Agent Unified Modelling Language,

Agent Graph Transformation modelling, Methodology for Engineering Software Agent

(MESSAGE), and Agent-Object Relation Model (AOR). Agent Unified Modelling

Language research is the most intensive research area for using UML to model Agent-

oriented systems. The research in this direction has influenced the new standards of UML

2.0 to include notations for more complex behaviours than UML Lx to model some of the

Agent-oriented systems requirements such as concurrency, parallelism, and branching.

The importance of the latest attempt by FIPA Modelling TC is currently the only research

conducted to use UML 2.0 to model Agent-oriented systems. This research direction does

not concentrate on developing a methodology like the other three directions; rather, it uses

and extends the basic language of UML 2.0. The AUML research direction is focusing on

the interaction behaviour of Agents where other Agent features need more research.

Depke et al. (2001) efforts focus on developing a method for developing Agent-

oriented systems. Their method process, similar to object-oriented method, starts with

identifying system requirements, then the analysis phases and ends up with the design

phase. The method uses and extend components from UML Lx, which needs to be revised

after the publication of the new UML standard, UML 2.0. In addition, software developers

of object-oriented systems will need to learn more about graph transformation rules to be

able to use the methods for developing Agent-oriented systems.

81

Similar to the second direction, MESSAGE has used UML I. x for their

methodology. Not only does the methodology use some of UML diagrams but also

identifies new views to model Agent-oriented features. The diagrams extend UML class

and activity diagrams. It will not be direct transformation for well-trained object-oriented

systems analysts using UML to work with the MESSAGE methodology. MESSAGE

needs to review UML 2.0 diagrams to identify similarity. It will be better to stick as much

as possible to the core UML diagrams.

Agent-Object Relation Modelling language (AOR), fourth direction, is one of the

few methods that integrate objects and Agents in the same model. AOR uses and extends

UML Lx components but it will not be a direct transformation for object-oriented

developers to use such methods. The approach still lacks important aspects such as the

lack of defined entire development path from analysis to implementation. AOR needs

more work to be able to act as a standard approach for developing Agent-oriented systems.

In addition, AOR should review UML 2.0, similar to MESSAGE, to identify similarity,

and use the core language as much as possible.

The main objective of using UML as a base modelling language for describing

Agent-oriented systems is to allow software developers using object-oriented systems to

migrate more easily towards the development of Agent-oriented systems. Currently, we

cannot declare that any of the available UML Agent-oriented efforts can act as a standard

modelling language or a method for Agent-oriented systems as UML for object-oriented

systems. AUML tries to use and extend UML to describe interaction among Agents. No

research direction of the above has explored how the new UML notations, UML 2.0, can

model different aspects of Agent-oriented systems such as the ability to learn, the ability to

reach agreement among Agents, and the ability to describe mobility.

82

Chapter 4: Exploring UML 2.0 to Model Structural Components of Intelligent Agents

This chapter explores the capability of UML 2.0 to model structural features of

Intelligent Agents. During the writing of the thesis, the only work done to use UML 2.0 to

model structural components of Agents was from the Foundation for Intelligent Physical

Agent (FIPA). The research builds upon, explores, and utilises this work and provides

further development to model the structural components of learning behaviour of

Intelligent Agents. Section 4.2 discusses two scenarios to model Intelligent Agent

structural features by using the FIPA Agent Class Superstructure Metamodel. Section 4.3

introduces the required learning compartment attributes that describe the learning features

of Intelligent Agent.

4.1 Introduction

As mentioned in Chapter 3, section 3.2.1.1, FIPA modelling Technical Committee

(TC) is the only published work (during the writing of the thesis) to extend UML 2.0 to

model Agent structural and behaviour features. FIPA modelling TC extends UML 2.0

Classifier to have Agent Classifier that provides classification of Agent instances (figure

4.1). This Agent Classifier is able to describe the differences between Agents and Objects.

UML 2.0 standards allow such extension which is not available in UML IX Agent

Classifier specialises in two ways: Agent Physical Classifier and Agent Role Classifier

(FIPA, 2004). Until June 2004, FIPA Modelling TC has been the only effort that uses

UML 2.0 to model Agent-oriented systems.

This has encouraged the author to use FIPA legal UML 2.0 extensions to explore

their capability in modelling structural components of the learning dimension of Intelligent

Agents. To describe the learning features of Intelligent Agents, a Learning compartment is

added to the structural notation of Intelligent Agents. The learning compartment should

83

contains attributes to identify the Intelligent Agents learning goal, commitment strategy,

learning strategy, learning feedback method, learning location, learning schedule and

duration, the use of background knowledge during learning, and the input knowledge

representations.

ce Structured Classifier
Classifier

(from Kemeo
lfrom, 21=08

gro lassi ned assigned /classified e
uer

gu
Agent /classifier instance

Agent Group
I.. * group

L, 0.. *
C

c assi ie
OJ

context
instance

Agentified Non-Agentified

Agent Role
Group Group

ign

classifying role
supporting permitted 1

Agent physical class ro, s Agent Role
ical Ckissifierl 0.. ' 0. . Classifier 0.. - group

roles

Figure 4.1 FERA proposed Agent class abstract syntax (FIPA, 2004)

4.2 Modelling Intelligent Agents

The differences between Intelligent Agents and Agents should be clear in order to

model structural components of Intelligent Agents by using FIPA Agent class

superstructure meta-model, described in chapter 3, section 3.2.1.1. The differences can

have two scenarios: the first scenario recognises that the relation between Intelligent

Agents and Agents is similar to the relation between an active object and a passive object.

An active object has its own thread of control while a passive object executes within the

context of other objects. Thus, an active object has a different notation from a passive

object. The second scenario identifies the Intelligent Agent as an Agent with extra

attributes. The first scenario requires Intelligent Agent to have a distinct notation that is

different from Agent notation and a Boolean attribute "islearning. " In UML 2.0, the

84

analyst identifies a Class is active, that each of its instances has its own thread of control, if

"isActive" parameter equals true. The notation of active class is a class box with an

additional vertical bar on each side as shown in figure 4.2.

EngineControl

Figure 4.2 Active Class (OMG 2003,387)

FIPA modelling TC proposes the notation of the Agent to be a solid-outline

rectangle, containing underlined concatenation of the instance name (if any), a colon (': ')

and the classifier name or names. Intelligent Agents can have the same notation but with

vertical bar on each side as shown in figure 4.3. In addition, a learning compartment is

added to provide learning attributes.

i(agent))
A. qent37: Mangger

managementLevel: Integer-4
authodzationLimit: Money=$10,000

r., aqentmanaqer>, 1c- = a
F I

--i
Compartment Leq ar ninc

Figure 4.3 : FIPA Agent notation (FIPA, 2004) and proposed Intelligent Agent notation

The second scenario uses Agent Physical classifier that FIPA modelling TC

introduces. This scenario deals with Intelligent Agent as an Agent with extra attributes.

The Agent Physical classifier will have a compartment to hold learning attributes that

describe the learning behaviour of the Intelligent Agent. "An Agent Physical Classifier is

an Agent Classifier defines those sets of core, or primitive features for those associated

instances are Agent that it classifies" (FIPA, 2004). The notation of Agent is the same

85

notation that FIPA proposes. Figure 4.4 depicts the modelling of Intelligent Agent and

shows the learning compartment in Agent physical classifier that holds learning attributes.

*

1

Agent Physical
Classifier

I

Learning
Compartment

Agent

Figure 4.4 Agent class and Agent Physical Classifier

4.3 Learning Compartment Attributes:

Learning compartment provides the designer with attributes that describe the

learning features of the Intelligent Agent. These learning attributes guide the designers in

identifying the learning characteristics such as learning algorithms, communication

requirements, and reasoning capabilities. The following section describes the proposed

attributes that the learning compartment includes.

Learning-goal: literalinteger' [1] This attribute identifies the type of the learning goal.
"I"- synthetic learning
"2" - analytic learning
"3" - both

Commitment-strategy. This attribute defines the type of commitment strategy the
literalinteger[l.. *] Intelligent Agent uses during learning. The following is the

values of the attributes:
"0"- Unknown commitment strategy
"I "- Blind commitment
"2"- Single-minded commitment
"3"- Open-minded commitment

Background-knowledge: This attribute identifies if the Intelligent Agent uses
Boolean [1] background knowledge during the learning process.

True: uses background knowledge
False: does not use background knowledge.

a"A literal integer specifies a constant integer value" (OMG 2003,49)

86

Learning-strategy: literaistring9[l.. *] This attribute identifies the learning strategies that the
Intelligent Agent uses. The first character identifies the
learning strategy and the other two describe its variant.

"000% Unknown
"100% Learning from observation and discovery -
unknown features
"101% Learning from observation and discovery - Passive
learner
" 102% Learning from observation and discovery - Active
learner
"200% Learning from examples
"2 10% Learning from examples - instance to class
"211% Learning from examples - part to whole
"221 "- Learning from examples - positive examples
"222% Learning from examples - positive and negative
examples
"231 " -Learning from examples - incremental
"232" -Learning from examples -non incremental
"300% Learning from analogy
"3 10" -Learning from analogy - transformational
"320" -Learning from analogy - derivational
"400" -Learning from instructions
"400" -Learning from instructions - unidirectional
"4 10" -Learning from instructions - interactive
"500% Rote Learning
"5 10% Rote learning - by being programmed
"520% Rote learning - by memorising

Learnin&feedback- literalstring[l.. *] This attribute identifies the learning feedback method that
the Intelligent Agent uses.
"100" -unsupervised learning
"200" - supervised learning
"300" - reinforcement leaming
"3 10" - reinforcement learning - Immediate Reward
"311 "- reinforcement learning - Terminal State
"312" - reinforcement leaming - End of Learning
"320" - reinforcement learning - exploitation
"330" - reinforcement leaming - exploration

Learning-location: string [I
...

This attribute identifies the location(s) where Intelligent
Agent conducts learning

Learning-schedule: This attribute describes the schedule and the duration of
timeintervallo [I ... *] leaming.
Knowledge-representation: This attribute identifies the knowledge representation that
I iteral integers[I.. *] the Intelligent Agent uses during the learning process.

0- parameters in algebraic expression
I -decision trees
2- formal grammar
3- production rules
4- formal logic based expression
5- predicate logic
6- graph and network
7- frames and schemas
8- computer program
9- taxonomies
10 -Bayesian network

9 "A literal string specifies a constant string value" (OMG, 2003)

10 "A Time interval defines the range between two Time expressions" (OMG, 2003).

87

4.3.1 Leaming Goal Attribute

Learning goal attribute identifies whether the learning goal type is synthetic,

analytic or both. Synthetic learning objective is to acquire new knowledge that is not

available by the knowledge possessed while analytic learning transfers the knowledge

already possessed into the form that is most desirable and/or effective for achieving the

given learning goal. Synthetic learning employs induction as the primary inference while

analytic learning employs deduction as the primary inference (Michalski, 1993).

Designers should identify the required resources to accomplish the learning goal. In so far

as synthetic learning is concerned, designers should estimate the required space to hold the

new acquired data, the acquisition rate, and the access privileges required to access and

collect the new data. Designers also identify the capability needed by programming

language to accomplish the learning goal type. Synthetic learning needs programming

language that is able to provide an induction mechanism, that is tracing backward, while

analytic learning needs programming language able to perform a deduction mechanism,

that is tracing forward. For analytic learning, analysts should identify the method of

refining the current hypothesis and whether the Intelligent Agent should keep a copy of

current and new hypotheses.

4.3.2 Commitment Strategy Attribute

As mentioned in Chapter 2, Section 2.3, commitment strategy has an impact on the

behaviour of Intelligent Agents. The strategy can be a blind, single-minded, or an open-

minded strategy (Wooldridge, 2002). Analysts can use two scenarios during the analysis

of Intelligent Agent to design the commitment strategy: the first scenario analysts design

the commitment strategy of Intelligent Agent according to the type of environment while

in the second, they design the Intelligent Agent according to the required commitment

strategy.

88

For the first scenario, analysts will identify whether the Intelligent Agent will work

in a dynamic or a static environment. Intelligent Agents working in static environment can

have blind commitment strategy, whereas Intelligent Agents working in dynamic

environment can use single-minded or open-minded strategy. For the second scenario,

analysts should identify how Intelligent Agents conclude learning. Intelligent Agents

using blind commitment strategy and working in dynamic environment will consume their

efforts without realising that the learning goal is not achievable. Analysts can identify

constraints that affect the continuation of learning. In an open-minded commitment

strategy, analysts should identify when the Intelligent Agent should believe that the

learning goal is no longer valid to stop achieving the learning goal, such as the expiration

of the learning goal after a specific duration.

4.3.3 Background Knowledfze Attribute

The background knowledge attribute identifies to what level Intelligent Agents use

their background knowledge during the leaming process. The analysts would provide

notes about the constraint and specification for the use of Intelligent Agents background

knowledge. If the learning strategy attribute identifies that the Intelligent Agents use

learning from examples, that is incremental leaming, analysts should provide a note about

which type of incremental leaming Intelligent Agents are using: no-memory, partial

memory, or complete memory. Each type of incremental learning will need a special

design. For example, for complete memory type, designers should develop efficient

mechanism to provide a fast search in current and past hypotheses. During the leaming

process, Intelligent Agents will need more space for partial or complete memory rather

than no memory type. This might be critical for a multi-Agent environment where Multi-

Intelligent Agents are using a partial or a complete memory leaning type. Mobile

Intelligent Agents that also use a partial or a complete memory leaming type need more

89

time to travel between servers than mobile Intelligent Agents using no-memory learning

type. Intelligent Agents size increases during the learning process; designers should take

special consideration during the development of such mobile Intelligent Agents to cater for

such increase.

4.3.4 Learning Strategy Attribute

Learning strategy attribute identifies the type of learning strategy that Intelligent

Agents use. They can have single learning strategy or multi-leaming strategies.

According to the learning strategy of Intelligent Agent, the designer designs the learning

algorithm, and identifies the required resources needed to perform the algorithm. Learning

strategy attribute identifies whether the learning Agent is utilising learning from

observation and discovery, learning from examples, learning by analogy, learning from

instructions, or rote learning strategies. The attribute also can describe the variants of the

utilised learning strategy.

4.3.4.1 Learningfrom Observation and Discovery

Learning strategy attribute equals to "100" indicates that the Intelligent Agent is

capable of learning from observation and discovery. The Intelligent Agent should be able

to monitor the actions and reactions of the environment or the users to learn. Designers

should identify the type of learning from observation whether it is clustering1l or

discovery. Clustering learning would guide the designer to use learning algorithm to

conduct statistical, conceptual, or kohonen net clustering techniques. For discovery

learning, the designer might use theory-driven or data-driven algorithms (Smith 1996,

11 Clustering algorithms organises unclassified objects into a hierarchy of classes by measuring the

similarities between objects and gathering maximally similar objects into the same group or cluster" (Smith

2004, Jstaffpages/serengul/Clustering. htm).

90

,. /ML/unsupervised. html#4.2 . Learning strategy attribute of "101" indicates that the

Intelligent Agent is a passive learner while learning strategy attribute "102" indicates the

Intelligent Agent is an Active learner. Intelligent Agent with passive-leamer features

should be able to monitor actions of the environment or users. As far as an active learner

is concerned, designers should identify triggers at which Intelligent Agent starts exploring

the reactions of users or the environment, such as time triggers or action triggers. It should

also be able to trigger the environment or users to monitor their feedback; designers should

provide the Intelligent Agent with required resources, as access rights, to be able to

perfon-n exploration. Furthermore, designers should be able to identify the learning

algorithm that Intelligent Agent will use during exploration. Other attributes from the

learning compartment, such as hackground knowledge attribute, will guide the designer in

identifying the algorithm.

4.3.4.2 Leamingfrom Examples

Intelligent Agents that use leaming-from-examples strategy should have access to

the source of knowledge and tutor to receive training examples needed for learning.

Failure to have such access will terminate the whole process of learning. According to the

type of learning from examples, designers should design the reasoning behaviour, learning

algorithm, according to the classification method that Intelligent Agent will use. For

learning-strategy attribute equals "210, " instance-to-class type, the Intelligent Agent

should use a learning algorithm capable to learn how to classify independent entities into a

common class. Learning-strategy attribute equals "21 l, "part-to-whole type, requires the

Intelligent Agent to use learning algorithm capable to link different parts of a whole object.

In addition, Intelligent Agent with learning-strategy attribute equals "221 " or "222" stands

for learning from positive or positive and negative examples respectively. The types of

examples guide the designers to select learning algorithm that can use the type of available

examples in learning. For the first case, designers should identify conditions to limit

91

overgeneralisations, as there are no negative examples to perform this task. For the second

case, learning from positive and negative examples would require the designers to use

learning algorithms that employ positive examples to generalise concepts, and use negative

example to prevent overgeneralisations such as cand idate-el im i nation algorithm 12
.

For learning strategy attribute of "23l, "(Leaming from examples - incremental)

designers should identify a learning algorithm capable of updating the hypothesis after

providing each example, such as candidate-elimination, ID4, ID5, or ID5R algorithms. As

for learning strategy attribute "232, " non-incremental learning, designers should identify

whether the Intelligent Agent requests to start and stop learning or the teacher has the

control. In addition, designers should identify the proper conditions for the learning

process, where the absence of the Intelligent Agent will not trigger hazard situations.

Nevertheless, designers should identify non-incremental learning algorithm such as ID3

algorithm.

4.3.4.3 Learning by Analogy

Intelligent Agent with learning strategy attribute equals to "300" is achieving

learning by analogy which is a complex strategy that requires the Intelligent Agent to be

able to conduct inductive and deductive inferences. Intelligent Agent using learning from

analogy can mimic the human-like features of learning. As learning by analogy is a

knowledge-intensive-learning mechanism and depends on background knowledge and

experiences, Intelligent Agent should be capable of storing, indexing, and retrieving its

experience to perform effective learning. Leaning strategy attribute has value of "3 10" and

exhibits transformational analogy capabilities. Designers should be able to identify

appropriate learning algorithm for the intelligent Agent, such as case-based reasoning.

12 Candidate-Elimination algorithm "finds all describable hypotheses that are consistent with the

observed training examples" (Mitchell 1997,29)

92

Intelligent Agent with learning strategy attribute equals to "320" exhibits capability to

learn by the derivational analogy method. Designers can identify the learning algorithm

used by the Intelligent Agent that may use case-based learning that depends on its own

experience. This entities the Intelligent Agent to be able to memorise, index, and restore

its own experience to be able to conduct learning.

4.3.4.4 Learningftom Instructions

Intelligent Agent with a learning strategy attribute equals to "400" exhibit learning

by instruction method. Designers should provide the needed resources to accomplish

communication between the Intelligent Agent and Instructor, such as friendly-user

interface or authorisation. They should also identify the learning algorithm that will

transform instructions received to executable procedures. Learning strategy attribute of

"410" indicates that the type of learning from instruction is uni-directional where Instructor

provides instructions to the Intelligent Agent on a sequential basis. Designers should

identify when these sequential instructions are available and should provide the Intelligent

Agent with the proper conditions to receive the instructions and transform them into

operational procedures. Learning strategy attribute equals to "420" indicates that

Intelligent Agent learns through interactive learning from instruction. Designers should

identify conditions where the instructor would provide his/her instructions; when the

Intelligent Agent identifies that, it should ask for instruction or advice from instructor.

Designers should also provide all the. needed resources for conducting such

communication, as the Intelligent Agent might be in a hazardous situations and might

request the instruction or advice from the instructors.

4.3.4.5 Rote Leaming

Intelligent Agent with learning strategy attribute equals "500" indicates that it has

capabilities to learn by rote-leaming strategy. Designers should identify the required

93

resources to store, index, and retrieve the provided learning knowledge. The learning

strategy attribute of "510" indicates that Intelligent Agent conducts rote learning by being

programmed type. Designers should identify when the Intelligent Agent will receive the

program from the instructor, the method for the Intelligent Agent to receive the input data

and transform it to operational actions. Intelligent Agent with learning strategy attribute of

"520" identifies that the rote-learning type is accomplished through memorising.

Designers should estimate the amount of input knowledge and provide the Intelligent

Agent with the required capacity to store the input knowledge and efficient methods for

indexing and restoring the stored knowledge.

The learning strategy attribute guides the designer to the type of the learning

strategy the Intelligent Agent uses. Each learning strategy has different variants that

require different algorithms to perform learning. In addition, some of the learning

strategies are knowledge intensive processes that require the designer to provide efficient

mechanisms for acquiring, indexing, and restoring background and newly acquired

knowledge. Designers should also identify the method of communication between

Intelligent Agent and the source of knowledge such as learning from example strategy to

allow the success of the learning process. Failure to understand and provide the required

resources for the learning strategy jeopardises the Intelligent Agent capability to learn and

adapt to new situations.

4.3.5 LeaminR Feedback Attribute

Learning feedback attribute identifies the feedback method that the Intelligent

Agent uses during learning. The learning feedback can be supervised learning,

unsupervised learning, or reinforcement learning. There is a direct relation between the

learning strategy attribute and the learningfeedback attribute. When the learning strategy

attribute is "IY. X"- that is learning from observation and discovery, the learningfeedback

94

attribute is "100"- that is unsupervised learning. When the learning strategy attribute is

"2XX"- that is learning from examples, the learning feedback attribute is "200" - that is the

supervised learning method. According to the learning feedback method, designers

provide the Intelligent Agent with the required communication skills to perform the

learning process. For supervised learning, Intelligent Agent should be capable to

communicate with the source of knowledge, which is the tutor. Therefore, the designers

should identify the method of communication established between the Intelligent Agent

and the tutor. The tutor can be a user or another Intelligent Agent. If the tutor is a user,

Intelligent Agent should have a user-friendly interface while if the tutor is another Agent,

the Agent communication language can be implemented. The Intelligent Agent that has

multi-type tutors should be able to communicate with any type. In that way the Intelligent

Agent will be more complex. For unsupervised learning, the Intelligent Agent should be

capable of monitoring environmental actions and reactions or users during the learning

process.

Reinforcement learning method requires the Intelligent Agent to be able to

communicate with users, other Intelligent Agents, or objects to receive the reward.

Designers need to identify the main elements of reinforcement learning, such as policy, a

reward function, value functions, and model of the environment. According to the

learning feedback attribute, designers should identify how the Intelligent Agent will

receive its rewards for its actions. Learning feedback attribute equals to "3 10" indicates

that the Intelligent Agent should receive its reward immediately after each action. This

method has considerable communication between the Intelligent Agent and its tutor.

Designers should provide resources to accomplish such intensive communication method.

Learningfeedback attribute of "311 " highlights that designers should identify the terminal

state where the Intelligent Agent receives its reward. It also points out that required

communication resources should be available at this state to allow communication between

the Intelligent Agent and the tutor. Intelligent Agent with learning feedback attribute

95

"312" will receive its reward at the end of the learning process. This type is a less

communicative load than the other previous feedback methods. Intelligent Agent can

exploit its existence hypothesis, "320, " or explore new opportunities, "330. " For each

state, the designer should guarantee the resources required for conducting the learning

process.

Learning feedback attribute has a direct impact on the performance of the

Intelligent Agent. Each type of feedback method has different requirements of the

communication capabilities and learning algorithms. Designers should clearly understand

the behaviour of Intelligent Agent, and identify the right learning algorithm. Designers

will identify the supervised and unsupervised learning algorithms during the identification

of the learning strategy attribute whether the type of the learning strategy is learning from

observation and discovery or learning from examples. Reinforcement learning requires the

designer to identify the main elements needed to conduct learning. This attribute can be

renamed to reinforcement learning attribute, as the supervised and unsupervised feedback

method can be identified from the learning strategy attribute; however, for classical

classification of learning, it is better to keep the attribute with the same name.

4.3.6 Leaming Location Attribute

Learning location attribute specifies the location(s) where the Intelligent Agent

performs learning. Analysts specify one location for static Intelligent Agent and different

locations for mobile Intelligent Agent. Designers should take into consideration the

requirements and constraints at the learning location to allow the Intelligent Agent to

conduct learning. Intelligent Agents that are using reinforcement learning and would like

to perform an exploitation or exploration processes should be able to trigger the

environment at the learning location. It will need to have access, authorisation and

privileges to monitor the environment or user reactions... etc.

96

4.3.7 Leaming Schedule Attribute

Leaming schedule attribute provides infonnation about when the Intelligent Agent

conducts learning and the duration of the learning process. During the identified learning

duration, designers should make sure that the Intelligent Agent would have all the required

resources to accomplish learning. For multi-Agent environments, designers should

construct a mechanism to reduce the effects of competition between Intelligent Agents to

use available resources during learning, such as memory usage, network bandwidth... etc.

Analysts should provide notes to the Agent class diagram about constraints for conducting

learning during the identified learning schedule.

4.3.8 Knowledge Representation Aftribute

Knowledge representation attribute provides the designer with the types of inputs

representations. According to the representation type, designers develop the algorithm for

manipulating such representation. Intelligent Agent can acquire inputs from single or

multiple representations. Intelligent Agents that acquire input from multiple

representations are more complex to develop. Analysts should provide a Note to describe

the data input specification such as time and duration for the data acquiring process. There

are variants for each type of representation. Analysts can add more codes to such

attributes, indicating its type and requirements.

4.4 Conclusion

This chapter has introduced two scenarios to use FIPA modelling TC Agent class

superstructure meta-model to model Intelligent Agents: the first scenario extends Agent

class and the second one uses the available Agent Physical Classifier and has introduced a

learning compartment to model Intelligent Agents. The second scenario is more

appropriate as there will be no need to develop new Intelligent Agent structures. The

97

second scenario also allows for global usage of UML to model Intel I igent-Agent oriented

systems.

The learning compartment provides description about the learning behaviour of

Intelligent Agents. This description will guide the designers and the developers during

both the design and the development phases of the system. The description consists of

attributes and notes. The attributes describe the main learning parameters, and the notes

provide behaviour description or constraints for the attached attribute. The learning

compartment contains the following attributes: learning-goal, commitment-strategy,

learning-strategy, learning-feedback method, knowledge-representation, background-

knowledge, knowledge-representation, and learning-schedule.

During the writing of the thesis, the only work done to use UML 2.0 to model

structural components of Agents was from the Foundation for Intelligent Physical Agent

(FIPA). The research builds upon, explores, and utilises this work and provides further

development to model the structural components of learning behaviour of Intelligent

Agents. Using the FIPA UML Agent Class superstructure meta-model would allow the

development of a single modelling language to model Objects, Agents, and Intelligent

Agents.

98

Chapter 5: Exploring UML 2.0 to Model the Learning Behaviour of Intelligent

Agents

This chapter explores the capability of the behaviour components of the Unified

Modelling Language (UML) version 2.0 to model the learning behaviour of Intelligent

Agents. Section 5.1 introduces the work done in this chapter. Section 5.2 explores the

capability of UML 2.0 activity diagrams and sequence diagrams to model learning

strategies of an Intelligent Agent, namely learning from observation and discovery and

learning from examples. The section proposes different scenarios of learning strategies

with examples from real life applications. Section 5.3 evaluates if UML 2.0 state machine

diagrams can model specific reinforcement learning algorithms, namely dynamic

programming, Monte Carlo, and temporal difference algorithms. Section 5.4 provides

conclusions of the result of the work done in this chapter.

5.1 Introduction

Unified Modelling Language (UML) version 2.0 is an upgraded release from UML

I. X especially behaviour diagrams: activity diagrams, use case diagrams, state machine

diagrams, and interaction diagrams. Research conducted during the past five years for

extending UML I. X to model Agent-oriented systems encourages the Object Management

Group (OMG) to include features in the new UML standard to be able to model dynamic

behaviours such as concurrency, branching, and paralleling processes. This research uses

UML activity diagrams and sequence diagrams to model learning behaviour. Activity

diagrams show the workflow of the learning process while sequence diagrams highlight

collaboration between Intelligent Agent and other entities during the learning process.

The research explores two types of learning strategies: learning from observation

and discovery and learning from examples. Learning from Observation and discovery is

99

an appropriate learning strategy for Intelligent Agents. Intelligent Agents will mostly work

in dynamic environments where examples for all environment states cannot be determined.

However, Intelligent Agents can use a learning from examples strategy to enhance their

skills if the rate of change in the environment is slower than the learning process, or if

there is a capability of cloning Intelligent Agents, and replacing them after learning. The

research provides different scenarios for each learning strategy case and examples of real-

life applications of the discussed scenarios to visualise the use of UML 2.0.

The research also evaluates whether UML 2.0 behaviour diagrams, namely state

machine diagrams, can model the learning feedback methods, namely learning

reinforcement. It explores the capability of state machine diagrams to model specific types

of dynamic programming algorithms, namely, iterative policy evaluation, policy

evaluation, policy improvement, and value iteration algorithms. It also investigates if state

machine diagrams are able to model Monte Carlo algorithms, namely policy evaluation

and control algorithms. Moreover the research uses this type of diagram to model temporal

difference (TD) algorithms, namely TD prediction, Sarsa, Q-1earning, Sarsa (k), and QO')

algorithms.

Reinforcement learning and unsupervised learning are the appropriate learning

feedback methods for Intelligent Agents working in a dynamic environment. Learning

from observation and discovery strategy uses the unsupervised learning feedback method

while learning from examples uses the supervised learning feedback method.

5.2 Modelling Learning Strategies of Intelligent Agents

This section explores UML version 2.0 capabilities in modelling Intelligent Agents'

leaming strategies. The research concentrates on two learning strategies; namely, leaming

from observation and discovery and learning from examples. The research provides

different scenarios for each leaming strategy. UML 2.0 behaviour diagrams model the

loo

scenario by illustrating UML 2.0 activity and sequence diagrams for each scenario. The

research also highlights examples from real life internet applications for the proposed

scenarios.

5.2.1 Leaming from Observation and Discovery Strategy

Learning from observation and discovery is an appropriate learning strategy that

Intelligent Agents can use especially in dynamic environments. For Intelligent Agents

working in dynamic environments, it is very difficult to program the required behaviour for

every status of the environment or action of users. Intelligent Agents should have the

capability to update the current hypothesis by observing the actions and reactions of either

the environment or users. Intelligent Agents should have the ability to trigger the

environment or the users to discover their reactions, to confirm or negate the current

hypothesis. Below are different modelling scenarios of learning from observation and

discovery strategy.

5. Z1.1 Scenario 1.1: "Learning From Observation and Discovery, Passive Observation,

Event action"

This scenario describes the Intelligent Agent that monitors the actions of the

environment or users, and learns by passive observation strategy. The Intelligent Agent

starts the learning process as soon as the environment sensors detect an action. Figure 5.1

shows the UML activity diagram of this scenario with the parameters of the learning

strategy at the figure title. The following steps describe the UML activity diagram of this

scenario:

1. The activity diagram contains two swim lanes: environment sensors and

Intelligent Agent (iAgent). Each swim lane contains actions and activities

of the owner of the mentioned swim lanes.

101

2. The Intelligent Agent records the received actions of the environment

sensors with which it observes the environment status.

a. If the Agent decides to continue monitoring the actions of the

environment, the control of flow moves to the event-arrive

action (Italic format represents UML activity titles) in the

environment sensors' swim lane.

b. If the Agent decides to stop observation, flow of control

moves towards the cluster-actions activity.

Activity Diagram
Learning from Observation and Discovery

Passive Observation - Event Action

environment sensors lagent

[End of observation]

Event-arri e

-7
ecordl-actionj-->ý cluster. ir actions

update.
hypothesis

[Continue teaming]

Figure 5.1 Activity diagram of scenario 1.1

3. After classifying the recorded actions, the Intelligent Agent updates the

current hypothesis.

102

a. If the Intelligent Agent wishes to continue learning, the flow

of control will point to the event-arrive action state.

b. If the Intelligent Agent decides to finalise learning, the flow

of control will point to the end of flow action state.

Autonomous Email Filter
Activity Diagram

Learning from Observation and Discovery
Passive Observation - Event Action

environment sensors lagent

(End of observation]

Email-arrives Record user- Cluster-actions
action

Update-Email-Filters-I
database

[Continue learning]

Figure 5.2 Activity diagram of email filter Intelligent Agent

An example of this scenario is an Intelligent Agent that filters users' email

messages. The Intelligent Agent assists the user to sort the received email messages and

move each email message to its relevant folder. Through the observation process, the

Intelligent Agent starts to mimic the same actions the user conducts after a specific

threshold count of similar actions repeated a number of times. For example, the Intelligent

Agent observes that the user deletes without reading an email message. If the user deleted

an email five times without reading from the same sender, the Intelligent Agent

103

automatically updates the current hypothesis to allow the deletion of any new email

message received from that email address. Such a technique is very useful in combating

email sparnming and managing junk emails. Figure 5.2 shows an activity diagram for an

Intelligent Agent that is acting as an email filter.

Autonomous Email Filter
Cluster-actions Activity

Activity Diagram
Passive Observation - Event Action

iagent

<<datastore>>
Observation-buffer

(weight >=51

Identify-number-
. of-clusters us ter-o bse ýrve 7d-a

cýfiý

Figure 5.3 cluster-actions activity diagram

UML 2.0 activity diagrams show actions or activities of a process. Activity is a

combined action abstract to allow diagrammatic visualisation. Figure 5.3 shows the

activity diagram of the decomposition for the cluster-actions activity. The following are

the steps taken by the Intelligent Agent to cluster the recorded actions:

1. Retrieve the actions that the user has repeated five times or more from the same

email address from the observation_ buffer data-store node, where the Agent has

recorded observations.

2. Identify the number of clusters according to the number of actions.

104

3. Assign each email address according to the email taken by the user to its relevant

cluster. Different conceptual clustering algorithms can be used for this activity

4. The flow of control points to the end of flow action state.

Sequence Diagram
Leaming from Observation and Discovery

Passive Observation, Event Action

E Jig-cient ±I : sensor
I

I

!! ý I hygothesis

I

[continueobservaboý = twel

Send saved observations

Return saved observation

Cluster observations

Select current hypothes S,

Return cu--r-r-en Tjp-ýti;; si; F

Update hypothesis

Figure 5.4 Sequence diagram of scenario 1.1

105

The UML sequence diagram identifies four entities for scenario 1.1: Intelligent

Agent, environment sensor, buffer, and hypothesis. The notation of the Intelligent Agent is

as proposed in chapter 4. The interaction fragment loop indicates that the Intelligent Agent

conducts learning, until it decides to stop learning. This shows the autonomous behaviour

of the Intelligent Agent. Figure 5.4 shows the sequence of messages between the

Intelligent Agent and the other entities during the learning process.

5.2.1.2 Scenario 1.2: "Learningfrom Observation andDiscovery, Passive Observation,

Time Event"

This scenario describes an Intelligent Agent that uses learning from observation

learning strategy. The Intelligent Agent is a passive learner as in the previous scenario.

The Intelligent Agent starts to learn actions of the environment or users according to

specific time or duration rather than action received, as in the previous scenario. The

following are the steps that describe the UML activity diagram of this scenario:

1. The activity diagram contains two swim lanes: environment sensors and Intelligent

Agent. Each swim lane contains actions and activities of the owner of the above

mentioned swim lanes

2. The Intelligent Agent starts to record the actions of the environment or users when

a time signal arrives. The Intelligent Agent observes the environment status

through environment sensors.

a. If the Intelligent Agent decides to continue monitoring events, the control of

flow moves to the time-event action in the environment sensor's swim lane.

b. If the Intelligent Agent decides to stop monitoring events, object flow

moves towards the cluster-observations activity. Recorded actions will be

delivered to the cluster-observations activity

3. After clustering actions, the object flow transfers the clustered actions to the

update-hypothesis activity. The Intelligent Agent updates the current hypothesis.
106

a. If the Intelligent Agent wants to resume learning, the flow of

control will point to the time-event action state.

b. If the Intelligent Agent decides to finalise learning, the flow

of control will point to the end of flow action state.

Activity Diagram
Learning from Observation and Discovery
Passive Observation -Time Event Action

environment sensors lagent

t= special value
[End of observation]

-Eustter-observati
ýs

-ý ecord-actio)ýný ! r -

Epd-ate-hypothesis

[Continue teaming]

Figure 5.5 Activity diagram of scenario 1.2

An example of such a scenario is an Intelligent Agent that learns the internet

browsing behaviour of enterprise employees. The Intelligent Agent starts to identify a

schedule for the browsing habits of the employees. The Intelligent Agent monitors if there

are some websites visited regularly during a specific duration, and classifies them

according to their access time. The Intelligent Agent browses the identified websites and

updates the cache of the enterprise internet server before the identified time. Such process

assists in the efficient use of the enterprise internet bandwidth. The Intelligent Agent

learns the enterprise employees browsing habits from observing the visited websites; any

change in any previous learned schedule will require the Intelligent Agent to update the
107

hypothesis with a new browsing schedule. Figure 5.6 shows the activity diagram of the

enterprise Internet server.

Activity Diagram
Learning from Observation and Discovery
Passive Observation - Time Event Action

Internet Proxy Server Intelligent Agent

environment sensors lagent

[End of observation] t special value
'K7 Record-visited- Cl t b it us er-we s es website

C
e v ý

T

we gluster ed - websites

Update-websites-database]

[Continue leaming]

Figure 5.6 Activity diagram of internet proxy server Intelligent Agent

UML Sequence diagram of scenario 1.2 (figure 5.7) shows the time constraint T

where the Intelligent Agent starts to record action when the time constraint parameter is

equal to T. This sequence diagram shows the sequence of messages between the

Intelligent Agent and other entities in the system. The Intelligent Agent starts learning

when the time variable t equals T.

108

Sequence Diagram
Leaming from Observation and Discovery
Passive Observation, Time Event Action

E Jaaent : hyoothgaia

I
: sensor : bufter

I

[continueobservatio true]

021ý . --j I

Record eýent
t-T

Eventsaved

Send saved observations

Return saved observation

Cluster- observations

Select current hypothesisl

-- -- --- ---- - --------- Return current hypothesi

Update hypothesis I

I -ii 7yyppo -th esi-s-u -pd-a-t e--d-f

Figure 5.7 UML Sequence diagram for scenario 1.2

5.2.1.3 Scenario 1.3: "Learningfrom Observation and Discovery, Passive Observation,

Time orAction event"

This scenario integrates the above two scenarios (figure 5.8). The Intelligent Agent

starts to learn actions of the environment or user at a specific time or action. The

Intelligent Agent is also a passive learner during this scenario. This scenario integrates

event action and time event nodes to allow the Intelligent Agent to start learning as soon as

one of the nodes is active. The following steps describe the UML activity diagram:

109

1. The activity diagram contains two swim lanes: environment sensors and Intelligent

Agent. Each swim lane contains the actions and activities of its owner.

2. The Intelligent Agent monitors and records time events and actions received by the

environment sensors.

a. If the Intelligent Agent decides to continue monitoring

events, the control of flow is directed towards the

monitoring actions: time events and action events.

b. If the Intelligent Agent decides to stop monitoring events,

object flow points towards the cluster-observations activity.

Recorded actions will be delivered to the cluster-

observations activity

2. After clustering the recorded actions, object flow delivers clustered actions to the

update-hypothesis activity.

3. The Intelligent Agent updates the current hypothesis.

a. If the Intelligent Agent wants to resume leaming, the flow of

control will point to the monitoring actions

b. If the Intelligent Agent decides to finalise learning, the flow

of control will point to the end of flow action state

110

Activity Diagram
Learning from Observation and Discovery

Passive Observation -Time Event Action and Event Action

environment sensors lagent

t= special value [End of observation]

cluster. iir 111,11 ction obserrvations

E%WK affk*

e-hypothesiýs

[Continue learning] If

Figure 5.8 UML activity diagram for Scenario 1.3

An example of such a scenario is the previous Intelligent Agent example of

scenario 1.2 where the Intelligent Agent not only monitors time and clusters the visited

website according to the time users who have visited this website, but also monitors the

updating schedule of the selected websites. Thus, the Intelligent Agent updates the

enterprise intemet cache with new versions of the selected websites according to their

updating rate. This allows the Intelligent Agent to access the intemet according to the

updating schedule and not to congest the enterprise intemet bandwidth with browsing the

selected websites regularly. Figure 5.9 illustrates the activity diagram of intemet proxy

Intelligent Agent during leaming.

III

Activity Diagram
Learning from Observation and Discovery

Passive Observation -Time Event Action and Event Action
Internet Proxy Cache Server Intelligent Agent

0-

environment sensors lagent

t special value Record-visited-
website cluster-observation

Website- [End of observationj
r s

Event arrive
esse

Update-webslýe
database

Update cache

(Continue leaming]

Figure 5.9 UML activity diagram for Intemet Proxy Server

The UML sequence diagram in Figure 5.10 shows the combination of looping and

parallel notation to describe the behaviour of an Intelligent Agent. The sequence diagram

depicts how that Intelligent Agent communicates with three entities: environment sensor,

buffer, and hypothesis. The sequence diagram demonstrates the sequence of message and

requests between the Intelligent Agent and other entities during the learning process. Two

loops and one parallel interaction fragment control the learning process. This sequence

diagram is more complex than the previous two diagrams.

112

Sequence Diagram
Learning from Observation and Discovery
Passive Observation, Time or Event Action

: iaQent : bvpothesis : sensor : buffer

I

i [contnueobservato) = true] II

P Event arrive
Record event

------- I- ---- : 21
t=Tl Record event

Send saved observations

Return saved observation

Cluster-observation

Select current hypothesis,
ý4

-- - ---------- -- current hypothesis[

Update hypothesis

Figure 5.10 UML sequence diagram for scenario 1.3

5.2.1.4 Scenario 1.4: "Learning From Observation and Discovery, Active

Experimentation, EventAction"

Unlike the previous scenarios, this scenario describes Intelligent Agents that act as

an active leamer. The Intelligent Agent learns the environment or user reactions after

issuing a triggering action. According to the observed reaction , the Intelligent Agent

updates its hypothesis by confirming or negating an entry in the hypothesis.

113

Activity Diagram
Learning from Observation and Discovery

Active Experimentation - Event action

iagent environment-
sensors

trigger-environment _
rEvent-a:

rýdve]

record-.
reaction

(Cluster-observatiýý reactions

Continue-leaming

I'f
(§>*--<ýýUTpdate-7-hypothesisý

Figure 5.11 UML activity diagram for Scenario 1.4

Figure 5.11 shows a UML activity diagram for scenario 1.4. This activity diagram

introduces the node by sending a signal action to trigger the environment or a user. The

following steps describe the UML activity diagram:

1. The activity diagram contains two swim lanes: environment sensors and Intelligent

Agent. Each swim lane contains actions and activities of the owner of the said

swim lanes.

2. The Intelligent Agent issues a triggering action to the environment.

114

3. The Intelligent Agent monitors the reaction of the environment and as soon as the

Intelligent Agent observes reaction, it records the reaction and passes the reaction

to the cluster-observations activity.

4. The Intelligent Agent classifies the reaction and passes the classified reaction to the

update-hypothesis activity.

5. The Intelligent Agent updates the current hypothesis by conf inning or negating an

entry in the Intelligent Agent! s hypothesis.

a. If the Intelligent Agent decides to continue learning, the

flow of control points to the merge node to provide another

trigger action.

b. If the Intelligent Agent decides to finalise learning, the flow

of control points to the end of flow action state.

Figure 5.12 shows UML sequence diagram for scenario 1.4. The diagram

illustrates how the Intelligent Agent sends a message to trigger the environment through a

gate to an entity outside the sequence diagram. The Intelligent Agent receives the reaction

to the triggered message through the environment sensor.

An example of such a scenario is 'enterprise Intelligent Agent search assistance'

When an employee searches through the enterprise search engine, the search engine might

return the results in multi-pages due to the large number of returned links. Users browse

the upper entries in the returned list, and do not give much attention to results at the bottom

of the list. The search engine sorts the entries in the returned list according to the rank of

the link. The rank of links depends on the number of times employees have browsed the

link with the same or similar queries.

The Intelligent Agent would like to discover whether the returned links at the

bottom of the returned list might have higher rank or not. The Intelligent Agent selects

some of the lowest ranking returned links and lists them at the top section of the returned

list when an employee executes a similar query. The Intelligent Agent observes the

115

reactions of the employees and learns if they browse the link or not. If the number of

employees browsing the link exceeds a specific threshold, the rank of the link is increased;

otherwise, the link keeps its low rank. The Intelligent Agent search assistance would assist

the employees to share their experience of searching and browsing with each other and

would allow better search results as each enterprise or group has common interests.

Sequence Diagram
Learning from Observation and Discovery

Active Experimentation, Event Action

: iaQent : senspr r : byffer
[yr,

othesis 1
[continue-learning true)

iment

Event arrive

record reaction

r---------reaction
saved

duster observafion

Select current hypothesis

current

Update hypothesis

----- -- ----------------
t
---------- - ---------- --- hypothesis updated II

Figure 5.12 UML Sequence diagram for scenario 1.4

116

Activity Diagram
Learning from Observation and Discovery

Active Experimentation -Time action

iagent environment-
sensors

>
Ftrigg-ýeýr-envtronment

record-
reaction

Continue4eaming

Cluster-observabons reactions

Update-hypothesis

Figure 5.13 UML activity diagram for Scenario 1.5

5.2.1.5 Scenario 1.5: "Learningfrom Observation and Discovery, Active

Experimentation, Time reaction"

This scenario describes an Intelligent Agent that issues a trigger action to the

environment or a user, and monitors the reaction related to time. According to the

observed action, the Intelligent Agent updates the current hypothesis by confirming or

negating an entry in the hypothesis. The UML activity diagram is similar to the previous

scenario but only differs in having a node of the type 'Accept time event action' rather than

the 'Accept event action' node. The following steps describe the UML activity diagram:

1. The activity diagram contains two swim lanes: environment sensors and Intelligent

Agent. Each swim lane contains actions and activities of the owner of the

abovementioned swim lanes.

2. The Intelligent Agent issues a triggering action to the environment or the user.

117

3. The Intelligent Agent monitors the reaction of the environment over a specific

duration, and records the received reaction.

4. The Intelligent Agent clusters the observed reaction, and passes the observed

clustered reactions to the update-hypothesis activity.

5. The Intelligent Agent updates its hypothesis by confirming or negating an entry.

a. If the Intelligent Agent wants to continue learning, the flow

of control will point to the merge node for providing another

triggering action.

b. If the Intelligent Agent decides to finalise learning, the flow

of control will point to the end of flow action state

The Enterprise Internet Search Intelligent Agent is an example of such a scenario

where the Intelligent Agent tests the response time for searching through specific web

servers. The Intelligent Agent sends a query for different web servers and records the

response time. According to the response time, the Intelligent Agent updates its

mechanism by sending a query to slow-response servers before fast-response servers. This

allows the Intelligent Agent to acquire the results of the query from all servers over an

acceptable duration. Such a learning mechanism will enhance the performance of the

Intelligent Agent in terms of time and quality.

Figure 5.14 shows UML sequence diagram for scenario 1.5. The diagram shows

two-loop interaction fragment frames. The first one continues to execute until the

Intelligent Agent decides to stop observation and learning. The second loop stops when

the t operand is equal to T, where T represents a specific time. The rest of the sequence

diagram is similar to the sequence diagram of the previous scenario.

118

Sequence Diagram
Learning from Observation and Discovery

Active Experimentation, Event Action

lanent

I
: senspr tuffer

I

othesis

[confinue-learning
1

truel T
ger-environment

loopI t -T I
I

record reaction

reaction

cluster observation

Select current hypothesis,

------ - --- - ------------
t--

--------- -- --------- Return current hypothesiq

Update hypothesis

--- - ---- - -------- - ---- ---------- - ------------ 4
hypothesis updated

Figure 5.14 UML sequence diagram for scenario 1.5

5.2.2 Leaming from Examples Strategy

Leaming from example strategy is not adequate for Intelligent Agents that are

working in dynamic environments. It is very difficult to provide examples for all

situations that Intelligent Agents will deal with. Intelligent Agents can use the learning

from examples strategy, if the rate of change in the environment is slow, or if there is a

process of cloning the Intelligent Agent and replacing it after learning. The objective of

using learning from examples is to enhance an Intelligent Agents'skills. Below are some

scenarios for using UML version 2.0 behaviour diagrams to model learning from example

strategy.

119

5. Z2.1 Scenario 2.1: "Learningfrom Examples, Non-Incremental Learning, Use

Background Knowledge, Retrieve all Examples, Classify"

This scenario describes an Intelligent Agent that uses learning from examples as a

learning strategy. The Intelligent Agent learns through non-incremental learning, and uses

available background knowledge in classifying the available examples. After receiving all

the available examples, the Intelligent Agent starts the classification process. The

Intelligent Agent updates the current hypothesis with the new classified examples. The

UML 2.0 activity diagram for scenario 2.1 has two swim lanes, one for the Intelligent

Agent and the other for the tutor. The tutor can be a user, another Intelligent Agent, or any

source of knowledge that can provide examples. Figure 5.15 shows the activity diagram

for scenario 2.1. The following steps describe the scenario:

1. The Intelligent Agent requests the tutor to send an example.

a) If there is an available example, the tutor sends the requested example, and the

control of flow points towards 'receive example activity' (Step 3)

b) If there is no available example, the tutor returns end of example flag and the

control of flow point toward the join node (step 4).

2. The Intelligent Agent conducts parallel actions shown by the fork node:

a) The Intelligent Agent stores the received example in a buffer;

b) The Intelligent Agent requests another example from the tutor.

3. When the end of an example flag is true, the Join node transfers the stored

examples in the buffer with a relevant hypothesis to the classifiLyxamples activity.

4. After classifying the received examples, the flow of control points towards

updateý_ýpothesis activity.

5. After updating the hypothesis, the control of flow terminates at End of flow node.

120

Activity Diagram
Leaming trom Examples

Non-incremental, Use Background Knowledge. Receive Examples first then Classify

iagent tutor

Request example ý,.
(.

end exampl

Receive exampllýes

[end of examples)

example

<<datastore>> -c<centralBuffer>>
is hypothesi
_j

Example buffer

[all]

classify examples

=updat
hypothesis

Figure 5.15 UML activity diagram for scenario 2.1

Figure 5.16 illustrates UML sequence diagram for this scenario. The Intelligent

Agent communicates with three entities to conduct learning from examples: tutor, buffer,

and hypothesis.

121

UML 2.0 introduces the central-buffer' 3 and data-store 14 object nodes; buffer and

hypothesis are central-buffer and data-store object nodes respectively. The loop fragment

shows that the Intelligent Agent conducts learning from examples until there are no more

available examples.

Sequence Diagram
Learning from Examples

Non-Incremental Learning,, Use Background Knowledge, Retrieve all Examples before Classifying

sd scenario 2.1 j

2-Ment F. ia
tor EI E. -I I

io-OP [available examples]
Requestexample

-- F I

I

V1. i $ffVw
sew aii ýXNMPIVS

-- ---- - ---- - ---- - ----
I

i

Rekm erý I

Select current hypothesis,
I

I-C
------ --- - ------- I ----- --[----- - ---- - ---- - --------

I--
------- --ýeturn current hypothesisý ----------------

Update hypothesis

- hypothesis updated --- - --- - -----

Figure 5.16 UML sequence diagram for scenario 2.1

13 Central buffer node is an "object node for managing flows from multiple sources and destination"

(OMG, 2003)

14 Data store node is "a central buffer node for non-transit information" (OMG, 2003).

122

Activity Diagram
Learning from Examples

Non-incremental, Does not use Background Knowledge, Receive Examples first then Classify

iagent tutor

Request example Send example -7

examole iý

Receive examples

I

(end of e pies] xam
examole

<<central Buffer>>
Example

fall]

FE
classify examples]

Ld

F ýI - -- *<--ý update h: Fpotheslsý

Figure 5.17 UML activity diagram of scenario 2.2

5.2.2.2 Scenario 2.2: "Learningfrom Examples, Non-Incremental, Does not Use

Background Knowledge, Receive Examples, Classify"

The difference between this scenario and the previous one lies in the use of

background knowledge in classifying examples. In this scenario, the Intelligent Agent

123

does not use background knowledge in the classifying examples. Figure 5.17 shows that

examples stored in the buffer are the only input to the "classifying examples activity". As

in the previous scenario, the activity diagram has two swim lanes: one for the Intelligent

Agent and another for the tutor. The tutor can be any source of knowledge that can supply

examples, such as user, another Agent ... etc.

The activity diagram steps for this scenario are the same as for the previous one but

they are only different at Step 3. The inputs to the classify-examples activity are the

examples in the buffer. The Intelligent Agent does not use the available hypothesis during

the classification process. Figure 5.17 illustrates the activity diagram for this scenario.

Sequence Diagram
Learning from Examples

Non-Incremental Learning, Does not Use Background Knowledge, Retrieve all Examples before
Classifying

sdscenario2.2 j

EI
II

Eh id
I 22-pi

[available exam es) PI
Request example

L
- ----

jI
-- --

I
iýýia Wp le

i F- I I
-j --------------------------- I 1< -------------- - ----- - -- I E is sawd .M P

StAact all examVios

1<
---------- - ---------- - --- ----------------- - --------

Retum ex amp*l

F 'ZL-ay

Update hypothesis

I< --------------------------- -------- - ----------------- ------------- ------------- hypothesis updated

Figure 5.18 UML sequence diagram for scenario 2.2

124

The UML sequence diagram for this scenario shows that the Intelligent Agent

communicates with the available hypothesis only to update its entry after classifying the

received examples. Figure 5.18 demonstrates the sequence of communication between the

Intelligent Agent and other entities within the sequence diagram.

5.2.2.3 Scenario 2.3: "Learningfrom Examples, Non-incremental, Use Background

knowledge, Receive example, classify, update hypothesis, and then request

another example "

This scenario describes the Intelligent Agent that uses the learning from example

strategy. The learning process is a non-incremental one, and the Intelligent Agent uses

background knowledge during the classification of the received example. The Intelligent

Agent classifies the example immediately before requesting another example. The

learning process ends when end ofexamples flag is true. Figure 5.19 illustrates an activity

diagram for this scenario. The Intelligent Agent requests an example from the tutor,

classifies the example, and updates the hypothesis before requesting a new example. The

following steps describe the scenario:

1. The activity diagram contains two swim lanes, the Intelligent Agent and the

tutor swim lanes.

2. The Intelligent Agent requests an example from the tutor

a. If end of examples flag is false, tutor sends example.

b. If end of examples flag is true, flow of control points towards the

end of flow node.

3. The Intelligent Agent receives the example and integrates the example with

the current hypothesis.

4. The Intelligent Agent classifies the received example.

5. The Intelligent Agent updates the hypothesis with the new classification.

6. The Intelligent Agent requests new examples (Step 1).

125

Activity Diagram
Leaming from Examples

Non-incremental, Use Background Know4edge. Receive Example, Classify, Update Hypothesis, and then
Request another Example

! agent tutor

Request example Send example -T

example

Receive examples
T

exami2le [end of ex mples)

<<datastore>>
Example buffer

all

classify examples

_!

SJ

Ld

update hypo-tho-si-s]

Figure 5.19 UML activity diagram for scenario 2.3

126

Unlike the previous scenario, the UML sequence diagram (figure 5.20) for this

scenario shows that the Loop Interaction Fragment holds all communications between the

Intelligent Agent and other entities in the sequence diagram. The diagram has three

lifelines: Intelligent Agent, tutor, and hypothesis. The Intelligent Agent terminates

learning when the available-example flag is false. This scenario is recommended when all

entities are available and on-line.

Activity Diagram
Learning from Examples

Non-incremental, Use Background Knowledge, Receive Example, Classify, Update

, and then Request another Lxample

sd scenario 2.3

E-ia(
ent Autor

I

Jhvoolhesis

I

10 [available examples]

Request example

I-C
--------------------------- Send example

Select cuffent hypothesis

Return cýrrent hypothesis

xamples

Update hypothesis

k ---------------------------- hypothesis updated III

Figure 5.20 UML sequence diagram for scenario 2.3

127

5.3 Modelling Learning Feedback Methods of Intelligent Agent

There are three types of leaming feedback methods: supervised leaming,

unsupervised leaming, and reinforcement learning. Learning from examples is a

supervised leaming feedback method whereas learning from observation and discovery is

an unsupervised learning feedback method. The most appropriate leaming feedback

methods for Intelligent Agents that deploy in dynamic environments are reinforcement

learning and unsupervised learning. In dynamic environments, it is very difficult to assign

a tutor that provides the correct answer for every action Intelligent Agents carry out.

Nevertheless, Intelligent Agents require some guidance for the achieved performance that

is lacking in unsupervised learning feedback method. Unlike the two previous sections in

modelling scenarios, the following section evaluates the capability of UML state machine

diagrams to model specific reinforcement learning methods and algorithms, namely

dynamic programming, Monte Carlo, and temporal difference methods and their different

algorithms.

5.3.1 Reinforcement Learning Feedback Methods

Intelligent Agents that use the reinforcement-leaming method learn what to do, and

how to map situations to actions in order to maximise a numerical reward signal (Sutton

1998). Unlike supervised learning, the tutor does not inform the Intelligent Agents which

actions to take; rather, Intelligent Agents discover which actions yield the most reward by

trying them. Reinforcement leaming is adequate for learning from interaction and when

the environment is dynamic. The Intelligent Agent receives some evaluation of its actions

but the tutor does not tell it the correct action (Russell and Norvig, 1995). The tutor in

reinforcement learning can be a user, an environment, or another Agent. The following

sections evaluate if UML 2.0 state machine diagrams can model dynamic programming,

Monte Carlo, and temporal difference algorithms.

128

5.3.1.1 Dynamic Programming- Policy Iteration Algorithm

The Intelligent Agent uses Policy iteration algorithm to find an optimal policy that

it can use. Figure 5.21 shows the policy iteration algorithm that contains policy

evaluation and policy improvements algorithms. Figure 5.22 depicts a UML state

machine diagram for policy iteration algorithm. The diagram shows five states;

initial, initialisation, poliqLyvaluation, policy_improvement, andfinal states. The

polioLyvaluation and policy. im
_ provement are composite states that contain sub-

states. The initialisation state initialises value states and policy used by the

intelligent agent.

1. Initialization
V(s) ER and -, r(s) E A(s) arbitrarily for all sES

2. Policy Evaluation
Repeat

A 4-- 0

For eacli s C- S:
V *--- V(S)
V(S)., - E "Pir('s) "+ -yv(sl) liz,, (, I 88 0 as

I llA. X(A, IV -V (S)

until A<0 (asintill positive number)

3. Policy Improvement
policy-stable +-- true
For eacli s (=- S:

b +- v(s)
7r(S) 4-- Ug 11'111Xa Eat P,

881
If b -76 7r(s), then policy-stable false

If policy-stable, flien stop; clsw. - go to 2

Figure 5.21 Policy iteration algorithm (Sutton and Barto, 1998)

129

State Machine Diagram

Reinforcement Leaming - Dynamic Programming - Policy Iteration Algorithm

Policy_iteration)

InTitialisation

entry I Tr (s) 6 A(s)
(s) 0R xit /Vr

Policy_evaluation

C>-(:)

Policy_improvement

[not policy_stable] CX:)

[policy_. §table)

Figure 5.22 UML State machine diagram for policy iteration algorithm

The following sections describe thepolicy_evaluaflon and thepolicyjmprovement

sub-states. The Intelligent Agent stops learning when the policy- stable parameter is true,

i. e. stable policy. If the policy_stable parameter is false the Intelligent Agent transfers to

thepoliQLýevaluafion state to continue the exploration of stable policy.

130

Input 7r, the policy to be evaluated
Initialize V(s) = 0, for all sE S+
Repeat

A +- 0
For each sES:

v . 4- V(S)
V(s) 7r(s, a) E,,, P. ",, + 7V(si)]
A 4-- In' tX(A, IV -V (S)

Until A<0 (a Small 1)ositi-v-c witilber)
Output V ý- V7,

Figure 5.23 Iterative policy evaluation algorithm (Sutton and Barto, 1998)

5.3.1.2 Dynamic Programming - Policy Evaluation Algorithms

The policy evaluation algorithm attempts to change the current value function to

resemble the true value function of the current policy. Figure 5.23 depicts the policy

evaluation algorithm as described by Sutton and Barto (1988) and Figure 5.24 shows UML

state machine diagram that models the algorithm. The diagram has three states: start,

initialise, and PoUQLýevaluation states. Each state contains activities that the Intelligent

Agent performs during the state. PolicXyvaluation state is a composite state that contains

sub-states for the Intelligent Agent. The following are the descriptions of the components

of the state machine diagram:

1. Initialise state: While the Intelligent Agent is in this state, it acquires the policy

through Read 7r activity and initialises the Value function, V(s) to 0 for al I states.

2. Policy-evaluation state: This a composite state that consists of multiple states as

follows:

a. Inifialise_s state: During this state the Intelligent initialises counter s and A

to zero

b. Learn value fn: The Intelligent Agent conducts three activities during this

state; the first one setvalue (v, V(s)) which set v to the current V(s), where s

is the counter for the current state. The second setvalue activity sets V(s) to

131

the results of Z. n (s, a) Is' p'ss, [R'ss- +0 V(s')]. The Third setvalue activity

sets A to highest value of current A and the Iv-V(S)I.

c. If the value of A is less than a specific, small, positive number

StopLeaming state the agent sets V" to V

d. Otherwise, the Intelligent Agent will continue to the decision "pseudostate",

if this is the last state s in S.

State Machine Diagram

Reinforcement Learning - Dynamic Programming - Policy Evaluation Algorithm

Policy_Evaluation

L The agent would go to the StopLearning state. During the

H. Go to final state

i. Set s to 0 and then transfers flow to state b, Learn value fn sub-state.

fn sub ii. Else set s to s' and then go to state b, Learn value -state.

Initialise
entry I Read 7T
oo / Inifialise (V(s), 0)

[No] setvalue (s, s'y

\-1 &>=

[yes] setvalue(s, O) /

11 Leam_Valuefn

entry I setvalue(v, V(s))
do / setvalue(V(s), 1. Tr (s, a) Is* +a V(s')])
pxit / setvalue(A, max(A. Iv - V(s)l))

t entry /setvalue (A, 0)
exit / setvalue (s. 0)

t A< 0]

StOPLOarning

entry / setvalue (\r , V)

Figure 5.24 State Machine Diagram for policy evaluation algorithm

132

5.3.1.3 Dynamic Programming -Policy Improvement Algorithm

The policy improvement algorithm tries to change the current policy to make it

better. Figure 5.25 depicts the UML state machine diagram for the policy improvement

algorithm as stated in Figure 5.21. The diagram shows five states: initial, initialise-Policy,

set tem .
- p, improve_polic)4 and decision states. The following describe the main sub-states

of the policy improvement state:

y state: During this state, the Intelligent Agent sets the 1. Initialise Polic

policy-stable parameter to true and s parameter to zero, first state.

2. Set tem state: During this state, the Intelligent Agent sets the b parameter -P
to Tr (s), current policy value for state s.

State Machine Diagram

Reinforcement Learning - Dynamic Programming - Policy Improvement Algorithm

Policy Imigovemwit
Initiallsq_policy

------ > entry/ setvalue (Policy-stable. True)
exit if setvalue (s, O)

I

SeLtemp

[No] setvalue (s, s) I entry/ setvalue (b , (S9))

[Yes] Ms) =bj Improve_policy

;

ast State; ---'ý

ýe/

setvalue (Tr(s), arg max. Ts' p', - (R4... + a WWAD

I Tr(s) b] setvalue (Policy-stable, falsey IT(s)

j

Figure 5.25 UML State machine diagram for policy improvement algorithm

3. Improve_policy state: during this state, the Intelligent Agent sets the current

policy value for state s to "arg maxa Is' pNs' [Rass' +0 V(s')]".

133

a. If TT(s) is not equal to b, then the intelligent Agent sets policy_state

parameter to false and transits to the decision state

b. Else, go to decision state.

4. Decision state:

a. If the current state is not the last state, then Intelligent Agent

increments s to s' and goes back to set_temp state to continue

leaming

b. Else, the Intelligent Agent moves to final state to exit from the

policy improvement composite state.

5.3.1.4 Dynamic Programming - Value Iteration Algorithm

Figure 5.26 depicts the value iteration algorithm as identified by Sutton and Brato

(1998). The UML state machine diagram of this algorithm has three states; initial,

initialize, and value-iteration states (figure 5.27). The value_iteration state is a composite

state that includes six sub-states; set_s, set_value n, learn_yaluefn, decision, stoplearning,

andfinal node sub-states.

Initialize V arbitrarily, e. g., V(s) = o, for till sE S+

Repeat
A 4--
For each sES:

V +- V(S)

V(. 5) +- In aa ax p.., [Ra + yV(SI)] ss A +- max(A, Iv - V(s)D
until A<0 (a small positi've number)

Output a deterministic policy, 7r, such that
[jZa

L 8 -YV(S')] ir (s) = arg m ax,,, so +

Figure 5.26 Value iteration algorithm (Sutton and Barto, 1998)

134

During each state or sub-state of the UML state machine diagram of the value-

iteration algorithm, the Intelligent Agent performs the following activities:

1. Inifialise state: The Intelligent Agent acquires the policy under evaluation

and initialises V to 0 for all available states.

2. Set-s sub-state. The Intelligent Agent set A and s to 0.

3. Set-valuefn sub-state: During this state, the Intelligent Agent sets the

parameter v to the current value function, V(s).

4. Leam-yaluefn sub-state: The Intelligent Agent conducts two activities

during this state: entry and exit activities. At entry activity, it calculates

current Value function V(s) by the getmax procedure. Before exiting from

this state, it sets A to the highest of A and Iv - V(s)l.

5. If A<e (a small positive number)

i. StopLeaming sub-state: The Intelligent Agent sets policy 7E

(s) to arg maxa Es' pss' [Rass' +a V(s')]

H. Go to Final state.

6. Else; transfer flow to Decision sub-state

i. If this is the last state then the Intelligent Agent sets s to 0

ii. else, the Intelligent Agent sets s to s'

7. The Intelligent Agent returns to set Value
-

fn sub-state to continue learning.

135

State Machine Diagram

Reinforcement Learning - Dynamic Programming - Value Evaluation Algorithm

ol Initialise

entry I Read iT
, exit/ initialise (V(s), 0)

value valuation) [No] set (s, s') /

1-1 1., Selý_Valuefn
st State) nt! ry / ste(ts(A, 0) --texit

/s 6)0) tentry / se NNW) e 7 (yes] set ts, u) I

[A 01
Learn Valuefn

entry I (V(s) = getmax(Es' Pa. - [Rn. e +a VOID

ý-4exit

/ set (A. rnax(A, Iv - V(S)I)

g ei

entry I seq Tr(s), arg max, Is' pl... [R'... +a V(S')])

Figure 5.27 UML state machine diagram for value evaluation algorithm

5.3.1.5 Monte Carlo Policy Evaluation Algorithm

Figure 5.29 depicts the UML state machine diagram for first-visit Monte Carlo

policy evaluation algorithm that is shown in Figure 5.28. The diagram has four states;

initial, initialise geLepisode, and receive_return states. During each state, the Intelligent

Agent conducts the following activities:

1. Initialise state: The Intelligent Agent initialises policy, sets V to an arbitrary state-

value function, and initialises R(s) to an empty list.

2. Gq e _ pisidde state: The Intelligent Agent requests to get an episode through the

pisode activity and set counters to -1. generatq e
136

Initialize:
7r policy to be erOuated
V an arbitrary state-%mlue function
Returns(s) +- an empty list, for all s ES

Repeat forever:
(a) Generate an episode using -, r
(b) For each stme s appearing in the episode:

R- return following the first occiurence of s
Append R to Rctm-mv(s)
V(s) --- average (Returns (s))

Figure 5.28 First-visit Monte Carlo method for V estimating V "(Sutton and Barto, 1998)

3. Receive_relum state: During this state the Intelligent Agent increment counters at

entry, receives reward R through geLreward activity, appends R to R(s) through

append R activity, and calculates V(s) through averaging R(S). The get-reward

activity provides the return following the first occurrence of s.

4. If this is the last state, the flow returns to gq_episode state to generate a new episode.

5. Else, the Intelligent Agent loops back to receive_return state.

State Machine Diagram
Reinforcement Learning - Monte Carlo Policy Evaluation - First Visit MC Algorithms

ý ntry I Initialise (Tr)
d, o I set (V, arlAtrary state-value function)
At I Set (Returns (s), an empty list)

j

entry I generate__eplsode
exit / set (s. -1)

j

Receive-retum

entry / increment (s)
do / set (R, get reward) -I)P

Past s in

ýteplsodej

do/ set (R(S), append_R (not last sl
do / set (V(s), average (R(s))

Figure 5.29 UML state machine diagram for first-visit Monte Carlo policy evaluation algorithm

137

This algorithm does not have a final node as the Intelligent Agent always continues

to learn the value function for the current episode or generate a new episode to enhance its

perfortnance. The geLreward activity can be adjusted to provide a return at each visit of s,

thus the UML state machine diagram will be the same for Every-visit Monte Carlo policy

evaluation algorithm.

Sutton and Barto (1998) have provided the Black Jack card game as an example of

the Monte Carlo policy evaluation algorithm. Figure 5.30 depicts the UML state machine

diagram for the Intelligent Agent which tries to learn the best policy to play the card game.

The diagram has five main states; initialise, receive_cards, decision, dealer_turn, and

receive return states. The diagram also includes start, final, and merge states. The states

include activities that the Intelligent Agent conducts during the active state as follows:

1. Initialise state: This state has three activities; the first activity, initialise iT,

initialises the policy that the intelligent agent uses during the game. This

policy is to hit whenever the sum of the cards is less than 20. The second

activity, set V, initialises V to an arbitrary state-value function, while the

third activity, Return(S), sets the Return(s) to an empty list.

2. Receive-Cards state: During this state, the Intelligent Agent receives cards

from the Dealer.

3. Current-Sum decision state: This decision state routes the flow according to

the current sum of cards available with the Intelligent Agent as follows:

a. For Current Sum < 20: The Intelligent Agent requests cards and the

flow is transferred to the initialise state (step 2).

b. For 20 >=Current Sum< 21: The Intelligent Agent sticks and the

flow of transfer points to the dealer turn state.

c. For Current Sum> 21: The flow transfer to the Receive_return state.

4. Dealer turn state: During this state, the Intelligent Agent waits until the

dealer continues playing

138

5. Receive_rctum state: Ilic Intelligent Agent conducts three activities during

this state, in the first it gets the re%%m-d by get-reivard activity. The second

one is to append the return to the return list. Third, it calculates the value

function, V(s), by avcraging Return(s).

a. If the Intelligent agent decides to stop playing, the flow transfers to

final node.

b. Else, the flow transfers retums to receive_cards status and the

Intelligent Agent requests the start of a new game.

State Machine Diagram
Reinforcement Leaming - Monte Carlo Policy Evaluation - Blackjack Card Game

entry I initiallse Tt (hit < 20)
do I set V
exit I Returns (s) - an empty list

Receive-Cards

1<201 hit % /' \ r2O >=Current Sum =<211 stick%

J>211

Receive-return 44
--

entry IR ge1ljeward

V V(s
tstoP-. Playing it false] do/ R(S)I apperiO-R

e V(s), stakýrnez- e average (R(s))

[stop playinge true]

dealer turn

Figure 5.30 UNIL state machine diagram for Black Jack game

139

5.3.1.6 Monte Carlo Control Algorithm

Figure 531 shows the Monte Carlo control algorithm assuming exploring starts

(Sutton and Barto, 1998). The UML state machine diagram for this algorithm consists of

six states; inifia4 inifialise. geLepisode. receive_returns, improve_j7oliqýý and decision

states. The algorithm has infinity loop, which the diagram describes by the absence of the

final node. The following is the description of the states and the activities that the

Intelligent Agent conducts:

1. Initialise state: During this state the Intelligent Agent conducts three

activities; at entering this state it initialises the policy a(s), then sets action-

value, Q(sa), to an arbiftwy,. -alues, and at exit it sets Retums(s, a) to an

Cmpty I isL

Initialize, for all -s E S, aE A(s):
Q(s. a) ý arbitrary
v(s) - arbitrary
I? clurns(s. a) - cuipty list

Repeat forever:
(n) Generate an episode msing exploring starLs and z
(b) For each pair s, a appearing in the episode:

R- return follcming the first occurrence of s, a
Append R to Returns(s, a)
Q(s, a) +. - average(Returns(s, a))

(c) For each s in the episode:
v(s) - arg intx. Q (s, a)

Figure 531 Monte Carlo control algorithm assuming exploring starts (Sutton and Barto, 1998)

2. GeLepisode state: The Intelligent Agent generates episode and sets

parameters "a" and "s" to zero.

3. Receh-e_retums state: During this state, the Intelligent Agent receives

rmurds, R(s, a) by the gqjeu-ard activity, appends R (s, a) to the Retum

(s, a) list by the qppemý_R activity, and calculates the action-value function,

Q(s, a) by averaging Rctums(s, a) list.

140

a If this is the last episode state, s, the flow transfers to

improvejvlicy state.

b. Else, the flow transfers to the decision state.

4. Decision state:

a. If this is the last action for this state, counter "s" is incremented and

flow retums to receii-e-retums state.

Else, counter "a" is incremented and flow returns to receive_returns

statc.

5. Improivjvlicystatc: During this state, The Intelligent Agent updates the

current policy by setting policy 2r(s) to max. Q(s, a). The flow transfers to

geLepisode state to generate a new episode.

State Machine Diagram
Reinforcement Learning - Monte Carlo Control Algorithm Assuming Exploring Starts

entry I initiabse Tr (s)
do I set (CI(s. a). O)
@xftl set (Retums (saý Null)

F getý_episode
do I generate-episode(s, a)
do I set (a, O)
exit I set (s. 0)

Ol receivejeturns
s =yes]

entry I R(s, a) = get-reward
do/ Retums(s, a) a append_R
do I O(s. a) = average (Retums(s, a))

past s= no]

bvs] lm: reff*nt (s) I
a

[no] kx; mment (a) I)I do / set_policy(TT (s), arg max. Qs, a))

Figure 532 UNIL state machine diagram ror the Monte Carlo control algorithm assuming exploring starts

141

5.3.1.7 Temporal Difference Predication, 41gorithm

Figure 533 shows the algorithm of tabular Temporal Difference (TD) prediction

algorithm (Sutton and Barto, 1998). The UNIL state machine diagram for this algorithm

(Figure 534) has four states; initial. initialise gq e _ phode. and updmý_v states. The

Intelligent Agent conducts the following activity within the following states:

1. Inifialise state: The Intelligent Agent initialises V(s) such as to zero and

read the policy, ; r(s) that needs evaluation.

2. GeLepisode state: The Intelligent Agent generates a episode by the

_ pisode activity, and sets the value of a, a, and s. if there are no generaleý e

new episodes, flow transfers to Final flow state

3. Update-y state: During this state the Intelligent Agent gets the value of V(s)

and V(s') by using get-value activity, receives rewards through the

geLmrard activity, and calculates the expected V(s). Before exiting from

this statc, it sets s to s'.

a. If the Intelligent Agent reaches a terminal state, then the flow

transfers to gcLepisýe state to generate new episode.

b. Else, the flow loops back to the updahý_v state.

Initialize V(s) arbitrarily, -, r to the policy to be evaluated
Repeat (for e. wh epL-A:)dc):

Initialize a
Repalt, (for (-. Wll step of episxxle):

a- action gi%-rn hy r for s
Take action a; olwer%-e reward, r, and uenxt state, s'
V(s) V(s) +a [r + V(s)]

until a b; terminal

Figure 533 Tabular TD(O) for estimating V (Sutton and Barto, 1998)

142

State Machine Diagram
Tr

Reinforcement Learning -Tabular TD(O) for estimating V Algorithm

I entry I kuUartse iT (s)
koo I irtwize V(S)

i

get_episcWe
do I generwe_episode(s, a)
do I set a

[episode z Wsel do I set cl
, exit / set (s. 0)

[episý = true]

update-v
entry I v(s) - get-value(s. a)
do I v(s) = get-value(s*. al
do Ira gek_reward (sa) (terminal state =yes] dof v(s) = v(s) +a Ir + W(s) - V(s))

., exA I set (s. sl

pem*%W state - no]

Figurc534 UNIL state machine di3gram for TD algorithm of figure 533

5.3.1.8 Temporal Difference - Sarsa Algorithm

Figure 535 depicts the temporal difference - Sarsa algorithm. The UML state

_ pisode, and diagram for this algorithm (f igure 536) has four states; initial, initialise gq e

uPdate-Q states. The Intelligent Agent conducts activities during each state on entering,

during or exiting from this state. The following are the activities that the Intelligent Agent

conducts during each state:

1. Inifialise state: The Intelligent Agent initial ises both the policy that it will

use and the action-valuc, Q(s,: i), that it will calculate to an arbitrary value.

2. GeLepisode state: The Intelligent Agent initial ises counter "s" on entering

this state; -s" represents state number in the episode. It also generates

episode to pcrfonn learning. The Intelligent Agent also sets a and cl to

143

specific values to use them for computing the action-value function. If there

arc no new episodM flow tmnsfers tofinal flow state.

I Update_Q state: The Intelligent Agent updates the action-value function

during this state by conducting the flowing activities: The Intelligent Agent

gets the Q value for s and s' in the generated episode by get_pvalue

activity. It also receives the re%%2rd through the geLreward activity. Then it

computes the Q(sa) according to the shown equation. Finally, it increments

s to s' and a to a' before exiting from that state, where s' and a' are the next

state and action respectively.

a. If s is at a terminal state of this episode, then flow transfers to the

_ pisode state gq e

b. Else, the flow loops backs to continue in updating the action-value

function.

Initialize Q(s. a) arbitrarily
Repmt (for cadi epism1c):

Initialize s
Moose a from s using policy derivml from Q (e. g., c-greedy)
Rejx-at (for eacli step of episode):

Tak-c action a, ol)tcr%v r, W
Choose a' from s' using policy derived from Q (e. g., C-greedy)
Q(s, a) - Q(s, a) +a [r + -IQ(s, a) - Q(s, a)]
s 4-- W; a 4- a';

until s is tern inal

Figure 535 Sarsa. - An on-policy TD control algorithm (Sutton and Barto, 1998)

144

State Machine Diagram

ReInforcefftent Learning - Sam Algorithm

entry I kvUa5se TT (s)
do I kutarise 0(s. 8)

i

C ge"Pis(we
entry 1 Wliarsse s
do I Ger*rate epis IrdO-Od* w falsel do I set a
ýdo / set a

[episode = yes]

updatq_0

entry i o(sa) - geLovalue(s. a)
do I O(V. a') a get. Qvak*s*. e)
do Ir- get_"ard (Sa) gerrWnal state = yes] do/ 0(s. a) a O(s. a) +a (r +a o(s*. a*) - 0(s, a)]
do Is- s*
do Ia-W

Iteminal state -no)

Figure 536 UNIL state machine diagram for sarsa algorithm

5.3.1.9 Temporal Difference Q-1earning Algorithm

Figure 537 describes the Q-leaming algorithm that Sutton and Barto (1998) have

described. The UNIL state machine diagram of the Q-learning Algorithm (Figure 5.38)

contains four states; initial. initialise geLepisode. and update_Q states. Ile following are

the activities that Intelligent Agents conducts during each state:

1. Inifialise state: During this state the Intelligent Agent initialises the Q(s, a) to

an arbitrary value such as 0 and the policy, x (s) that it will use during

leaming.

2. Get-episode state: The Intel I igcnt Agent initial ises counter "s" that

represents number of state in the episode, conducts the activity

generaleý_episode(sa), and sets learning rate a and the discount factor 0.

145

luitWize Q(s. a) arbitrarily
tIrpent (for cadi t1iWx1e):

laitwim a
Relmit (for twit sul) of epi-Axle):

Clumjw a frrAn s wing polk-y tleri%-txl from Q (e. g., e-grmdy)
Tale wiion a. otx-4-nv r. s'

Q(s. a) ý Q(s, a) +a fr + -y inaxe Q(s', a') - Q(s, a))
a- S':

until s6 t4muinal

rigum 537 Q-learning Algorithm (Sutton and Barto, 1998)

3. Update_Q state: During this state the Intelligent Agent updates the value of

Q(s, a). It calculates thevalues of Q(s, a) and Q(s', a'). Get_mar-Ovalue

activity selects the maximum action-state for the next episodic state,

Q(s', a'). The Intelligent agent receives the reward, r and updates Q(s, a)

according to the shown equation. Tbe Intelligent Agent sets s and a to s' and

a' respectively. If s is a terminal state then flow transfers to the geLepisode

state. Else, the flow loops back to updaieý_Q state.
UaW Madsift Diowun

R*Womom*M Lean*V - 04. earroing Algorid"

er*y I bitsue it (S)
do I kA*he O(Sa)

I

got-tpisodo
brAsise s

do I qweraleý_eprsode(S. 3)
do I set a
401sma i

W" I O(LS) a tqt-ovo*s. &)
do I 0(s*. al a qet_rmxOvak*(s7. Sj
do Ir* ge_mwwd (s. a) ___j
dol 0(&. &) a O(sA) *a Ir O(S. 24 lwmf*w suto - yes]
do 15 a S,
0012fila, j

p«fnb-%d zute a r41

Figure 538 UML state machine diagram for q-1carning algorithm

146

5.3.1.10 Temporal Difference - Sarsa 0 Algorithm

Figures 539 and 5AO show the tabular Sarsa (A) algorithm and its UML state

machine diagram respectively. The state machine diagram has three main states as in the

previous Sarsa algorithm described in section 53.1.8, but each state has different activities

conducted by the Intelligent Agent as foliows:

1. Inifialise state: During this state, the Intel I igcnt Agent initial ises the policy

that it %%ill use during learning and action-values function Q(s, a) that it will

learn for all s and a such as 0. It also sets e(s, a) to 0 for all s and a.

2. Gq_episode: The Intelligent Agent initialises s and a Nvhen entering this

_ pisode (sq) activity. The state. Then it generates episodes by the generateý e

Intelligent Agent before leaving this state, sets a and cl to the required

values. If there are no more episodes the flow transfers tofinal state, else it

continues to the next state.

Initialize Q(s, a) arbitrarfly and c(s. a) = 0, for all s, a
Repent (for etch epismle):

Initialize a. a
Repeat (for ".! h step of episode):

Take action a, obwn-e r, W
Choose a' from so using policy derived from Q (e. g., E-grecdy)
6-r+ -)Q(s'. a') - Q(s, a)
C(S'a) - f(S'a) +I
For all x, a:

Q(s, a) - Q(s. a) +a Jc(s. a)
r(. q. a) -yAr(s. a)

- so: a a#
until a b. tMilinal

Figure 539 Tabular Sarsa (k) Algorithm (Sutton and Barto, 1998)

3. Update_Q state: During this state, the Intelligent Agent conducts the main

activities that it needs to conduct learning. First, the Intelligent Agent

conducts the takraction activity to get the next state, s'. Then it receives the

rc%%-aM by the gcLreu-ard activity. Foliov. -ing these two activities, the

147

Intelligent Agent chooses a' from s' through the policy. selectaction activity.

Then it gets the values for current and next action-state function, Q(s, a) and

Q(s', a'), by conducting get_Qvalues activity. The next activity is to

compute 8 according to the given equation. For all the available s and a in

the episode, the Intelligent Agent conducts updateý_Q%, alues activity to

update Q and c according to the following equations: Qs, a)= Q(s, a) +a8

c(s, a) and c(sa)-- y). e(s, a)

Finally, s and a are incremented to s' and a' respectively. If s is a terminal

state, then flow transfers to geý e phode state or else it loops back to

update_Q state.

State Machine Diagram

Reinforcenwnt Learning - Sarsa (A) Algorithm

r initialise
entry I ir"alse iT (s)
do I irultakse O(s, a)
4W set (e(s. aý 0)

get_episode

entry I htialse s
dc) I kutaise, a

(episode a falsel do I gererate - episode(s, a)
do / set a
Oo/seta

[episode a yes)

r updat@_Q
entry I s' a takeactom(s. a)
do Ira geý_reward (s. a)
do I a' a pobcy. sekKUcbon(s)
do I O(s. a) geLOyalue(s. a)
do / 0(s*. a') get_0fakje(s'Aj

perminal state yes)
do/kvtoric, (c(&m4l)
dckf updata_Cývakies(Q(sa). Se(sa))
dots a s!
do /a a a'

fteffninal state -no)

F egure 5.40 I. Atl. state machine diagram for tabular Sarsa (A) algorithm

148

5.3.1.11 Temporal Difference - Q(A) Algorithm

Figure 5A I sho%vs the tabular version of Watkins's Q(X) algorithm as described by

Sutton and Barto, (1998) Watkins's algorithm combines Q-Ieaming and eligibility traces.

The UNIL state machine diagram for this algorithm (figure 5.42) has four states; initial,

inilialise, geLepisode. and updateý erence between this state machine _Q states. The diffi

diagram and the previous Q-1carning state machine diagram is in the activities conducted

within each state. The activities the Intelligent Agent conducts are as follows:

1. Inifialise state: during this state the Intelligent Agent initialise the policy

and action-%-alue function, Q(sa). It also sets e(s, a) to 0.

2. Gq e _ pisode: 'I'lie Intelligent Agent initialises variable s and a. It also

generates an episode to start the learning process through the

generafeý e _ pisodefta) activity. Finally, it sets a and 0 to the required values.

InitL-lim Q(s. a) arNtrarily aW ef s. a) = 0, for 0 a. a
tIrpral (fic rad)

lUitiAliA- A. 0

ItrPent (ffjlr ench strp of c-pb4xk,):
TAP Act k)n a. O*wnr r. a'
Cboow a' from S' wsiDg Polky dcsi%vd fmm Q (e. g., E-grecdy)
a' - wX max, Q(s. b) (if a' ties for the max, tlicii a* - d)
6r +)Q(#'. a*) - Q(A. a)
c(O's) ý C(. C. G)
Fur all a. a:

Q(x. a) - Q(s, a) +a ir(s. a)
If a- 0% then c(s. a) - -yAr(s, a)

e6r r(s, a) -0
aýa, a le

unt a8 is to R itud

Figure 5.41 Tabular version of Watkins's Q(I) algorithm (Sutton and Barto, 1998)

3. Updaleý_Q state: This is the main activitY Of the state machine diagram

through %%hich the Intelligent Agent updates the action-value function. The

lntclligcnt Agcnt conducts the follming activities during this state:

a. At entry the Intelligent Agent conducts an action through the

laleaction(s, q) activity and identifies the next state, S'.

149

b. The Intelligent agent receives the reward, r, through the activity

geý_mswrdft. q). 'nie geLreward (sq) activity observes the

takeaction(s, q) activity and sets r to the received reward.

Stm MacNme Diagram

R&b*=*m*r4 Learning - W&OLkW a 04. eaming JUgorfthm

14w*lr 1 k%"cse Tt (s)

(*(S. 4 S., 'L

entry I ixtaLse s
do I k%talso a
do I generuteý-opiso*sa)
dalseto
Oalwy

I

entry I a' a takeacoon(SA)
do Ira go1jeward (")
do I a* a POLICy. Sebsdacbon(3*)
do i a(&. 8) a Get-Ovakse(sa)
do I CK VX) a --i
do 16 -r-y Qq s'. a* I si) peffninal stWe a yes)
wi Imicaw" I CKA.
ow wuls-ovak-s(c)(S-8). 6 O(s. a))
do IsaS,
do Is a a'

Pormind sUle a nol

Figum 5.42 UNIL state m3diýinc diagram for Watkins's Q(X) algorithm

Through the policysclectacion(s)activity, the Intelligent Agent

idcntirics a*.

d. Then the Intelligent Agent computes Q(s, a) and Q(sl, a*) through the

gq_Q%wlucs(s, a) and gcLmaxQralucs(sa*).

c. The Intelligent Agent computes 8 through the given equation and

increment eligibility tracc, e(sa).

150

f. For all s and a, the Intelligent Agent updates Q(s, a) and e(s, a) by the

update__Ova1ues(Q(s, q) activity, 8, e(s, a)).

g. Lastly, the Intelligent Agent sets s to s' and a to a'

h. If s is a terminal state then flow transfers to the geLepisode state,

else flow goes back to updatq_Q state.

5.4 Conclusion

This chapter shows the ability of UML version 2.0 behaviour diagrams, namely

activity diagrams and sequence diagrams, to model the learning behaviour of Intelligent

Agents that use learning from observation and discovery as well as learning from examples

strategies. It also illustrates the capability of state machine diagrams of UML 2.0 to model

specific reinforcement learning algorithms, namely dynamic programming, Monte Carlo,

and temporal differences algorithms.

UML 2.0 behaviour diagrams provide more advanced modelling techniques than

previous behaviour diagrams in UML version Lx. The introduction of techniques to

model parallelism, alternative execution, and looping behaviour in sequence diagrams

allow modelling complex behaviour that are exhibited by Intelligent Agents such as

learning behaviour. UML 2.0 activity diagram also uses Petri-net-like notations that allow

a powerful tool for modelling the workflow. The activity diagrams show the workflow of

the leaming process while the sequence diagrams show the sequence of interaction

between Intelligent Agent and other entities required to perform the leaming process. State

machine diagrams provide capable tools to describe the behaviour of a single Intelligent

Agent across different states. During the writing of the thesis, available tools to model

applications by using UML version 2.0 were limited. The research writer has used

Microsoft Visio program with UML stencil for version 2.0 templates to model the above

diagrams.

151

This chapter provides different scenarios to explore whether the activity and

sequence diagrams can model learning from observation and discovery. Intelligent Agents

deploy mainly in dynamic environments requiring learning without gaining advice from a

source of knowledge. The source of knowledge is not able to provide advice about the

correct actions for all the different states of the dynamic environment. Furthermore,

activity and sequence diagrams are capable of modelling scenarios for Intelligent Agents

that use a learning from examples strategy. Intelligent Agents that work in dynamic

environments can use a learning from examples strategy in one of the following

conditions:

1) The rate of examples is higher than the rate of changes in the environment or

2) Cloning the Intelligent Agent and then replacing it after learning.

UML 2.0 state machine diagrams have proven resourceful for modelling specific

reinforcement learning methods and their different algorithms. This chapter illustrates the

capability of modelling different types of dynamic programming algorithms namely,

iterative policy evaluation, policy evaluation, policy improvement, and value iteration

algorithms. It also shows the capability of state machine diagrams to model Monte Carlo

algorithms, namely policy evaluation and control algorithms. Moreover These type of

diagrams are also successful in modelling temporal difference (TD) algorithms, namely TD

prediction, Sarsa, Q-1earning, Sarsa (X), and Q(X) algorithms. Appendices A, B, and C

provide user guides for the main components of activity, sequence, and state machine

diagrams to allow researchers in agent-oriented systems use the UML 2.0 diagrams in

modelling the learning components of Intelligent Agents.

Future information systems will contain objects, Agents, and Intelligent Agent as

the main software entities. However, it will be impractical to imagine for the time being

that Agent-oriented systems will replace object-oriented ones. The integration of the

capabilities for both systems will pave the way for implementing reliable and capable

software systems especially for dynamic environments.

152

Chapter 6: Conclusions and Future Research Directions

6.1 Thesis Conclusions

This thesis has shown the ability of structural and behavioural components of the

Unified Modelling Language version 2.0 to model the leaming behaviour of Intelligent

Agents. The research focuses on the learning of a single Agent, as it is the core of multi-

agent systems. The research shows the ability of UML version 2.0 behaviour diagrams,

namely activity diagrams and sequence diagrams, to model the learning behaviour of

Intelligent Agents that use learning from observation and discovery as well as leaming

from examples strategies. The research also illustrates the capability of UML 2.0 state

machine diagrams to model specific reinforcement learning algorithms, namely dynamic

programming, Monte Carlo, and temporal difference algorithms.

UML 2.0 behaviour diagrams provide more advanced modelling techniques than

previous behaviour diagrams in UML version Lx. The introduction of techniques to

model parallelism, alternative execution, and looping behaviour in sequence diagrams

allow the modelling of complex behaviour that is exhibited by Intelligent Agents such as

learning behaviour. UML 2.0 activity diagram also uses Petri-net-like notations that allow

a powerful tool for modelling the workflow of the leaming process while the sequence

diagrams show the sequence of interaction between the Intelligent Agent and other entities

required to perform the learning process. UML 2.0 state machine diagrams provide tools

capable of describing the behaviour of a single Intelligent Agent across different states.

Appendices A, B, and C provide user guides for the main components of activity, sequence,

and state machine diagrams to allow researchers in agent-oriented systems to use the UML

2.0 diagrams in modelling the learning components of Intelligent Agents.

The research highlights that learning is a crucial feature for Intelligent Agents.

Intelligent Agents are Agents that can learn and reach agreement with other Agents or

153

users. It recognises different learning components required to model the learning behaviour

of Intelligent Agents such as learning goals, learning strategies, and learning feedback

methods.

The research has highlighted the need to extend the structural components of UML

2.0. During the writing of the thesis, the Foundation for Intelligent Physical Agent (FIPA)

proposed an extension to UML 2.0 to model structural components of Agents. This

research utilises FIPA's UML 2.0 Agents' structural components extension and provides

further development to model the structural components of not only Agents but also

Intelligent Agents. It has introduced two scenarios for using FIPA modelling TC Agent

class superstructure meta-model to model Intelligent Agents: the first scenario extends

Agent class while the second one uses the available Agent Physical Classifier to model

Intelligent Agents. The second scenario is more appropriate as there will be no need to

develop a new Intelligent Agent structures. It introduces a learning compartment to the

Agent Physical Classifier that provides a description of the learning behaviour of the

Intelligent Agent. This description will guide both designers and developers during both

the design and the development phases of the system. The description consists of

attributes and notes. The attributes describe the main learning parameters, and the notes

provide behaviour description or constraints for the attached attribute. The learning

compartment contains the following attributes: learning-goal, commitment-strategy,

learning-strategy, learning-feedback method, background-knowledge, knowledge-

representation, and learning-schedule.

The main objective of using UML 2.0 as a base modelling language for describing

Agent-oriented systems is to allow software developers using object-oriented systems to

shift more easily towards the development of Agent-oriented systems. Currently, no one

can declare that any of the available UML Agent-oriented efforts can act as a standard

modelling language or method for Agent-oriented systems as UML for object-oriented

systems. No research direction that the author has tackled in this research has explored

154

how the new UML notations, UML 2.0, can model the intelligence aspects of Agent-

oriented systems such as the ability to learn and the ability to reach agreement among

Agents.

The research has shown the capability of activity and sequence diagrams to model

a learning from observation and discovery strategy. Intelligent Agents deploy mainly in

dynamic environments which require learning without gaining advice from a source of

knowledge. The source of knowledge is not able to provide advice about the correct

actions for all the different states of the dynamic environment. Moreover, activity and

sequence diagrams are able to model scenarios for Intelligent Agents that use a learning

from examples strategy. Intelligent Agents that work in dynamic environments can use a

learning from examples strategy in one of the following conditions:

1) The rate of examples is higher than the rate of changes in the environment or

2) Cloning the Intelligent Agent and then replacing it after learning.

UML 2.0 state machine diagrams have proven resourceful for modelling specific

reinforcement learning methods and algorithms. The research shows the capability of these

diagrams to model dynamic programming algorithms namely, iterative policy evaluation,

policy evaluation, policy improvement, and value iteration algorithms. It also uses the state

machine diagrams to model Monte Carlo algorithms, namely policy evaluation and control

algorithms. UML 2.0 state machine diagrams are also successful in modelling temporal

difference (TD) algorithms, namely TD prediction, Sarsa, Q-learning, Sarsa (k), and Q(X)

algorithms.

Future information systems will contain objects, Agents, and Intelligent Agent as

the main software entities. However, it will be impractical to imagine for the time being

that Agent-oriented systems will replace object-oriented ones. The integration of the

capabilities for both systems will pave the way for implementing reliable and capable

software systems especially in dynamic environments.

155

6.2 Future Research Directions

This Thesis will stimulate new directions for future research into Agent-oriented

systems. The first research direction is expected to concentrate on the Intelligence

dimension of Intelligent Agents. The second one focuses on customizing UML 2.0 for the

use of modelling Agents and Intelligent Agents. The third direction aims to develop a

standard methodology for developing software systems that integrates the capabilities of

objects, Agents, and Intelligent Agents.

The first future research direction inspired by this thesis would explore the

capability of UML 2.0 in modelling the ability to reach agreement, being a major

component of the intelligence dimension. This ability includes negotiation and

argumentation skills. This research is expected to shed more light on the ability of UML

behaviour components to model the three main types of negotiation: one-to-one, one-to-

many, and many-to-many (Wooldridge, M., 2002). it would also sustain the ability of

UML to model the different types of argumentation skills: logical, emotional, visceral, and

kisceral modes (Wooldridge, M., 2002). There are efforts to model Agent interaction

protocols by using UML 2.0, as in FIPA, 2003b, but there is still a need to model the

negotiation and argumentation skills exhibited by Intelligent Agents.

The second future research direction would focus on customising UML 2.0 to

model Agents and Intelligent Agents components. The proposed research direction would

continue to explore the capability of other UML 2.0 components such as state machine

diagram, use case diagram, and interaction view diagram to model Agents and Intelligent

Agents. This research direction would also investigate the capability of modelling

communication patterns among objects, Agents, and Intelligent Agents. The research can

customise UML 2.0 to present Agents and Intelligent Agents components profiles.

The third future research direction would focus on producing a software

development methodology that is able to model objects, Agents, and Intelligent agents as

the main software entities. The methodology would study the requirements of objects,
156

Agents, and Intelligent Agents during the different phases, such as analysis, design,

implementation, and testing phases. The use of UML 2.0 as the modelling language for

this methodology would allow the use of one modelling language to model the above

mentioned diversified software entities. The development of future software systems, that

include objects, Agents, and Intelligent Agents, requires a new standard methodology that

is able to cover all the requirements of the software development life cycle.

This thesis has stressed the eligibility of Intelligent Agents as the most appropriate

software entities to work in dynamic environments, and provide adaptive behaviour to

meet their designated tasks. Thus, the thesis paves the way for an increase in attention to

the intelligence dimension of Intelligent Agents. Future research directions will not only

concentrate on the agency dimension but will also concentrate on the dimension of

intelligence itself.

157

References

Ambler, S., 2005a. UML 2 Object Diagrams. Available from:

http: //w%vw. aizilemodeling. com/artifacts/obiectDiagram. htm [Accessed 2 May

20051

Ambler, S., 2005b. UML Class Diagrams. Available from:

http: //, kvw, vv. agilemodeling. com/artifacts/classDiaizram. htm [Accessed 2 May 2005]

Bauer, B., 2002. UML Class Diagrams Revisited in the context of Agent-Based Systems.

In: M. J. Wooldridge, G. Weib, and P. Ciancarini, eds., 4gent-Oriented Software

Engineering IL Second International Workshop, .4 OSE 2001, Montreal, Canada

May 2001, Revised Paper and Invited Contribution, Lecture Notes in Computer

Science 2222. Berlin: Springer-Verlag, 10 1-118.

Bauer, B., Muller, J., and Odell, J., 2001. Agent UML: A Formalism for Specifying

MultiAgent Interaction Diagrams. In: P. Ciancarini and M. J. Wooldridge, eds.

Agent-Oriented Software Engineering: First International Workshop, A OSE 2000,

June 2000 Limerick Ireland, Revised Papers, Lecture Notes in Computer Science

1957. Berlin: Springer-Verlag, 91-103

Bell, D., 2004. UML Basics: Yhe Class Diagram. An Introduction to Structure Diagrams

in UML 2. Available from: http: //www-

128. ibm. com/developerworks/rational/libraa/content/RationalEdge/seVO4/bell/

[Accessed 29 April 2005]

Bigus, J., and Bigus, J., 200 1. Constructing Intelligent Agents Using Java. 2 nd ed. New

York: John Wiley & Sons, Inc.

Booch, G., 1994. Object Oriented Design with Applications. 2 nd ed. Redwood city, CA:

The Benjamin/Cummings Publishing Company, Inc.

Brenner, W., Zarnekow, R., and Wittig, H., 1998. Intelligent Software Agents:

Foundations and Applications. Berlin: Springer-Verlag.

158

Burmeister, B., 1996. Models and Methodology for Agent-oriented Analysis and Design.

In: K. Fischer, ed. Working Notes ofthe KT96 Workshop on Agent-Oriented

Programming and Distributed Systems, 17-19 September 1996 Dresden.

Kaiserslautern: DFKI Document, 96-106.

Caglayan, A. And Harrison, C., 1997. . 4gent Source Book. New York: John Wiley &

Sons, Inc.

Caire G., Coulier W., Garijo F., Gomez J., Pavon J., Leal F., Chainho P., Kearney P., Stark

J., Evans R., and Massonet P., 2002. Agent Oriented Analysis using

MESSAGE/UML. In: M. J. Wooldridge, G. Weib, and P. Ciancarini, eds. Agent-

Oriented Software Engineering H. Second International Workshop, AOSE 2001,

Montreal, Canada May 2001, Revised Paper and Invited Contribution, Lecture

Notes in Computer Science 2222. Berlin: Springer-Verlag, 119-13 5.

Carbonell, J., 1986. Derivational Analogy: A theory of Reconstructive Problem Solving

and Expertise Acquisition. In: R. Michalski, J. G. Carbonell, and T. Mitchel, eds.

Machine Learning Volume IP An Artificial Intelligence Approach. Los Altos, CA:

M. Kaufmann Publishers, 371-392.

Carbonell, J., Michalski, R., and Mitchell, T., 1983. An Overview ofMachine Learning.

In: R. Michalski, J. G. Carbonell, and T. M. Mitchell, eds. Machine Learning: An

Artificial Intelligence Approach. Palo Alto, CA: M. Kaufmann Publishers, 3- 23.

Coetzee, F., 2005. UML ZO. Xpdian. Available from:

http: //www. xpdian. com/UML2.0. htmi [Accessed 5 May 2005]

Depke R., Heckel R., and Malte Kuster J., 200 1, Agent-Oriented Modeling with Graph

Transformation. In: P. Ciancarini and M. J. Wooldridge, eds. Agent-Oriented

Software Engineering., First International Workshop, A OSE 2000, Limerick,

Ireland June 2000, Revised Paper, Lecture Notes in Computer Science 195 7.

Berlin: Springer-Verlag, 105 - 119.

159

FIPA, 2003a. FIPA Modeling:. 4gent Class Superstructure Metamodel, initial draftfor

review at London FIP, 4. Available from:

http: //i, v%vw. auml. orR/aumi/documents/CD2-03-10-3 I. doc [Accessed 13 Sept 2004].

FIPA, 2003b. FIPA modelling. Interaction Diagrams, Version 2003-07-02. Available

from: http: //,. vww. aumi. orWauml/documents/ID-03-07-02. doc [Accessed 13

September 2004].

FIPA, 2004. FIPA Modeling: Agent Class Superstructure Metamodel, The result of

London FIPA meeting and interim work 21 January 2004 version. Available from:

http: //ww%v. auml. orp, /aumi/doCuments/CD2-04-01-2l. doc [Accessed 13

September 2004].

Flores-Mendez, R., 1999. Towards a Standardization of Multi-Agent System Frameworks

Cross Roads, 5 (4).

Fowler, M., 2004. UML Distilled., A Brief Guide to the Standard Object Modeling

Language. P ed. Boston: Addison-Wesley.

Greneserth, M. and Ketchpel, S., 1994. Software Agents. Communication of the

American Computing Machinery, 37 (7), 48- 53.

Holzmann G., 1997. The Model Checker Spin. IEEE Transactions on Software

Engineering, 23 (5), 279-295.

Huget M., 2003. Extending Agent UML Protocol Diagram. In: F. Giunchiglia, J. Odell,

and G. Weid, eds. Agent-Oriented Software Engineering III: Third International

Workshop, ASOE 2002, Bologna, Italy, July 2002, Revised Papers and Invited

Contributions, Lecture Notes in Computer Science 2585. Berlin: Springer-Verlag,

150-161.

Koning J. and Romero-Hemandez, 1., 2003. Generating Machine Processable

Representations of Textual Representations of AUML. In: F. Giunchiglia, J. Odell,

and G. Weid, eds. Agent-Oriented Software Engineering III: Third International

Workshop, ASOE 2002, Bologna, Italy, July 2002, Revised Papers and Invited

160

Contributions, Lecture Notes in Computer Science 2585. Berlin: Springer-Verlag,

126-137.

Lemon, B., Pynadath, D., Taylor, G., and Wray, T., 2004. Cognitive Architectures,

Available from: http: //ai. eecs. umich. edu/coizarch4/index. htmi [Accessed April

2004]

Lind J., 2002. Specifying Agent Interaction Protocols with standard UML. In: M. J.

Wooldridge, G. Weib, and P. Ciancarini, eds., 4gent-Oriented Software

Engineering 11. Second International Workshop, A OSE 2001, Montreal, Canada

May 2001, Revised Paper and Invited Contribution, Lecture Notes in Computer

Science 2222. Berlin: Springer-Verlag, 136 -147.

Luger, G. and Stubblefield, W., 1993. Artificial Intelligence: Structures and Strategiesfor

Complex Problem Solving. 2 nd ed. Palo Alto, CA: The Benjamin/Cummings

Publishing Company, Inc.

Michalski, R., 1986. Understanding the Nature of Learning: Issues and Research

Directions. In: R. Michalski, J. G. Carbonell, T. Mitchel, eds. Machinc Lcarning

Volume IL AnArtificial Intelligence Approach. Los Altos, CA: M. Kaufmann

Publishers, 3-25

Michalski, R., 1993. Basic concepts of Inferential Theory of Learning and Their Use for

Classifying the Learning Process. In: A. Meyrowitz and S. Chipman, eds.

Foundations ofKnowledge Acquisition Machine Learning. Boston: Kluwer

Academic Publishers, 1- 41.

Michalski. R., 1994. Inferential Theory of Learning: Developing Foundations for

Multistrategy Learning. In: R. Michalski and G. Tecuci, eds. Machine Learning:

A Multistrategy Approach Volume IV San Francisco: Morgan Kaufmann

Publishers, 3-61.

Michalski, R., Carbonell, J., and Mitchell, T., 1983. Machine Learning: An Artificial

IntelligenceApproach. Palo Alto, CA: M. Kaufmann Publishers.

161

Michalski, R., Carbonell, J., and Mitchell, T., 1986. Machine Learning: An Artificial

Intelligence, 4pproach, Volume II. Los Altos, CA: M. Kaufmann Publishers.

Mitchell, T, 1997. Machine Learning. Boston: WCB/McGraw-Hill.

Object Management Group (OMG), 2004. Unified Modelling Language: Superstructure

version 2.0, Revised Final Specification (ptc: 104-10-02). Available from

http: //xvw%v. omg. org/cizi-bin/doc? ptc/2003-08-02 f 19 [Accessed 27 April 2005]

Object Management Group (OMG), 2005. Introduction to OMGs Unified Modeling

LanguageTM(UMLO). Availablefrom: htW: Ilwww. iimLo [Accessed 27 April

2005]

Odell, J., 2002. Objects andAgents Compared. Journal of Object TechnoloV, l(l), 41-

53. Available from: http: //v; w,, v. iot. fm/issues/issue 2002 05/column4 [Accessed

13 September 2004].

Odell, J., Parunak, H., and Bauer, B., 2000. Extending UML for Agents. In: G. Wagner,

Y. Lesperance, and E. Yu, eds. Proc. ofthe. 4gent-Oriented Information Systems

Worksho at the 17th National Conference on Artificial Intelligence, July 30 - p

August3 2000, Austin, TX, AOIS Workshop atAAA12000. MenloPark,

Califomia: AAAI, 3-17.

Odell, J., Parunk, H., and Bauer, B., 2001. Representing Agent Interaction Protocols in

UML. . In: P. Ciancarini and M. J. Wooldridge, eds. Agent-Oriented Software

Engineering: First International Workshop, AOSE 2000, Limerick, IrelandJune

2000, Revised Paper, Lecture Notes in Computer Science 1957. Berlin: Springer-

Verlag, 121-140

Petrie, C. 1996. Agent-based Engineering, the web, and intelligence. IEEE Expert, II

(6), 24-29.

Russell, S. and Norvig, P., 1995. Artificial Intelligence: A Modern Approach. New

Jersey: Prentice Hall International.

162

Schank, R. and Kass, A., 2000. Explanations, Machine Learning, and Creativity. In: Y.

Kodtatoff and R. Michalski, eds. Machine Learning., An Artificial Intelligence

Approach Volume III. Palo Alto, CA: Morgan Kufmann, 31 - 48.

Sein, S. and Weiss, G., 1999. Learning in MultiAgent Systems. In: G. Weiss, ed.

Multh4gent Systems: A Modern Approach to Distributed Artificial Intelligence.

Cambridge, MA: MIT Press, 259 - 298.

Smith, S., 1996. Machine Leaming Review [online]. Middlesex University, School of

Computing Science. Available from:

http: //www. cs. mdx. ac. uk/staffpages/serengul/MUtable. html [Accessed 13

September 2004].

Sparx Systems, 2005a. UML 2 Activity Diagram. Available from:

http: //sparxsystems. com. au/resources/uml2 tutorial/uml2 activitydiagram. htmi

[Accessed 15 July 2005].

Sparx Systems, 2005b. UML 2 Sequence Diagram. Available from:

http: //sparxsystems. com. au/resources/Uml2 tutorial/um12 stated iagram. htm I

[Accessed 15 July 2005].

Sparx Systems, 2005c. UML 2 State Machine Diagram. Available from:

http: //sparxsystems. com. au/resources/Uml2_tutorial/uml2-statediagram. html

[Accessed 15 July 2005].

Sutton, R. and Barto, A., 1998. Reinforcement Learning: An introduction. Cambridge,

MA: MIT Press.

Wagner G., 2003a. A UML Profilefor ExternaIAOR Models. . In: F. Giunchiglia, J.

Odell, and G. Weid, eds. Agent-Oriented Software Engineering III. - Third

International Workshop,. ASOE 2002, Bologna, Italy, July 2002, Revised Papers

and Invited Contributions, Lecture Notes in Computer Science 2585. Berlin:

Springer-Verlag, 138-149.

163

Wagner G., 2003b. The Agent-object-Relationship MetaModel: Towards a Unified View

of State and Behavior. Information Systems, 28 (5).

Wooldridge, M., 2000. Reasoning About Rational Agents. Cambridge, MANIT Press.

Wooldridge, M., 2002. An Introduction to MultiAgent Systems. Chichester, England: John

Wiley & Sons Ltd

Wooldridge, M., and Cinancaini, P., 200 1. Agent-Oriented Software Engineering: The

State ofthe Art. In: P. Ciancarini and M. J. Wooldridge, eds., 4gent-Oriented

Software Engineering. ý First International Workshop, AOSE 2000, June 2000

Limerick Ireland, Revised Papers, Lecture Notes in Computer Science 195 7.

Berlin: Springer-Verlag, 1-28.

Wooldridge, M., Jennings, N., and Kinny, D., 2000. The Gaia Methodology for Agent-

Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems, 3

(3), Kluwer Academic Publisher, 285-312.

164

Further Reading

Adida, B., 1997. Weaving the Web. IEEE Internet Computing, 1 (4), 91-93.

Allam, H., Denham, M., and Denham, S., 2001. Framework for Assessing Intelligent

Agent-based Information Systems Methodologies. In: Proceeding ofthe Ninth

International Conference on Artificial Intelligence Applications, Feb 12-15 2001,

Egýpt. Cairo: AUC, 135-142.

Anderoli, J., Pacull, F. and Pareschi, R., 1997. XPECT: A framework for electronic

commerce. IEEE Internet Computing, 1 (4), 40-48.

Avison, D., and Fitzgerald, G., 1998. Information Systems Development: Methodologies,

Techniques, and Tools. 2 nd ed. Maidenhead: McGraw-Hill Book Company Europe.

Bergenti, F., and Poggi, A., 2000. Exploiting UML in the Design of Multi-Agent Systems,

In: A. Omicini, R. Tolksdorf and F. Zambonelli, eds. Engineering Societies in the

Agent World, First International Workshop, ESA W 2000, Berlin, Germany, August

21,2000, RevisedPapers, Lecture Notes in Computer Science, 1972. Berlin:

Springer, 96-103.

Booch, G., 1994. Object Oriented Analysis and Design with Applications, 2 nd ed.

Redwood City, CA: The Benjamin/Cummings Publishing company, Inc.

Booch, G., Rumbaugh, J., and Jackobson, 1., 1999. The Unified Modeling Language User

Guide. Reading, MA: Addison-Wesley.

Chavez, A., Moukas, A., and Maes, P., 1997, Challenger: A Multi-Agent System for

Distributed Resources Allocation. In: Agents 97. - Proceedings ofthefirst

International Conference on Autonomous Agents, Feb. 5-8,1997, Marina del Rey,

CA. Association for computing machinery (ACM), 323 - 330.

Choi, Y. and Yoo, S., 1997. Multi-Agent Learning Approach to WWW Information

Retrieval using Neural Network. In: Agents 97: Proceedings ofthefirst

International Conference on Autonomous Agents, Feb. 5-8,1997, Marina del Rey,

CA. Association for Computing Machinery (ACM), 23- 30.

165

Coad, P., and Yourdon, E., 199 1. Object-Oriented, 4nalysis. 2 nd ed. NJ: Prentice-Hall, lnc.

Cooling, J., 1997. Real-time Software Systems: An introduction to structured and object-

oriented design. London: International Thomson Computer Press.

Dean, T., Allan, J., and Aloimonos, Y., 1995. Artificial Intelligence: Theory and Practice.

New York: The Benjamin/Cummings Publishing Company, Inc.

Doyle, J,. and Dean, T., 1996. Strategic Directions in Artificial Intelligence. 4CM

Computing Survey, 28 (4), 653-670.

Ernest, E., Candy, L., Jones, R., and Soufi, B. 1994. Support for Collaborative Design:

Agents and Emergence. Communication ofACM(7), 41-47.

Etzioni 0. and Weld D. 1994. A Softbot-Based Interface to the Internet.

Communication ofACM, 37 (7), 72-76.

Ferber, J., 1999. Multi-Agent Systems: An Introduction to Distributed Artificial

Intelligence. Harlow, England: Addison-Wesley.

Filman, F_ and Pena-Mora, F. 1997. The Arachnoid tourist. IEEE Internet Computing,

1 (4), 31-32.

Finin, T., Fritzson, R., Mckay, D., and McEntire, R., 1994. KQML as an Agent

Communication Language. In: CIKU94. Proceedings ofthe Third International

Conference on Information and Knowledge Management, November 29 -

December 2 Maryland, USA. New York: ACM, 456-463.

FIPA Technical Committee C, 1999. Extending UML for the Specification of Agent

Interaction Protocols, Response to the OMG Analysis and Design Task Force UML

RTF 2.0 Request for Information. Available from:

ftp: //ftp. omg. org/pub/docs/ad/99-12-03. pd [Accessed 13 September 2004].

Flake, S., Geiger, C., and Kuster, J., 2001. Towards UML-based Analysis and Design of

Multi-Agent Systems. In: International Symposium on Information Science

Innovations in Engineering offatural andArtificial Systems (ENAlS 2001), March

2000, Dubai, UAE.

166

Foner, L., 1997. Yenta: A Multi-Agent, Referral-based Matchmaking System. In:

AGENYS '97. Proceedings ofthefirst international conference on Autonomous

, 4gents, February 5-8,1997, Marina del Rey, CA. NY: Association for Computing

Machinery (ACM), 301 - 307.

Forsyth, R., 1989. Machine Learning. - Principles and Techniques. London: Chapman and

Hall Ltd.

Gather, L. 1997. Internet security: Is it in the cards. Computer (5), 18-20.

Goldman, C., and Rosenschein, J., 1999. Partitioned MultiAgent Systems in Information

Oriented Domains. In: Agents '99, Proceedings ofthe third annual conference on

Autonomous. 4gents, May 1-5,1999, Seattle, W, 4. NY: Association for Computing

Machinery (ACM), 32-39.

Gmham, 1., 1994. Object Oriented Methods. 2 nd ed. Wokingham, England: Addison-

Wesley Publishing Company.

Hawryszkiewycz, I. T., 199 1. Introduction to System Analysis and Design. 2 nd ed. Sydney:

Prentice Hall.

Huber, M., and Hardley, T., 1997. Multiple Roles, Multiple Teams, Dynamic

Environment: Autonomous Netrek Agents. In: AGENTS '97. Proceedings ofthe

first international conference on Autonomous Agents, February 5-8,1997, Marina

del Rey, CA. NY: Association for Computing Machinery (ACM), 332-339.

Iglasis, C., Garji. M., Gonzalez, J., and Velasco, J., 1996. A methodological Proposal for

MultiAgent Systems Development extending CommonKADS. In: Proceeding of

the 10th Banff Knowledge, 4cquisitionfor Knowledge-Based Systems Workshops,

Banff, Canada, 25-1117. Available from:

http: //ksi. cpse. ucal. gary. ca/KANV/KAW96/ijzlesias/iglesias. html [Accessed 19

September 2004]

167

Janca, P., and Gilbert, D., 1998. Practical Design of Intelligent Agent Systems. In: N.

Jennings and M. Wooldridge, ed. Agent Technology., Foundations, Applications,

andMarkets, Berlin: Springer-Verlag, 73-89.

Jennings, N., and Wooldridge, M., 2000. Agent-Oriented Software Engineering. In: J.

Bradshaw, ed. Handbook qfAgent Technology. MA: AAAI/MIT press.

Karjoth, G., Lange, D., and Oshima, M. 1997. A security model for AGLETS. IEEE

Internet Computing, 1(4), 68-77.

Kautz H., Selman, B., and Coen M., 1994. Bottom-up design of software Agents.

Communication ofACM, 37 (7), 143-146.

Khoshaflan, S. and Abnous, A., 1990. Object Orientation: Concepts, Languages,

Databases, User Interfaces. New York: Wiley.

Kiniry, J. and Zimmerman, D., 1997. Special Feature: A hands-on Look at Java Mobile

Agents. IEEE Internet Computing, 1 (4), 21-3 0.

Kinny, D., Georgeff, M., and Rao, A., 1996. A Methodology and Modelling Technique for

systems of BDI-Agents. In: W. Van de Velde and J. W. Perram, ed. Agents

Breaking Away. - Proceedings of the Seventh European Workshop on Modelling

Autonomous Agents in a MuItUgent World, LNAI Volume 103 8, Berlin, Germany:

Springer-Verlag, 5 6-7 1.

Kotz, D., Gray, R., Nog, S., Rus, D., Chawila, S., and Cybenko, G. 1997. Agent TCL:

Targeting the needs of mobile computers. IEEE Internet computing, 1 (4), 58-67.

Krulwich, B. 1997. Automating the Internet: Agents as user surrogates. IEEE Internet

Computing, 1 (4), 34-37.

Labrou, Y. and Finin, T., 1994. A semantics approach for KQML--a general-purpose

communication language for software Agents. In: CIKM94: Proceedings ofthe

Third International Conference on Information and Knowledge Management, New

Your: ACM SIGMOD Anthology, 447-455.

168

Lucarella, D. and Zanzi, A., 1996. A Visual Retrieval Environment for Hypermedia

Infon-nation Systems. ACMtransaction on Information Systems, (1), 3-29.

Maes, P. 1994. Agents that reduce work and information overload. Communication ofthe

ACM, 37 (7), 31-40.

Maes, P. 1997. Patteis Maes on software Agents: Humanizing the Global Computer.

IEEE Internet Computing, 1 (4), 10-19.

Mahalingam, K. and Huhns, N. 1997. A Tool for Organizing Web Information. IEEE

Computer, 30 (6), 80-83.

Malherio, B. and Oliveria, E., 1997. Environmental Decision Support: a Multi-Agent

Approach. In:, 4GENTS '97. Proceedings ofthefirst international conference on

Autonomous Agents, February 5-8,1997 Marina del Rey, CA. NY: Association for

Computing Machinery (ACM), 540 - 541.

Marsella, S., Adibi, J., AI-Onaizan, Y., Karninka, G., Muslea, I., Tambe, M., 1999. On

being a teammate: Experiences acquired in the design of RoboCup teams. In:

Agents '99, Proceedings ofthe third annual conference on Autonomous Agents,

May 1-5,1999, Seattle, JYA, USA. NY: Association for Computing Machinery

(ACM), 221-227.

Marshall, A. D., 2001, A12 Courseware [Online], Computer Science Department, Cardiff

University. Available from httr): //www. cs. cf. ac. uk/Dave/A12/Al notes. html [Accessed

14 September 2004].

Martin, J. and Odell, J., 1992. Object-oriented. 4nalysis and Design. NJ, USA: Prentice

Hall.

Mason, C. and Matwin S. 1995. Environmental Applications of Al. IEEE Expert, 10 (6),

12-13.

Meyrowitz, A. and Chipman, S., 1993. Foundations ofKnowledge Acquisition Machine

Learning. Boston: Kluwer Academic Publishers.

169

Michalski, R., 1986. Understanding the Nature of Learning: Issues ad Research

Directions. In: Y. Kodtatoff and R. Michalski, eds. Machine Learning. An

Artificial Intelligence Approach Volume Iff. Palo Alto, CA: Morgan Kufmann, P 3

-25.

Milewski, A. and Lewis, S. 1997. Delegating to software Agents. International Journal

for Human-Computer Studies, 46 (4), 485-500.

Muller, Jorg P., 1996. The Design of Intelligent Agents: a Layered Approach. Lecture

Notes in Artificial Intelligence, 1177. Springer-verlag,

Norman, D. 1994. How might people interact with Agents. Communication of the ACM,

37 (7), 68-71.

Object Management Group, 200 1. OMG Unified Modeling Language Specification

Version 1.5 [Online]. OMG. Available From http: //Nvww. omg. orWcgi-

bin/doc? formal/03-03-01 [Accessed 19 September 2004]

Object Management Group, 2003. UML 2.0 Superstructure Specification [Online]. OMG.

Available from http: //w, ývw. omg. org/cgi-bin/doc? ptc/2003-08-02LL9 September

2004]

Ohsuga, A., Nagai, Y., Irie, Y., Hattori, M., and Honiden, S., 1997. Plangent: An approach

to making mobile Agents intelligent. IEEE Internet Computing, 1 (4), 50-57.

Plu, M., 1998. Software Technologies for building Agent Based Systems in

Telecommunications. In: N. Jennings and M. Wooldridge, ed. Agent Technology

Foundations, Applications, andMarkets, Berlin: Springer-Verlag, 241-266.

Quinlan, J., 1986, The Effect of Noise on concept learning. In: R. Michalski, J. G.

Carbonell, T. Mitchel, eds. Machine Learning Volume H. - An Artificial Intelligence

Approach. Los Altos, CA: M. Kaufmann Publishers 149 - 166.

Ram, P. and Abarbanel, R., 1997. Enterprise computing: The Java factor. IEEE

Computer, 30 (6), 115-117.

170

Rao, S., and Georgeff, P., 1991. Modeling Rational Agents within A BDI- Architecture.

In: J. Allen, R. Fikes, and E. Sandewall, ed. Proceedings ofthe Second

International Conference on Principles of Knowledge Representation and

Reasoning (KR91), San Mato, CA: Morgan Kaufmann, 473-484.

Rao, S., and Georgeff, P., 1996, BDI-Agents: From Theory to Practice. In: V. Lesser and

L. Gasser, eds. Proceedings of the First International Conference on Multi-Agent-

System (ICAMS '95), 12 - 14 June 1995 San Francisco, CA: AAAI, 312-319.

Riecken, D. 1994. Intelligent Agents. Communication ofACM, 37(7), 18-21.

Rowe, A. and Davis, S., 1996. Intelligent Information Systems: Meeting the Challenge of

the Knowledge Era. West Port: Quorum Books.

Rumbaugh, J., Jacobson, I., and Booch, G., 1999. The Unified Modeling Language

Reference Manual. Reading: Addison-Wesley.

Rus, D. and Subramanina, D. 1997. Customizing Information Captures and Access.

A CM Transaction on Information Systems, 15 (1), 67-10 1.

Russell, S., 1996. Chapter 4: Machine Learning. In: M. A. Boden Ed. Handbook of

Perception and Cognition volume 14. Artificial Intelligence, Academic Press.

Sankaranarayanan, A. and Mataric, M., 1997. The Multi-Agent-Based Calculator

(MAS Q System. In: Agents '98, Proceedings of the second annual conference on

A utonomousAgents, May 9-13,1998, Minneapolis, AM, US4. New York:

Association for Computing Machinery (ACM), 465466.

Singh, M., and Huhns, M., 1996. Intemet-Based Agents: Applications and Infrastructure.

IEEE Internet Computing, 1 (4), 8-9.

Subrahmanian, V., Chen, S., Hendler, J., Hull, R., and Tannen, V. 1996. Smart mediators

and Intelligent Agents (panel). In: CIKU96. Proceeding ofthe Fif1h International

Conference on Information and Knowledge Management, Rockville, Maryland,

USA, November 12-16,1996. New York: ACM, 343.

171

Taylor, D., 1998. Object Technology. ý A Manager's Guide. 2d ed. Reading, MA:

Addison-Wesley.

Thomas, G. and Fischer, G. 1997. Using Agents to Personalize the web. In: IUI97.

Proceedings of the 1997 International Conference on Intelligent User Interface, e

- 9h Jan 1997, Orlando, Florida. New York: ACM, 53-60.

Tbrun, S. and Pratt, L., 1998. Learning to Learn. Boston: Kluwer Academic Publishers.

Toomey, C. and Mark, W., 1995. Satellite Image Dissemination via software Agents.

IEEE Expert, 10 (5), 44 -5 1.

Wasserman, A. I., Pircher, P. A. and Muller, R. J., 1990. The Object-Oriented Structured

Design Notation for Software Design Representation. IEEE Computer, 23 (3), 50-

62.

WeiB, G., 1996. Adaptation and Learning in Multi-Agent Systems: Some Remarks and

Bibliography. In: G. WeiB & S. Sein eds.. 4daption and Learning in Mulli-agent

Systems. Lecture Notes in Artificial Intelligence, Vol. 1042. Berlin: Springer-

Verlag, 1-21.

Whitehead, S., Karlsson, J., and Teneberg, J., 1993. Leaming Multiple Goal Behaviour

Via Task Decomposition and Dynamic Policy Merging. In: Connell and

Mahadevan, ed. Robot Learning, Norwell, MA: Kluwer Academic Publishers, 45-

78.

Winston, H., 1992. Artificial Intelligence. Yd ed. Boston: Addison-Wesley Publishing

Company.

Wong, S. 1994. Preference-based decision making for cooperative knowledge-based

systems. A CM Transaction on Information Systems, 12 (4), 4 07-43 5.

Wooldridge, M., 1999. Intelligent Agent. In: G. Weiss, ed. Multi-Agent Systems: A

Modem Approach to DistributedArtificial Intelligence. MA: MIT Press, I- 77.

172

Appendix A: UML 2.0 Activity Diagram User Guide

Activity diagrams are useful in modelling the workflow of a process conducted

interactively between the Intelligent Agent and other players such as users, agents, or

environment. This user guide has three sections: the first section is a simple guide that

introduces the major components of the Activity diagram to the researcher of Agent

learning field. The second section provides a step-by-step guide to sketch a simple activity

diagram. The third section shows a table of all the major components of UML 2.0 activity

diagram. The following steps guide the researcher in agent learning to use UML 2.0

activity diagrams to model the learning behaviour of Intelligent Agents:

Section A. l: Activity Diagram Components Guide

This section is extracted from the Sparx Systems, 2005a. In UML an activity

diagram is used to display the sequence of activities. Activity Diagrams show the

workflow from a start point to the finish point detailing the many decision paths that exist

in the progression of events contained in the activity. They may be used to detail situations

where parallel processing may occur in the execution of some activities. Activity Diagrams

are useful for Business Modelling where they are used for detailing the processes involved

in business activities.

The below diagram shows an example of an Activity Diagram.

Figure A. 0.1 Example of activity diagram
173

The following sections describe the elements that constitute an Activity diagram.

Activities

An activity is the specification of a parameterized sequence of behaviour. An activity is

shown as a round-comered rectangle enclosing all the actions, control flows and other

elements that make up the activity.

ad Activity

Activity

Figure A. 0.2 illustration of activity

Actions

An action represents a single step within an activity. Actions are denoted by round-

cornered rectangles.

ad Action
---l

Perf or m
Action

Figure A. 0.3 Illustration of Action

Action Constraints

Constraints can be attached to an action. The following diagram shows an action

with local pre- and post-conditions.

174

clocalPreCondition*
(A drink is selected that the
vending machine contains)

ýDispeýnse

il i kj Drink

clocalPostCondition*
(The vending machine

dj dispensed the drink selecte

Figure A. 0.4 Example of action constraints

Control Flow

A control flow shows the flow of control from one action to the next. Its notation is

a line with an arrowhead.

ad Activity Edge

Acce
Pay=d

Figure A. 0.5 Illustration of control flow

Initial Node

An initial or start node is depicted by a large black spot, as depicted below.

ad Initial

Perf or m *--->Cý:)

Action

Figure A. 0.6 Illustration of initial node

175

Final Node

There are two types of final node: activity and flow final nodes. The activity final

node is depicted as a circle with a dot inside.

ad Activity Final

lose
GC

ose
Order

Figure A. 0.7 Illustration of final node

The flow final node is depicted as a circle with a cross inside.

ad Flow Final

Close
C

losc
EOrde

IOS4"

ý-->&
-D

Figure A. 0.8 Illustration of flow final node

The difference between the two node types is that the flow final node denotes the

end of a single control flow; the activity final node denotes the end of all control flows

within the activity.

Objects and Object Flows

An object flow is a path along which objects or data can pass. An object is shown

as a rectangle.

ad Object

Document

Figure A. 0.9 Example of an object

176

An object flow is shown as a connector with an arrowhead denoting the direction in

which the object is being passed.

ad Objeý

Invoice Mak
Paym: rd

Figure A. 0.10 Object flow

An object flow must have an object on at least one of its ends. A shorthand notation

for the above diagram would be to use input and output pins.

ad Object Flow (alt)/

FSe

... i. e

Figure A. 0.1 I Another illustration of object flow

A data store is shown as an object with the ((datastore>> keyword.

ad Data Store

ad atastore
Data

Figure A. 0.12 Data store example

Decision and Merge Nodes

Decision nodes and merge nodes have the same notation: a diamond shape. They

can both be named. The control flows coming away from a decision node will have guard

conditions which will allow control to flow if the guard condition is met. The following

diagram shows use of a decision node and a merge node.

177

ad Decision or Merge /

[co nd iti (o n is tru el
Action on

True

De ion Node Merge No e

Ach on of
[co nd iti on is fa Ise) False

Figure A. 0.13 Example of decision and merge nodes

Fork and Join Nodes

Forks and joins have the same notation: either a horizontal or vertical bar (the

orientation is dependent on whether the control flow is running left to right or top to

bottom). They indicate the start and end of concurrent threads of control. The following

diagram shows an example of their use.

Concurrent
Action I

Concurrerd
Action 2

Figure A. 0.14 Example of Fork and Join nodes

A join is different from a merge in that the join synchronises two inflows and

produces a single outflow. The outflow from ajoin cannot execute until all inflows have

been received. A merge passes any control flows straight through it. If two or more inflows

are received by a merge symbol, the action pointed to by its outflow is executed two or

more times.

178

Expansion Region

An expansion region is a structured activity region that executes multiple times.

Input and output expansion nodes are drawn as a group of three boxes representing a

multiple selection of items. The keyword iterative, parallel or stream is shown in the top

left comer of the region.

ad Expansion Region

-------------- ----------

parallel

----------------------------- f ----------

Figure A. 0.15 Example of expansion region

Exception Handlers

Exception Handlers can be modelled on activity diagrams as in the example below.

Protected Node 11
ELxceptionType

(Exception Handler Node

Figure A. 0.16 Illustration of exception

Interruptible Activity Region

An interruptible activity region surrounds a group of actions that can be interrupted.

In the very simple example below, the Process Order action will execute until completion,

when it will pass control to the Close Order action, unless a Cancel Request interrupt is

received which will pass control to the Cancel Order action.

179

--- ---------------------

C: nc:
slt R qu

Figure A. 0.17 Example of interruptible activity region

Partition

An activity partition is shown as either horizontal or vertical swimlanes. In the

following diagram, the partitions are used to separate actions within an activity into those

performed by the accounting department and those performed by the customer.

Figure A. 0.1 8 Example of activity diagram with partition

180

Section A. 2: Step by Step UAIL 2 Activity Diagram Drawing Guide

To understand the following steps, users must read the previous section to be

familiar with the UML 2.0 activity diagram's terminologies.

Activity Diagram
Learning from Observation and Discovery

Passive Observation -Time Event Action and Event Action

0-

environment sensors lagent

ta Special value [End of observation]

record-action cluster. 4

ol servatlonDs ob no

Q.

Update-hypotheele

[Continue learning]

Figure A. 0.19 Example of activity diagram

* Step 1: Identify the users, object, and agents that are involved in this

activity diagram with the Intelligent Agent

o For each user, object, agent, or Intelligent Agent, draws a partition.

Each partition will include the activities and actions of the

partition's owner.

o Figure A. 0.19 shows an activity diagram with two partitions; one

for the Intelligent Agent and the other for the environment sensor

agent.

* Step 2: Identify the sensors that the Intelligent Agents uses

o If the trigger is a time trigger such as a lapse of time of a specific

duration or the performance of an action at a specific time, draw the

181

x
time signal at the relevant partition . Write the time condition

beside the time signal notation

o If the trigger is the occurrence of an action, then draw the accept

signal notation at the relevant partition
ý-]

. Write the triggering

action beside the accept signal notation.

* Step 4: Identify the activities and actions that the Intelligent Agent performs

o Draw the activities and actions that the Intelligent Agent conducts in

the relevant partition. Each activity or action must have at least one

title.

* Step 5: Identify the activities and actions that other users or agents perform

o Draw the activities and actions that are conducted by other users in

the relevant partition.

* Step 6: Identify Decision Nodes

o Draw the required decision nodes in the activity diagram, its

condition, and the relevant action for each condition as shown in the

diagram below.

[condition is true]

[co nd iti on is fa Ise]

Figure A. 0.20 Example of decision node

* Step 7: Identify Fork nodes

o Draw the needed fork nodes that represent concurrent flow

182

Concurrendt

r

Acti On 1

COncurrerd CO r erd

0c

Accti on 2

C-:

Figure A. 0.21 Fork nodes

e Step 8: identify Join and Merge Nodes

o Draw the necessary join and merge nodes of control flows. The join

node output does not execute until all inflows have been received

No e -I

Figure A. 022 Notation ofjoin and merge Nodes

* Step 9: Complete all missing flows

o Draw all the missing control and object flows between the activity

and actions in the activity diagarn

o Step 10: Revisit the diagram

o Refine the diagram from redundant flows or actions.

o Add exception handling and action interruption notations

o Add Expansion region notation if needed

9 Step 11: Draw initial and final nodes

183

GM

to t3
Z3
to

z

C3
Ell)

"0

0 C3

Cý
CIA

cl

U)
ca

-0 CIS

1.0. a)

EE

r. 2)

Z

tu

0

(a U)

0: 5

r_ 0
0 s-

E (D
X

(D fj)
oi
(D (1)

1-- 2 'D 0
(D
CL .
U) E ' cm c0 a

Co a) (1) a Al- E .2 (L)
.0

0

W E > (U

co a) x U) co
Q) -a

., - a)
co c

co
a) 0- 75 c 14-

0

(D 0
0 E

0
0
(D E

cn Ch

0
(D (D CL

L)
0 ýI

ca
r- 10. - Mo CL
(D U)

co - L-
Co 0 -D

0

0
.0

a Lp

(1) Co r_ 12 0

ca Lr-
C: ca
ca z

(,)
co

Mo C:
12

(D
'a

a
m C: 0 E 0

T3

cu 0 0
> Al_ LU 0 (D >
CL 0 0 t)
a) T cu w co

lz

C:

(D C: 0
0

>
Lij LL z
CL

0 >

lu

.9
<

Wlt
00
1-4

0
(0 0 c
r-

0 ý: ý6
c 0

E

c:
U) M- »

9
mo CL t-.

--0 00
C» (A

Ci 0
- 0

-a u) c r_ Q) . 0 r4- r6--

wo

21
0

.5

to «r3 2 cm cu r- to c: 0
c:

rb --

00

E -0
c: c:

CI)
(0 r- (1)

MO
c

CL

75
to
m -2 0 E

CL 0 Z
00
C) M

L- m
0

4
E G . 0
2 0

4

0 0 73 0 CB k

m
-

c Z,
0
U) c: t- 0

. -
m

a) Z Z -5
--

a)
Z: - 0) - m 91)

-ll' E 0
11) _

0 0

a) zý 0

to - m 0 to (0

om -0 n c c0 U)
>, 0 Co -

c: 0
mý

(n 22 0 C c t= "ýC 00 (L) (U . - : -- _c (L) 0 0 c:
9)

v
m
(J)

U) m
t

Q
m

2 a) M
0 c

c: a)
-
0

c
0

- ý6 ze L Q
L) '0

0 ?
0
()'0

m
v

c
4--

0
Z'-

-

JO- . <c -0 <c < < < 9 ge

A,

0
:3

to
0

Z
Z
c:

12 0 0 Z c
0

C, C cl 0 EL LL L L

tn
00
V-4

cm cn to cz 0 U)
0<

0 N IM t) >,
>-

(U - >, (g

2E
m

CL

c31 C ü) 0

E 0 0
4

tu 0
cz r: r- r: >%

A
EZ

0
M- C» : r_ .-> 0

E

. E; ý (Z 0 _r10 c) (1) 0
C-XM
(0

-6 0
m

LA «o
w- to 0
U) c:

1-
om

0
-bz

E; =0
c

(n (1) to (Z £2 E -a
Co r:

,Z
0 >

(1) CL . r - (L) U) C 0 CL
An

:3 C) = (U O(Um 0 CL :31. - a) c00 -
. Co Im < (0 O. E u) g) ýM

-
U) ý x 5 ,

E
0 - %- 0: s)

O= (1)-2 4- CO rb- c (D C) U) a)
" (1) Q)

c
Q -: r- M

7 F
c ::;, -0 M- U)

c c: F- cr
(0 0. (1) 5 ý=

tf Z) w- 00 C (U ý
-

- (0 -ý
M->0

m(2 m (1) a

U) c3) > j)
cu .-E - :EM1, -

0
r6--

N ý u)
to m

0ý0
;5 E- J= (p 00E - 0 22) E c:

.0 m 0 b- E 0= aý r_ M" . - 2 .2pm, - C c
>. ý tu mAý: U» ý 0 -2

cu
(n
-

m Q)
_c c

ý :30 (L) 0= ý cn U) 0
M (U Mc

- -

m
0

m
Z -4- tn 0. 0 0

0 c2.
r a)

c: Cl. r_ c: 0 CM 0r
- Co ýi

u(M 5. ý0 WO
-

m w- r_
0 w: s c0 (U 9)

0 c3) (U :a C) (0 CXb
ý a) - - c:

(0 m M c0 ='- c:
U) U) M > 0Mý. (0.0

0 (u00
«0 = a) 0-0 0 <0

-M M
D U) (D cE
ia U. 3 gne,

E0 >

<
E
<0m U) m

0) (1) emý u)

0 <

0 '0
0

Z
(L) 0

2)

(n
Z C» (V

c:

--
2 1

, No 00

Appendix B: UNIL 2.0 Sequence Diagram User Guide

Sequence diagrams are good for representing the communication behaviour of an

Intelligent Agent with other users, objects, agents, or Intelligent Agents. They provide a

clear view of the sequence of communication and interaction among the entities of the

sequence diagram. This user guide has three sections: the first presents a simple guide to

the main components of a sequence diagram, the second section provides a step-by-step

guide to allow researchers in the Agent learning field to sketch a simple sequence diagram.

The third section shows a table of the main components of a sequence diagram.

Section Bl: Sequence Diagram Components Guide

This section is an extraction from Sparx Systems, 2005b. A sequence diagram is a

form of interaction diagram, which shows objects as lifelines running down the page and

with their interactions over time represented as messages drawn as arrows from the source

lifeline to the target lifeline. Sequence diagrams are good for showing which objects

communicate with which other objects and what messages trigger those communications.

Sequence diagrams are not intended for showing complex procedural logic..

Lifelines

A lifeline represents an individual participant in a sequence diagram. A lifeline will

usually have a rectangle containing its object name. If its name is self then that indicates

that the lifeline represents the classifier which owns the sequence diagram.

187

sd Utelines

Lifeline Instance : Class

Figure B. O. 1 Example of lifelines

Sometimes a sequence diagram will have a lifeline with an actor element symbol at

its head. This will usually be the case if the sequence diagram is owned by a use case.

Boundary, control and entity elements from robustness diagrams can also own lifelines.

sd More Ufelines

10 0 0

Actor Boundary Control Entity

Figure 01 Example of actor lifeline

Messages

Messages are displayed as arrows. Messages can be complete, lost or found;

synchronous or asynchronous; call or signal. In the following diagram, the first message is

a synchronous message (denoted by the solid arrowhead) complete with an implicit return

message; the second message is asynchronous (denoted by a line arrowhead) and the third

is the asynchronous return message (denoted by the dashed line).

188

Target

retum- message(parameter)

m ge(parameter)

M-e-ss-a- ge(tatum)

FigUre B. 03 Examples of message exchange

Execution Occurrence

A thin rectangle running down the lifeline denotes the execution occurrence or

activation of a focus of control. In the previous diagram, there are three execution

occurrences. The first is the source object sending two messages and receiving two replies;

the second is the target object receiving a synchronous message and returning a reply; and

the third is the target object receiving an asynchronous message and returning a reply.

Self Message

A self message can represent a recursive call of an operation, or one method calling

another method belonging to the same object. It is shown as creating a nested focus of

control in the lifeline's execution occurrence.

Figure B. O. 4 Example of self message

189

Lost and Found Alessaaes ft

Lost messages are those that are either sent but do not arrive at the intended

recipient, or which go to a recipient not shown on the current diagram. Found messages are

those that arrive from an unknown sender or from a sender not shown on the current

diagram. They are denoted going to or coming from an endpoint element.

lifeline,

lost message
u

found message

Figure B. O. 5 Example of lost and found messages

Lifeline Start and End

A lifeline may be created or destroyed during the timescale represented by a

sequence diagram. In the latter case, the lifeline is terminated by a stop symbol,

represented as a cross. In the former case, the symbol at the head of the lifeline is shown at

a lower level down the page than the symbol of the object that caused the creation. The

following diagram shows an object being created and destroyed.

Parert

new

delete
u

Figure B. O. 6 Example of creating and destroying an object

190

Duration and Time Constraints

By default, a message is shown as a horizontal line. Since the lifeline represents the

passage of time down the screen, when modelling a real-time system, or even a time-bound

business process, it can be important to consider the length of time it takes to perform

actions. By setting a duration constraint for a message, the message will be shown as a

sloping line.

Source Tarnet

call 1>10msl

-
call 1>10msl

re p ly (>5 msj

j
reply J>5 msj

Figure B. O. 7 Example of duration and time constraints notation

Combined Fragments

It was stated earlier that Sequence diagrams are not intended for showing complex

procedural logic. While this is the case, there are a number of mechanisms that do allow

for adding a degree of procedural logic to diagrams and which come under the heading of

combined fragments. A combined fragment is one or more processing sequence enclosed

in a frame and executed under specific named circumstances. The fragments available are:

" Alternative fragment (denoted "alf') models if .. then ... else constructs.

" Option fragment (denoted "opt") models switch constructs.

191

e Break fragment models an alternative sequence of events that is processed

instead of the whole of the rest of the diagram.

* Parallel fragment (denoted "par") models concurrent processing.

e Weak sequencing fragment (denoted "seq") encloses a number of sequences

for which all the messages must be processed in a preceding segment before

the following segment can start, but which does not impose any sequencing

within a segment on messages that don't share a lifeline.

* Strict sequencing fragment (denoted "strict") encloses a series of messages

which must be processed in the given order.

* Negative fragment (denoted "neg") encloses an invalid series of messages.

* Critical fragment encloses a critical section.

9 Ignore fragment declares a message or message to be of no interest if it

appears in the current context.

9 Consider fragment is in effect the opposite of the ignore fragment: any

message not included in the consider fragment should be ignored.

* Assertion fragment (denoted "assert") denotes that any sequence not shown

as an operand of the assertion is invalid.

9 Loop fragment encloses a series of messages which are repeated.

The following diagram shows a loop fragment.

192

od Fragmwt

requ*sLitem(n)

send(array)

Figure B. O. 8 Example of loop fragment

There is also an interaction occurrence, which is similar to a combined fragment.

An interaction occurrence is a reference to another diagram which has the word "ref 'in the

top left comer of the frame, and has the name of the referenced diagram shown in the

middle of the frame.

Gate

A gate is a connection point for connecting a message inside a fragment with a

message outside a fragment. EA shows a gate as a small square on a fragment frame.

: ScKirce : Tarnet

critic Oate
mso msg

u

Ia

Figure B. O. 9 Example of a gate

193

Part Decomposition

An object can have more than one lifeline coming from it. This allows for inter-

and intra-object messages to be displayed on the same diagram.

ad Pwt D-Wosrbý /

pwti class P042

au ? tom

mqu*A A

moue't

------------ ------------- --

Figure B. O. 10 Example of part decomposition

State Invariant / Continuations

A state invariant is a constraint placed on a lifeline that must be true at run-time. It

is shown as a rectangle with semi-circular ends.

: Lifeline

Figure B. O. II Example of state invariant

A Continuation has the same notation as a state invariant but is used in combined

fragments and can stretch across more than one lifeline.

194

Section B. 2: Step by Step UAIL 2 Sequence Drawing Guide:

Sequence Diagram
Learning from Observation and Discovery
Passive Observation, Time Event Action

E2,
loop III (continueobservabol true]

iconfinueobservatiol truel

Record eýent

t=T III

-- ------------------ - --- Eventsaved

Send saved cýbservations

------ - -------- Return saved observation

Cluster- observations
k---J

Select current hypothesisl

k-
Return current hypothesi)

Update hypothesis

Hypothesis updated

Figure B. O. 12 Example of sequence diagram

To understand the following steps, users must first read the previous section to be

familiar with the UML 2.0 sequence diagram's terminologies.

9 Step 1: Identify and draw lifelines

o Identify the main entities of the sequence diagrarn such as Intelligent

Agent, users (actors), agents, or objects.

o Draw the lifeline of each of the identified entities as shown in the

example below:

195

ipcent : sensor
I

: buffer 1
Figure B. O. 13 Example of lifelines

L`211 I

* Step 2: Draw messages and Interactions among the sequence diagram

entities

o Draw the arrows that represent the messages and interactions

between the Intelligent Agent and the other lifelines of the sequence

diagram

c, Draw duration and time constraints if needed

9 Step 3: Draw combined frames if needed

o Identify any procedural logic that needs to be represented by a frame

such as parallel or optional interaction

o For each procedural logic draw a frame that covers the area where

this logic applies. Figure B. O. 12 shows a sequence diagram with two

loop frames.

0 Step 4: Identify any needed Gates

o If there is any message that needs to be transferred outside the

existing frame, draw a gate notation to allow this transfer as shown

in the below figure.

critica Gate
msg msg

Figure B. O. 14 Example of transferring message through a gate

196

e Step 5: Identify Start and End of lifelines

o Identify any entity that will be created or destroyed during the

sequence diagram

o Draw the notation of a start and end of the needed lifeline as shown

in the example below:

Child
neuv

delete
L4

Figure B. O. 15 Example of start and end of lifline

197

cl

fi

rA

IG

. ýo
Z--

10

C>

Ei

ý. 0
0

Pl-' I

-0

0 =

E
CU a)

0

(D

U)
a -0
2a r_ ýý
. 0 Co
2 X-

cc
(A
t:

a) T (a
. CL

y CL

cc
V) c [2 0 . 0 E

0
Co

(1) - r_
a

0
0 . - a

cu
:3 2- Cn cp

mE c X.

O 'D

-E s CU (1)
m . cu r- r- to 2

CU r-
W

L--

a 0
CU

0
a a) (D

S-- >ý ýt > - cc

OV

LU

cl
0

U-

00 ON

(1)
0

c
(13 0)

0
45

0
>

0 cu c« t3 CL cu

CL W-- E
m 0

00
c
0

(1)
-0 12 0

In " 0 0- AU
«a

0 cu
3: LA 00

(D (9 <E
E

in
- Li- t -0 c 0

U ý a) m
'm E tz 0
E 0 0 1. (DO

m -Z E-CDO -;; -- C0 C» -0 U0ý
-

0 CL
m (1) X c:

(U c:
Z

0- :3 0--
U) 0 (L) (L) - U) 0U S-:

4- (1) 0 C)
>, -.
M E; a)

c
:3ý C)
' 0 r_ 0 0 :3m E (D

E- 2
r L

(1)
r C) - :5 (D M

Ei= c: > -0
. E :3E 0

m ýE
0 IL)

m- t-
M >I: L,

0-

-m
0
c) (1) (D

M (0 cn
O. c m

c m
c

.-Z0 «ia
4-
0 ý_: (L)

c2-
V- CL
00 U)

(0 m
b- ý
0)

<
Mc

t)
c

(.) 12
>0
ß- 1

Mý L) 4-
th (t) m (D : t:! >, U) m c) r > 0 cm 0 m (1) C3 O(U

-
U) c
c
Oim

12 EmC <j 0 eL-
cu

e (0
=20 0

0
Cö -ý a) c C r- c2. to

'»

0 =: 2
(n (U 10 %-

. Im ý3 m
(1) -a > s :3 c2.

0 2! r- 0 Co a)

0
(2 (0 0mE

.-ß.. 0
c r0C Co

(n
E: =a m (U

(1) .2 X CO - L) ý MM ý
0

00
0

to CL Q
0M

Q 14. - CL
.a G) c
.-

:3 (1)
c: 0

m 2'mý U)
c0 0,0 = . 2: ý X

0 F- c 1_-

2
e(1)

w

0
c c: -c
ID --
1: - 0)

o
:E

M> c3)
0

U)
c c: 0

LLJ
0

;_
OM() - u) (U LL

0 Z] [3 m> ' 0
0

0
c 0

0

-
j:, m m «0 -- 0)

(L)
CL

U

CC (0

.00 u)
4- c:
00

m-
0

(1) m
0 ý

)m

2 ui
- '= -E

[2 2
t-

CL; ö : . -c :3 a) E (1) -2 t-- a) a ,) r- E ID
c)- 00
u) 0 -= ýý 0

*ý5 Z
-C

0
CL. E- r_ r). r m U) - m -- 0 (n M

a) ý
£2 t: c: 8m Co 0

u) uj ==
r- (1) M
(0 MM

(L) (D
ýU

(n WM
(1) 1 -

U)
(L)

0 U)
(1) C)

0Q Co -ffi
- ý

c () 0 - (L)
0

. 12 5E
Z

. f- E 4- c OM

C)
-0 C) (n a) c: AD

.- Ei. cL
(1) U) 00 cn 0E

G) -C3 0
-0 - u)

(D
CL

C (n *r-
2 70 IU

E lý ID ID

:3 0) (J ý: 8c 00 C) 00
> (L)

0ýZ ý U)

r- ý: ý ja Q) CO u)

(L)
Cä. c

(D 0E 0 = cý Co 0
E -2 0
CM '0 (D

0 '» mE .-rý - MM -0
CMM 16- CL

0

cn M
M

, c: L. Co CL [2 (U (D r_
.c (0 - 0000 0 C) 0(1) r_ C) oZ t-- C) LL < C)

. -
0 00 Z

2 a) E -ý
00 r 00 m 1) x 0 x c: 0 c) E 00 00

to U)
00 a) x 0 LU 0 0) 0

c: xx ww < 1- u) 4 -.
< AZ: :3

.E2 --
<5m- F- -Z

0

CL r: r _ mo . c.
0 c >

E
X 0 r

. 20
w C) U) C)

a' a'

,m- 0
m

mým ým r_

0 cn 4) o !E m CL
CL 0

E
M CL ß-. (n > cm

Zm CL
. - F- 0) C

0 i 0 ca - . c ý. 0

0 cu
r- Fo e r- ý: AD

E8 ' 0 « G) E 23
0 to

m (0 0 =
am
r: 1. - (0 :3 « UAM c O .P o
(D

a) U) 0
on)

2(D, 9
(L) r

a) E- Co U)
- c: _0 cu 0

,u
0

L- (U , 3E
tu 0 CM

0-
ii- - Z (n Z,

Co r- [2
0 -ý

(U «
Zm 0ý

0Z
cn

9

1- c a (n am u) tu 00 mý
r c 0 U) > -0-6 (L) - 0

E0 c

"c

0
) ý (L)

M :3 cm 2? 0
(D

0x

E 22 .v m
0 -1

c3

Mc

Z: 5 a) m
-

0-
uE - .= ia t= ý

= C) 4-

0 c wo
G)

-0 C0
00

mo, - C CL
cn -J a)

0 0=
i2

c=

lu Aom S.. 0ME
-ý- cu

cZ

W-
ýM,
0 r- (n <

0 C, 3 0)

t:
AE

c om (1) 0ý CM (U 0 c3) 0 ci. 0 (1) E- > 20
0 . 2ý. 0 c, -

0
-ß 12 E 2

E 1 -U a x -c

0 a) G) M
> Cl.

0
Z

=O C» 0 U) m U)
:3t q)
0 M

< <

0

10 4-1
2 0 -

0 4)

C2

. 2. to ý _N '0

2 (9
c U)
0 m

0 0
0 c:

0
r_
0

0-
0 0

Co)

C14

16-

(a 0 =
-0 0

0

0
0 cn

C: 0: 6 Cd 0=a a
c cg 00 U)

ý Co C: cu 0

0-
M

- U) .- (a
- ý () "a ýr . ': 8

ai
a) . -;

. E . r
4) 00
CL *-- c r 0 0 (1) -0 - =-D , C.) - U) cq (1)
C

Ed C (D (1) *5; 0 a) CL 00 -C3 0 CL (1) cu 0 ID
cm

0) U)
aE' - c

0 a) C') >
00 CL CU != a) U) > U) (1)

0 C :
.2 An (1) In 0- S (1) X (L) r_ (1) LU 00

Q
U) (1) (1) E

r - co .; :3 C-) Co cm

co 4) o) C 0" C: a) . >. L
E (D

&= =m

. -0 0 (1) (D
E C:

a
0. -a a)

=50 8 cm
(D r- 0

oýE (>u a (1)) U)
cu c: 2 C.) -= - co 0 cu (1)

:3 C) CY)
-4-
0

0 U) m J-- 0)
(L) :Eý (1)

a) (D CL 0
. E co r_

0)
C

L) 0ý
C: c

F- (D 0u Cl) E ! '3: (1) (D
- -6-

0
Z-- C

16 (D L- a)
0

0 0 CL
U) 0ý

L

0
(1)
co

:3

(1) 43) 4-

Q (0 0 M (D a)
0ýC

(D 0 0-0

.S (a
ý C:

(1) a0 (1) 'D 0r a) 0 :3
_ CL 0) hd (n :2 0

x- U) :3 -
=3

m
>

f2
()
!Ea cm ca L)

0 (D
:3
m LZ a) cE0

(.) Co a >, 0= 0=3

. 1; z, 13 cy)
- L

a) >
a)

0) - ir; (-)

Co
0 - C: U) .- ca Ec r- "

-'4 (.) L- -- 00
(1)

0 L- (D 4- 0) 00 V)

,
Q) 4)

(D 00>
a> :3 r- a) 0) Co
0a

(D -
C CD C% - 0r E a) (L) C3 CY) L- - a -

r_ 0 -r ca Co p8 -2 (a a) cu a) Fa Em
0 V) a) a) - ar 0 r_ 14 - L- r oE-- 2 - D-

0 a)
. '00

- '

CU
0ý 0

Ma cn CU (a 'a -
m r .)- (L) (U L- U) = a (1) <w E 2

o W
aa CU

.0a a) 0
m-

>
M co > (D L-

() (U
cn
(1)
0)

m
V) ý L- I

c ca
co

. M (n (D - V)- a) E C: ca (1) M (1) 8Q) U) E Q- 0 (a 0) C: = C:
" V) LLJ o a) (L)

(D
U) V) (D

Q) E Cý
(1) C: 0 CL

0, ca
(D
.

A 0: 5 U) 0 c Ec -0 (D c E a) 0 L- -
0 >% 8 U) (D 0 r- (n 0 >, 0 V)

(U CU (n r C.) a2 I-- (1) a) 0 L

a)
ca

cu 8
U) tm= -E

-r- 0 -2 cm cu -" cu a . - (.) a) L- E I-- U) 0) U
CL 0 C: -! 7- E 0 0) -0 :30>. U) u -

Q) cm m
cu (1) cn cx P U) -i5 a) 0Q C: 2 cu (D 8 U) a)

(D U) 0
cu C cn

(n U)
0 m c: m0

00- C)
CU a
cn = 0) 0 0) CM 0 E r- L - Cl C O .

r E
CL

E (Sni --r- -rB- U) t2 U) 0 cn E
E
cn :3 J-

I r a) Ua

<
0 0) Q2

<0 in (5
0 0

LL
U (1)

-c: r 0 -0 C)

te
0

- 8 1-0 0

01

C
0

mc a) 0)
cu i=

0 9)
ca
cn

U)
Q 0

0.
00

D)
cu

(D

EE
cn
co
(D cn :3 C:

0
-i I 0

U- I

1-4 C)
C14

Appendix C: UML 2.0 State Machine Diagram User Guide

State machine diagrams are good for describing the behaviour of an Intelligent

Agent during different states of its life. State machine diagrams are not efficient at

describing interactions among Intelligent Agents and other entities such as other agents,

users, or objects. This user guide has three sections: the first presents a simple guide to the

main components of state machine diagrams, the second section provides a step-by-step

guide to allow researchers in the Agent learning field to sketch a simple state machine

diagram. The third section shows a table of the main components of a state machine

diagram.

Section CA State Machine Diagram Components Guide

This section is an extraction from Sparx Systems, 2005c. A State Machine Diagram

models the behaviour of a single object, specifying the sequence of events that an object

goes through during its lifetime in response to events.

As an example, the following State Machine Diagram shows the states that a door goes

through during its lifetime.

sm Protocol State Mactine

Opened Closed
Create/ Close/ [doorWay->isEmpty]

Open/
LOW Unlodd

I

Looked

Figure C. O. 1 Example of state machine diagram for a door

202

The door can be in one of three states: Opened, Closed or Locked. It can respond to

the events Open, Close, Lock and Unlock. Notice that not all events are valid in all states:

for example, if a door is Opened, you cannot lock it until you close it. Also notice that a

state transition can have a guard condition attached: if the door is Opened, it can only

respond to the Close event if the condition doorWay->isEmpty is fulfilled. The syntax and

conventions used in State Machine Diagrams will be discussed in full in the following

sections.

States

A State is denoted by a round-cornered rectangle with the name of the state written

inside it.

Lldle

Figure B. O. 2 Notation of a state

Initial and Final States

The Initial State is denoted by a solid black circle and may be labelled with a name.

The Final State is denoted by a circle with a dot inside and may also be labelled with a

name.

Alive
Create 2D !e ýst r ýo

a Initial Final

Figure C. O. 3 Example of initial and final states

203

Transitions

Transitions from one state to the next are denoted by lines with arrowheads. A

transition may have a trigger, a guard and an effect, as below.

Source State Target St
Tfigger [Ouardl /Effect

Figure C. O. 4 Notation of a transition

"Trigger" is the cause of the transition, which could be a signal, an event, a change

in some condition, or the passage of time. "Guard" is a condition which must be true in

order for the trigger to cause the transition. "Effect" is an action which will be invoked

directly on the object that owns the state machine as a result of the transition.

State Actions

In the transition example above, an Effect was associated with the transition. If the

target state had many transitions arriving at it, and each transition had the same effect

associated with it, it would be better to associate the effect with the target state rather than

the transitions. This can be done by defining an entry action for the state. The diagram

below shows a state with an entry action and an exit action.

sm Entry and Exit

f'-Teceiving
LOnEn!

lpid(, jp
+ On . 1. On Exit/ disconnect

tryf! t

Figure C. O. 5 Notation of state actions

It is also possible to define actions that occur on occasion , or actions that always

occur. It is possible to define any number of actions of each type.

204

Self-Transitions

A state can have a transition that returns to itself, as in the following diagram. This is most

useful when an effect is associated with the transition.

alte12 se con ds/poll input

R Vftiting

Figure C. O. 6 Example of self -transition

Compound States

A state machine diagram may include sub-machine diagrams, as in the example

below.

Figure C. O. 7 Example of state machine with compound state

An alternative way to show the same infonnation is as follows :

205

Check PIN

pn0 i Iq

Searoh Netv#Drk poy

poweroff

D---\

netmodc found

Ready I
poweroff_(

Off

Figure C. O. 8 Example of state machine diagram with composite state

The notation in the above version indicates that the details of the Check PIN sub-

machine are shown in a separate diagram.

Entry Point

Sometimes you won't want to enter a sub-machine at the normal Initial State. For

example, in the following sub-machine it would be normal to begin in the Initializing state,

but if for some reason it wasn't necessary to perform the initialization, it would be possible

to begin in the Ready state by transitioning to the named Entry Point.

Figure C. O. 9 Example of entry points
206

The following diagram shows the state machine one level up:

sm Ertry Poird (Hgher)

Nat Already
k-itialized

AJ ready INU al i zed Pe orming Activity

Skip InitiaNzing

IC-cD,

Figure C. O. 10 Example of entry point

Exit Point

In a similar manner to Entry Points, it is possible to have named alternative Exit

Points. The following diagram gives an example where the state executed after the main

processing state depends on which route is used to transition out of the state.

sm bdt

Processing

Reacling Instructions iOkiting Error Report

Initial Failed to
Read

Processing DisplaýOng Results
Instructions

Final Final

Figure C. O. II Example of exit point

Choice Pseudo-State

A choice pseudo-state is shown as a diamond with one transition arriving and two

or more transitions leaving. The following diagram shows that whichever state is arrived at

207

after the choice pseudo-state, is dependent on the message format selected during

execution of the previous state.

Ch

(Voice] Creating Voice
Message

r

Selecting Message Creating SMS
Format isms] Message

Creat
M

[Fax)

Figure C. O. 12 Example of choice pseudo-state

Junction Pseudo-State

Junction pseudo-states are used to chain together multiple transitions. A single

junction can have one or more incoming and one or more outgoing transitions and a guard

can be applied to each transition. Junctions are semantic-free; ajunction which splits an

incoming transition into multiple outgoing transitions realizes a static conditional branch as

opposed to a choice pseudo-state which realizes a dynamic conditional branch.

208

sm wbon.,, -'

ReceivingVoi e Receiving SMS Receiving Fax
Message Message Message

[Rep"- oice]
[Repl

I
SMS] [Reply--Fax]

Creating Voice Creating SMS Creating Fax
Message Message Message

Figure C. O. 13 Example of Junction Pesudo-state

Terminate Pseudo-State

Entering a terminate pseudo-state indicates that the lifeline of the state machine has

ended. A tenninate pseudo-state is notated as a cross.

LRur"ng

ff Power Off

Terminate

Figure C. O. 14 Example of terminate pseudo-state

History States

A History State is used to remember the previous state of a state machine when it

was interrupted. The following diagram illustrates the use of history states. The example is

a state machine belonging to a washing machine.

209

Sm"
Rurd-ing

W Vt*asNng Rinsing Spirwing

H--3

restore
I
Power p owe r cut

Pov, er Off

Figure C. O. 15 Example of history state

In this state machine, when a washing machine is running it will progress from

Washing through Rinsing to Spinning. If there is a power cut, the washing machine will

stop running and will go to the Power Off state. Then when the power is restored, the

Running state is entered at the History State symbol meaning that it should resume where it

last left off.

Concurrent Regions

A state may be divided into regions containing sub-states that exist and execute

concurrently. The example below shows that within the state "Applying Brakes", the front

and rear brakes will be operating simultaneously and independently. Notice the use of fork

and join pseudo-states rather than choice and merge pseudo-states. These symbols are used

to synchronize the concurrent threads.

210

Figure C. O. 16 Example of concurrent regions

211

Section C. 2: Step-by-Step State Machine Diagram Drawing Guide

State Machine Viagram

Reinforcemnt Leaming - Monte Carlo Policy Evaluation - Blackjack Card Game

r initialise

entry 1 Initialitse Tr (hit < 20)
do i set V
ýexit I Retums (s) ý an empty W

Receive-Cards

1<201 Nt %/ r2O: -ýurrent Sum -Ql) shrki

1>211

_j
entry IR- geýjreward

Istop_ playing- false] ido/R(S)zappend_R

starLnew_game I kýýtl V(s) - average (R(s))

Istop playing z true]

dealetý_turn

Figure C. O. 17 UML state machine diagram for Black Jack game

-P Step 1: Identify the Intelligent Agent states

o Identify and draw the states that the Intelligent Agent exhibits during

this state machine diagram. The above diagram shows four states:

initialise, receive-cards, receive-returns, and dealer-turn states

9 Step 2: Identify any choice orjunction pseudo states

o Draw choice orjunction pseudo states. The blackjack diagram

shows choice state titled "current-sum. "

* Step 3: Identify if there is any composite or concurrent state

o Draw the symbol of the composite diagram on the relevant state

e Step 4: Draw the transitions between the states identified above .

o Draw the transitions between the states as needed

o Write the trigger / guard on each relevant transition arrow.
212

* Step 5: For each state identify the entry, exit, and do actions

o For each state, write the entry, do, and exit actions if needed.

Receive-return state has three actions : one on entering this state, the

second is executed during the state, and the third on exiting the state.

9 Step 6: Identify concurrent region

o Draw any concurrent region needed to identify concurrent

behaviour.

o Step 7: Identify initial and terminate states

o Draw the initial and terminate states

213

ei

rA

b.. 3

10

C>

ce

;Z

lý-. i2 tN.)

1; 34. tn

0

-0 -C3 0
C:

c3) *Z-
0

(L) 0
0

c: 00
0

3 c) ! Z,
C IL) A (D C

0 -- ýr- Cu

iý c:
Z) = :3

c2 ýý
(0 (0

. c3)

U) M
(n a) Q E

4-
>, 0 0
r 0M0

tu M r c
*j_- -o0 ß-.

r- 4- -
(U M -ýe :3 M M

ý0C (1)
c- U) (L) c:

c)

m0
-x

>

U) Co CL
a) M Im m (D c

00 0-
Co

.0M Co
E

M0 M rm 0 - x (L) 0
0 r- -0

3: zr- (D 0
m0 CL Lr- E0 M (D >�Z, - r Li 0E

C 0 (n 00 e% ZE r_ c-M (0
0 0- a)

-M .- L)
c: 0

-=ZZ (L) C (U c)
(n >. () 1

MMC CZ "
-0 c» tu - o b! ZE

C 1
U)

0 (1) ý: , ,m (1) C) C:)- * tu c 5 ý- u). -
1 =

M

>Z 0E r-
. (0 0

- (n
fi . Q) u) - cm M «;; _- 0-
r.
Q

-a kZ-c 0. - -E a «a am
5 .-0 U) C: y) -t-

NW

1 1
- _ E Nr- -0 E c: (1)

(0 tu G (1)
0 CL

4 . >ý >, (U M0 CL U) - cm tn
«5

r: z E -0
r-

C) 0
> >0

0
-0

c: 0
2 -Z ri- 10 0Z c) mE

zu . zi-- &- 00 Ei 0 0 E ct

ci

2 rA

. 0

I: t
1-4 C14

U;

a; U) - ca r CL.! D -
(D m

0 66 U) _
0) 2 xE0 U)

W .
(D

(D -- m
r

(D (D
0

0 L- a< 0 CL
.2

= L-

0 (1)
cu

Co M tm'ýi =
.p

0 c
0) cn a)

F. r
Co E 0 c -

U) ca c 0
- - 0 - = .2 Mo

tf Ae c
(a
U) a (D S5 15

C .-- :t ' a
- ca

-
(D

:3

za
:L - (A c

0 U) m . - 41i (D
- _C-

- U) 0 LLJ V) CU r (D
I--

o
M (1)

V)
cu

(Ij E cu "
L
C:

V) cu
00 .ý E "6 (D I_- (D - M-0

.2 - (L) Cl Co (1)
a) U)

cm
'a

0
m- V) ESS E E 0 . r_ U) 00

0 U) - To 0x
CL (L)

m (D ý0 -C, >, 00 1- 0
CL
E E

M
cc
S Sm .0 :3

'
E1 0 (L) 0 ýQ a) " 'D c0 Cx

:E 0 c -
JOR o co 0> . (D 0 U

U) ýa cu 0 0 cy) Q
42) (1) (D
(j = 1--

0
(1)

cc
41) CF)

0
0

a 0 ýE co - 0 CL a) ýc . 2)
0 : t-

(1) W (1) E
a ý- = .0

CL E (L) (1)
a E ;r _ M U)

Ea
(D ý :3

I_-
c -0

0 T Mn

(D >%
tu 0 (D :EC: 03 = - cm m ca 4) 0

co (1)
r 0

0W- a)
:

U)
c cu

, (D C-c
-" Co C: M (3)

. &
0
u > Fn s

0 03 ý
.

4- U) 0 M (D L- (D
0 tý

(D 0 o rL r
E

0 CU cu a0 CD
0

ca >
S o a) 00 cn m o a) 00 c cu

U-
0 CU c

CL

1
(a (D S (1)

-ý E (D (D U= X 0S n
2- 1 (D 5 0 m Ia. t; 0 U (D 'a

- 0 4) ý 0 r- -
:30

: Ll U) (o x (D
0
(1)

0
0

C: (D .2 a 0)(1) C:
ca 0) : t-- L- E 0

(D
(n 0 4) c cu :30 a)

mo
(L)

co m 'Zý E Q) U) CD 0 ED a (D 0 (1) CL M co E-w
0 V) (D

CL " %- (L)
a) 0W :E ca

=-0 : t_-
(a E o

L)

a) 0 a) (1) C:
B

a (D
a) (0 6.0

Cl
: t! (1) CL 3:
(D U) m -

0 'D L- 0
C: 0 0. - Q

mo
Cý (n (D 0 (O ý ca -

.
-2 E
(0 =3 E (D CO 0 (1) V) (1)

:3 (D (D Cl)
'D . - - (D :30Eu ý

(DO -ca ; --
D a)

" :3
CL U)
CD I

D0 Z; 0
Cl) 0 ca ý ca (1) o0 (U-

C
Q.: E

(D Co
US o0

0
U) 10 c

CL (1)
CD U) 0 co ýO

CL'Ej) (,) -60 CL
0

4-

(D c 0)

.2 -0 CU =3
cu

roL E cu a .2
CU

CL M 0 (7) >% (1) U)
CE- L Q) cu 13

ý 2., (L) ý c0 CL
c CU -

Q0 4. - 0 U) 0) 0 0 EL () =2
CU : t, : t- . -

rX0 x-
- (D
a- Q 0 (A = 2-1

' - :" (U 0u >% . u (a C: 0 -0 m
U)
4) r

:a (D Cl (D
0) . -- a : t:!

_ (D E
CL
a) E-)

Mý =0 E :3
-- (U

<wE:: r . V) _ < x < a)
ý 0 a 0

00 U)

C14 m

do
U)

C4
"Ký (D

0
0

V 11 4)
Q)
0

Cd
x

"tý
;3

0 'ICI (n 0

Cd
0

u
X

w .
r.

LT 4

t- ß_
A

M c3)
ý- c

0 m

bi c
:3
c3) . cf -0 c

U) (1) 0
Z -0

>, 0 c AD 0 0
:2
U)

A
iz

t lf 0
c c c

m 0 i6 E c to

212 -Z
c c3) (0

-
cu

m CL

L2 CI) 0
. - um u (0 E

2.2 21 CL 0
c3)

c3) me M >
cn

-bc a) . cm
0 (L) c ? -"

0 U) 0- (L) r_
(0 U)

m to
m a)
IL) -

x: -ý-
00

0
c:

(A

on
ý U) (L) LD -- -0 c3)

0
ei m

(A Q
c:

r- >. - to td >0
(PO OM c3) - .- a) "TZ umw 4)

-2
r: >.

MM

-0
Z% cn

c
a) -"
CL c (1)

F C)
r- 0)

(UM CL U) -; = 1--

« U)
0 CL (U a) 0 3: ý; ._
a) c c c2. m r- M -

C.)
0 Z2 M ý m M-

ýEA (U C) a) U) >c U a) ! &; = (L) r- (D r- = to

om
cu U)
rM c: (1) c m r

EE 0-
0) c3) 0 CM E

c2- m
m

_ r_ . (1)
m

C)
t)

M U)
0) a)

(1) - Ein 0
m
r_ (1)

-
(1) -

a) 15 a)) ý :3
T :e

U)
c) 4. - - 0 C» - - 21

-
0 U)

M, ý: m
4-

(n " C)
00 E0 0

0 E CJ
(L) 0 >

(L)
- "r C)

;6
r (0 2 :3 (n (ý m C) E

0 0 o. 2 'a E CL C
0 :3 ým mm 1 E
:3 mo

2 E
L) >

C (0 i7) , m U) in

«o i 0 --------------- U) v-
-i

Z

C14

