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Abstract 

This thesis aims to explore and demonstrate the ability of the new standard of 
structural and behavioural components in Unified Modelling Language (UML 2.0 / 2004) 

to model the learning behaviour of Intelligent Agents. The thesis adopts the research 
direction that views agent-oriented systems as an extension to object-oriented systems. In 

view of the fact that UML has been the de facto standard for modelling object-oriented 
systems, this thesis concentrates on exploring such modelling potential with Intelligent 
Agent-oriented systems. Intelligent Agents are Agents that have the capability to learn and 
reach agreement with other Agents or users. The research focuses on modelling the 
learning behaviour of a single Intelligent Agent, as it is the core of multi-agent systems. 

During the writing of the thesis, the only work done to use UML 2.0 to model 
structural components of Agents was from the Foundation for Intelligent Physical Agent 
(FIPA). The research builds upon, explores, and utilises this work and provides further 
development to model the structural components of learning behaviour of Intelligent 
Agents. The research also shows the ability of UML version 2.0 behaviour diagrams, 
namely activity diagrams and sequence diagrams, to model the learning behaviour of 
Intelligent Agents that use learning from observation and discovery as well as learning 
from examples of strategies. The research also evaluates if UML 2.0 state machine 
diagrams can model specific reinforcement learning algorithms, namely dynamic 
programming, Monte Carlo, and temporal difference algorithms. The thesis includes user 
guides of UML 2.0 activity, sequence, and state machine diagrams to allow researchers in 
agent-oriented systems to use the UML 2.0 diagrams in modelling the learning components 
of Intelligent Agents. 

The capacity for learning is a crucial feature of Intelligent Agents. The research 
identifies different learning components required to model the learning behaviour of 
Intelligent Agents such as learning goals, learning strategies, and learning feedback 
methods. In recent years, the Agent-oriented research has been geared towards the agency 
dimension of Intelligent Agents. Thus, there is a need to conduct more research on the 
intelligence dimension of Intelligent Agents, such as negotiation and argumentation skills. 

The research shows that behavioural components of UML 2.0 are capable of 
modelling the learning behaviour of Intelligent Agents while structural components of 
UML 2.0 need extension to cover structural requirements of Agents and Intelligent Agents. 
UML 2.0 has an extension mechanism to fulfil Agents and Intelligent Agents for such 
requirements. This thesis will lead to increasing interest in the intelligence dimension 
rather than the agency dimension of Intelligent Agents, and pave the way for object- 
oriented methodologies to shift more easily to paradigms of Intelligent Agent-oriented 
systems. 
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Chapter 1: Introduction 

This thesis explores the capability of the latest proposed version of the Unified 

Modelling Language, UML 2.0, to model the learning behaviour of Intelligent Agents. 

The thesis adopts the research direction that views agent-oriented systems as an extension 

to object-oriented systems. In view of the fact that UML has been the de facto standard for 

modelling object-oriented systems, this research concentrates on exploring such modelling 

potential with Intelligent Agent-oriented systems. The thesis also highlights that 

Intelligent Agents are Agents which have the capability to learn and to reach agreement 

with others. The research focuses on the learning capabilities of a single Agent, as it is the 

core of multi-agent systems. Advancement in information and communication technologies 

during the last two decades, especially the introduction of the Internet, have triggered the 

need for new software applications that are capable of performing new tasks that were not 

available in the past. The Agent-oriented paradigm has emerged as a solution to meet such 

requirements as working autonomously, acquiring adaptive behaviour, and assisting users 

in performing their complex tasks. Agent-oriented research has made a considerable effort 

to describe standard methods and languages for developing Agent-oriented systems; 

however, the agent-oriented research community did not adopt any of them as a global 

standard such as the Unified Modelling Language (UML) for object-oriented systems. 

There is a need to identify a standard method for developing Agent-oriented systems. It is 

expected that future information systems will contain objects, Agents, and Intelligent 

Agents. 

Section 1.1 introduces Agent-oriented research directions. Section 1.2 highlights 

the differences between objects and Agents. Section 1.3 discusses the features of 

Intelligent Agents, such as their ability to learn and reach agreement with others. Section 

1.4 introduces the Unified Modelling Language 2.0 structural and behavioural diagrams. 

Section 1.5 provides an overview of the Thesis. 

13 



1.1 Agent-oriented Research Directions 

Currently there is no global standard definition for Agents; but there is global 

agreement on their capabilities. Software applications that have Agent-oriented features 

are marked by autonomy, proactivity, reactivity, and social ability (Wooldridge, 2000). 

Agent-oriented research has established two directions to develop Agent-oriented methods 

and languages. The first direction treats Agent-oriented systems as an extension to object- 

oriented systems. The second direction views Agent-oriented systems as a new software 

species with exceptional features. This thesis adopts the first research direction, as linking 

Agent-oriented standards to object-oriented ones will allow Agent-oriented systems to gain 

wide acceptance in the software industry (Bauer et al., 2001). 

Most of the available literature does not differentiate between Agents and 

Intelligent Agents. This research highlights that Intelligent Agents are Agents with the 

ability to learn and to reach agreement with others. Intelligent Agents are best deployed in 

dynamic environments where they can adapt to new situations. The learning capabilities 

of Intelligent Agents are crucial for them to sustain successful performance. 

1.2 Agents and Objects 

This research adopts the first research direction that views Agent-oriented systems 

as an extension of object-oriented systems. Booch (1994) presents an interesting 

classification for actor, server, and Agents from the object-oriented point of view. An 

actor is an active object that uses other objects while a server is a passive object that is 

used by other objects. Agents are objects that can use other objects and be used by them. 

However, Booch's classification does not elucidate the main differences between objects 

and Agents; he only explains that the difference lies in the way objects interact with other 

objects. Wooldridge (2002) highlights the main differences between Agents and objects as 

being differing degrees of autonomous behaviour. Agents have a higher degree of 

14 



autonomous behaviour than objects. Objects exhibit autonomous behaviour over the state 

but do not exhibit control over their behaviour. Objects execute their method when they 

receive a message from another object without having the ability to refuse the execution of 

their method while Agents can refuse such requests based on their own decision. Agents 

do not invoke methods on each other like objects; rather, they initiate a request for action 

from other Agents. In object-oriented cases, the decision to execute depends on the object 

that invoked the method, while the Agent-oriented case decision to execute depends on the 

Agent that receives the request for action. Analysts can identify whether the entity under 

analysis has an Agent's feature by identifying whether the entity has the power of decision 

in executing its method or not. Odell (2002) points out that Agents employ some degree of 

unpredictable autonomy in their behaviour, while a conventional object tends toward a 

more predictable approach. 

Brenner et al. (1998) highlight the fact that the internal structure of Agents is more 

complex than objects. Agents have mental states and concepts in addition to attributes and 

methods while objects only have attributes and methods. The belief, desire, and intentions 

of Agents can describe their mental states (Wooldridge, 2002). The belief of Agents 

corresponds with the information the Agents have about their environment. The desire of 

Agents represents the states of affairs the Agents wish to bring about. The intention of 

Agents represents the desire that the Agents are committed to achieve (Wooldridge, 2000). 

The method of communication is another major difference between Agents and 

objects: objects communicate at a low language level (Brenner et al., 1998). Object "A" 

sends a message to object "B"; so, "B" executes its method. In Agent-oriented systems, 

Agents use complex communicative language, protocols, and dialogue structures. Agent- 

oriented analysts would identify the skills of Agents as being able to interact with others. 

These skills can be negotiation, argumentation, and/or speech act skills. However, analysts 

do not consider such skills when designing object-oriented systems. 

15 



The number of threads in the Agent-oriented systems is different from object- 

oriented systems. Each Agent has its own thread; but there is only one thread for the 

whole system in the standard object-oriented systems. Only active objects may have a 

thread to exhibit some autonomous behaviour just like Agents (Flores-Mendez, 1999). 

Some researchers consider an active object as an Agent that does not exhibit flexible 

autonomous behaviour (Wooldridge, 2002). Active objects lack agency features such as 

the types of interaction as mentioned above. Thus, active objects communicate as objects 

and not as Agents. 

Some of the computer science community consider Agent-oriented programming as 

a specialisation of object-oriented programming (Flores-Mendez, 1999). Object-oriented 

programming views systems as consisting of objects communicating with one another to 

perform internal computation, while Agent-oriented programming specialises this view to 

have Agents with internal structure based on beliefs, capabilities, and choices that 

communicate with each other using messages adopted from speech-act theory. Greneserth 

(1994) emphasises that the meaning of a message in object-oriented programming can vary 

from one object to another, but in Agent-based programming, Agents use a common 

language with Agent-independent semantics. Object-oriented programming lies in the 

fundamentals of object encapsulation, inheritance, and polymorphism, while Agent- 

oriented programming fundamentals concentrate on a goal-directed execution. 

Clear understanding of the differences between agents and objects would allow the 

extension of object-oriented methods and languages to be used for developing Agent- 

oriented systems. Unified Modelling Language (UML) is the de facto standard for 

modelling object-oriented systems. UML unifies and formalizes the methods of 

developing the object-oriented software life cycle (Bauer, 2002). Object Management 

Group, an open consortium of companies, has proposed a new release of UML, UML 2.0, 

which has new behaviour components allowing smooth extension for UML to model 

Agent-oriented systems. 
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1.3 Intelligent Agents 

This research argues that there are differences between Intelligent Agents and 

Agents. Intelligent Agents are Agents that have capabilities to learn and to reach 

agreement with others. To describe the learning behaviour of an Intelligent Agent, 

analysts should clearly define the learning goal, the knowledge type and representation, the 

learning strategy, the learning feedback method, the learning location, the learning 

schedule and duration, the relation between learning and communication, and when the 

new hypothesis executes. The ability to reach agreement would depend on Intelligent 

Agents' communication and interaction skills. Analysts should identify whether the 

Intelligent Agents use speech acts, negotiation, and /or argumentation skills. 

This research focuses on the learning components with emphasis on modelling 

Intelligent Agents' learning behaviour. The research explores the ability of the latest 

proposed UML 2.0 structural and behavioural component to model the learning behaviour. 

It also explores the latest extension of UML 2.0 proposed by the Foundation for Intelligent 

Physical Agent (FIPA, 2004) to model structural components of agent-oriented systems if 

it is able to model the structural component of the learning behaviour of Intelligent Agents. 

1.4 Unified Modelling Language (UML 2.0) Diagrams 

Object Management Group' (OMG) has adopted UML to act as the standard 

modelling language for object-oriented systems. UML started by unifying three object- 

oriented methods developed by Grady Booch, Jim Rumbaugh, and Ivar Jackobson (Fowler, 

M., 2004). The UML development process started in 1997; The OMG has adopted UML 

I The Object Management Group (OMG) is an open membership, not-profit consortium that 

produces and maintains computer industry specifications for interoperable enterprise applications. 
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1.1, then revision 1.2,1.3,1.4,1.5, and currently the latest version UML 2.0. UML 

contains graphic diagrams backed by a single meta-model that are collectively capable of 

modelling structural and behaviour components of object-oriented systems as shown in 

figure I. I. UML is capable of providing sketches, blueprints, and programming language. 

UML allows specifying, visualising, and documenting models of software systems, 

including their structure and design. UML is language-independent and vendor- 

independent; these are the main factors that stimulated OMG to take a leading role in 

accelerating the development of object-oriented modelling standards. UML has an 

extensible mechanism that allows it to perform business modelling and modelling of other 

non-software systems (Object Management Group, 2005). 

UML Diagrams 

Structure 
Diagrams 

Behaviour 
Diagrams 

Class Object Component 
Use Case IL Activity 

[state 
Machine interaction 

Composite 
Structure 

pePtoyment Package 

Communication Sequence 

'tinting 
Interaction H 
(Overview 

Figure 1.1 UML structure and behaviour diagrams 

Structure diagrams depict the static structure components of systems; they show 

those elements with no consideration of time. The behaviour diagrams illustrate the 

dynamic behaviour of the system components including their methods, collaborations, 

activities, and their states history (Object Management Group, 2004). The dynamic 

behaviour describes the system components over time. Structure diagrams of UML 2.0 

ý# 
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have six types of graphs; class, object, component, composite structure, deployment, and 

package diagrams. Behaviour diagrams have four types of graphs: use case, activity, state 

machine, and interaction diagrams. Interactions diagram have four types of graphs: 

sequence, communication, timing, and interaction overview diagrams. Analysts can use all 

or some of these diagrams to model systems. 

Class diagrams describe the basic modelling concepts in UML and especially 

classes and their relationships. The notation of the class is a rectangle with three 

compartments; the first holds the name of the class, the second lists the attributes of the 

class, and operations of the class occupy the last compartment. Figure 1.2 illustrates 

different notations of classes, according to the level details, and figure 1.3 depicts an 

example of a class diagram. 

Wfldow 

Window 

size. Area 
Visibility: Boolean 

display{j 
hide( 

Window 

+ size: Area = (100,100) 
visibiety: Boolean = true 

+ defaueSize: Rectangle 

- Main: XWindow 

display() 
hide() 

- attachX(xWirt: XWindow) 

Figure 1.2 Class notations (Object Management Group, 2004) 
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Enrollment 
Student 

I enrolled I I.. * in 
o Marks Received Seminar 

Name Got Average To Date Name 
Address Got Final Mark Seminar Number 
Phone Number 

Jordered FIFO) Fees 
Email Address ,.. , on waitinq list 0.. 
Student Number Add Student 
Average Mark Drop Student 
Is Eflaitile, To Enroll 
Get Seminars Taken Professor 

Name instructs 
Address 0.. 1 Phone Number 
Emall Address 

? Some NmIsiars may 

not kavw an 
Mstmctor? 

Figure 13 Class Diagram (Ambler, 2005b) 

Object diagrams provide a snapshot of objects in a system at a point of time. The 

Object-oriented community often calls an object diagram an instance diagram as it shows 

instances of classes. They are useful for exploring examples of "real world" objects and the 

relationships between them (Ambler, 2005a). Object diagrams describe the static structure 

of a system at a particular time and they test the accuracy of class diagrams. The notation 

of the object is like a class, but its name is underlined. Figure 1.4 shows a class diagram for 

association between Plane class and Flight class, while figure 1.5 depicts the object 

diagram of this class diagram. 

Flight 

flightNumber : Integer 
departxeTime : Date 
flightDuration : Minutes 
departingAirpcxt: String 
arrivingAirport : String 

delayFlight (numberOfMinutes : Mirxýroes ) 
getArrivarrime (): Date 

0.. " 
assilights 

Plane 

airPlaneType : String 
assignedPlane maximumSpeed : MPH 

0.. 1 maximumDistance : Miles 
taiad : String 

Figure 1.4 Class Diagram (Bell, 2004) 
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AA 4700: Flitfht 
risk iedFli rts 

flic , ftmber : Integer = 4700 
deparbxeTime : Date = 8/412004 
flI , . ratbn : A+tirutes 240 as ieWW* 

W0337, Plane 

AA 832: Flight 

fllghftmber : Integer, = 832 
deparbs'eTin : Date = 813/2004 assignedFtights 
flight Dixation : Mattes = 168 

Figure 1.5 Object diagram (Bell, 2004) 

I airPlaneType : String = S8O 
tafUd : Srtrg =NX0337 

assignedPLv e 

Component diagrams illustrate the physical software components of the system. 

Coetzee (2005) has highlighted that component diagrams depict the relationship between 

software components, their dependencies, communication, location, and other conditions. 

OMG (2004,170) define components as "a modular part of a system that encapsulates its 

contents and whose manifestation is replaceable within its environment. " Figure 1.6 shows 

an example of a component diagram. 

payment 

4 

Accouit 
a ccount details 

Figure 1.6 Example of component diagram (Coetzee, 2005). 
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Composite structure diagrams explore run-time instances of interconnected 

instances collaborating over communication links (Ambler, 2005). The composite structure 

diagrams assist in describing relationships between elements that collaborate within a 

classifier (Coetzee, 2005). It is similar to class diagrams but illustrates parts and 

connectors. Figure 1.7 depicts the composite structure of an invoice. 

cd Composite stnxturr Example I 

Invoice 

Header 

1. " 

Detail 

Figure 1.7 Example of Composite structure (Coetzee, 2005) 

Deployment diagrams depict the physical layout of a system, indicating which 

pieces of software are executing, on which pieces of hardware (Fowler, 2004). The 

deployment diagram shows nodes, components, and connections. The nodes are the 

physical resources that execute code components. Nodes can be a hardware device or a 

software execution environment. They contain artifacts, which are usually physical files. 

Figure 1.8 shows a deployment diagram of financial application (Coetzee, 2005). 
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Figure 1.8 Example of deployment diagram (Coetzee, 2005) 

Package diagrams depict packages of the system and their relationship. "A package 

is used to group elements, and provides a namespace for the grouped elements" (OMG, 

2004), where elements can be use cases, classes, activities, states, or other packages. 

Packages enable analysts to organise model into groups, thus making UML diagrams 

easier to represent and to understand. The notation of a package is a large rectangle with a 

tab that shows the name of the package. Figure 1.9 shows an example of a package 

diagram for bank accounts. 

BarAAcrowt 

owner 
balance : DOLL" 

deposit (amount : Dollars) 
witd'awal (anm" : LbBaf 

CheckingAccount SavI gsAcuu t 

tiauff¢i r see : Dollars amua3nierevRam : Percentage 

procoucheck (c f>eckTOPr cs: C7wCk 
wiörtawal (arrant : Dofa s) 

d@M IVAMe*Dtwest () 
!! awai (arrant : Dollars ) 

Figure 1.9 Package diagram (Bell, 2004) 
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Use case diagrams show the different functions available within a system. The 

diagram depicts the interaction between the users of a system and the system itself A Use 

case diagram contains use cases, actors, and subject. The system under construction is the 

subject, users and other systems that are interacting with the system. Under construction 

are the actors. Analysts model the behaviour of the system under construction by one or 

more use cases. Actors are always entities outside the system (OMG, 2004). Figure 1.10 

shows a use case diagram for ATM system that contains three actors and five use cases. 

*subsystem* 
ATMsystem 

0_1 
Withdrew 

Transfer Funds 

Deposit 
Money 0.. ' 

Bank 
/ 0.. 1 RegistarATM 

at Bank 0. ' 

Administrator 
0.. 1 

Read Lop 

Figure 1.10 Example of Use case and actors for an ATM system (OMG, 2004) 

Activity diagrams model behaviour of the system under construction. They are able 

to describe procedural logic, business process, and workflow (Fowler, 2004). They 

illustrate the flow of control from activity to activity. Activity diagrams show activities that 

can be broken down into actions. Activity diagrams can show concurrence behaviour of 

activities and actions by using the fork notation. They also use partitions to show who does 

what. Activity diagrams are a main UML behaviour diagram that allows designers to know 

in detail the sequence behaviour of all the activities and actions of the system under 
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construction. Figure 1.11 shows an example of an activity diagram of process order 

activity that utilises multidimensional partition (OMG, 2004). 

Figure 1.11 Example of activity diagram of process order that utilizes multi-partitions (OMG, 2004) 

State machine diagrams depict the life cycle of objects, sub-systems, and systems 

(Coetzee, 2005). They are efficient in describing the behaviour of an object across several 

use cases (Fowler, 2004). The diagrams show different types of states, such as activity 

states, super states, sub states, or concurrent states. The notation of a state is a rounded 

rectangle with optional compartments for events, attributes, and internal activities. Figure 

1.12 shows an example of state machine diagrams of a telephone (OMG, 2004). State 

flows or transitions connect states with a guard to identify when and where an object may 

transfer from one state to another. 
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activeEntry 
0___. " 

litt 
receiver 
/get dial tone 

Idle 

Active 

do/ play dial 
Dialing 
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lconnect 

Connecting 

busy 
co cted 

rime-out 
do/ play message 

after (15 sec. ) 
after (15 se 

dial digit(n) 

dial digrt(n)[invalid 

Invalid 

da play message 

Pinned Busy 

canes dot play busy 

caller callee hangs up tone 

hangs up 
answers 

/disconnect 
TelLinn 

! enable speech l_ 

abort terminate 

i aborted " 

Figure 1.12 Example of state machine diagram for a telephone (OMG, 2004) 

Interaction diagrams have four types; communication, sequence, timing, and 

interaction overview diagrams. Sequence diagrams are the best known interaction diagram 

used. They show message interchange between lifelines such as objects and actors. The 

sequence diagrams are able to model different behaviours such as concurrency, 

synchronous, and asynchronous behaviour. Figure 1.13 shows an example of a sequence 

diagram that depicts an example of the 'if-then' rule by the alternative frame labelled alt. 

Ringing 
" p1 '""' I- eAllaa nmtuwan I eiM 
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Figure 1.13 Example of sequence diagram (ONIG, 2004) 

Communication diagrams focus on the interactions among entities, they are similar 

to sequence diagrams but they emphasise the data links between the various participants 

(Fowler, 2004). Analysts use communication diagrams when the demonstration of the 

context is important rather than the sequence of events (Coetzee, 2005). Communication 

diagrams show a number of objects along with the relationships between them. Message 

arrows are drawn between them to show the flow of messages between the objects. The 

sequencing of Messages is given through a sequence-numbering scheme (OMG, 2004). 

Figure 1.14 shows an example of a communication diagram for seminar displaying screen 

(Ambler, 2005). 
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1: SdName(). seminarName 
2: gctDescriptionO 

3: getLocationO 1.1: get. Namco: string 
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: Enrollment 
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7 getter invocations. 

5.1.1: goldo 

tu n 
: Student 

5.1.1.1: getFullNameO I 

Figure 1.14 Example of communication diagram for displaying seminar screen (Ambler, 2005) 

Timing diagrams are the fourth type of interaction diagram with the primary role of 

reasoning about time (OMG, 2004). The diagrams provide a visual representation of 

entities changing states and interacting over time. Timing diagrams show the behaviour of 

one or more entity during a specific duration (Ambler, 2005). There are two notations for 

timing diagrams; one is time-based as shown in figure 1.15 and the other is value-based as 

shown in figure 1.16 (Coetzee, 2005). 

L4 ne Sta! e or oor&an o'-rat . iConettaw ftm* cwrstra nt 

ad U erA%U P.. 3'd} I 

WaitCard CardOut 

Ids 
, Code OK 

t+3 

o, z t event a smvAm 
` kA rosa veho" gmnq wer 

Figure 1.15 Example of timing diagram (OMG, 2004) 
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The available diagrams of UML 2.0 are able to model structural and behavioural 

features of object-oriented systems, this research focuses on exploring the capability of 

some of these diagrams to model the structural and behavioural learning characteristics of 

Intelligent Agents. 

Lifeline State or condition Durationconstraint 

Figure 1.16 Example of compact timing diagram (OMG, 2004) 

1.5 Overview of the Thesis 

This thesis consists of six chapters. Chapter I is an introduction. Chapter 2 

discusses the components required to describe the learning behaviour of Intelligent Agents. 

It also discusses the effects of each component of the learning capabilities on the 

performance of Intelligent Agents and the requirements for these capabilities. 

Chapter 3 reviews four research directions that use UML to model Agent-oriented 

systems. Two possible approaches are available to allow UML to fit some of the Agent- 

oriented software requirements: either to extend UML with new structural elements and 

diagrams or to use UML base language to describe Agent-specif ic aspects of the software 

systems. The first approach provides new structural elements and diagrams to enhance the 

expressive power of the base language while the second approach adheres to the 

boundaries of the original language, and uses only those extension mechanisms that UML 

admits. The four research directions include examples from both approaches. 

29 



Chapter 4 explores the capability of UML 2.0 to model structural features of 

Intelligent Agents. This chapter utilises FIPA Agent Class Superstructure Meta-model to 

model Intelligent Agents structural components. Chapter 4 discusses two scenarios to 

model Intelligent Agent structural features by using the FIPA Agent Class Superstructure 

Meta-model. It also proposes the leaming compartment that describes the learning features 

of Intelligent Agents. 

Chapter 5 investigates the capability of the behaviour components of Unified 

Modelling Language (UML) version 2.0 to model learning behaviour of Intelligent Agents. 

Chapter 5 uses UML 2.0 activity and sequence diagrams to model different scenarios of 

learning strategies, namely learning from observation and learning from examples. It also 

evaluates if UML 2.0 state machine diagrams can model specific reinforcement learning 

algorithms, namely dynamic programming, Monte Carlo, and temporal difference 

algorithms. Chapter 6 provides the conclusion of this thesis and future research directions. 

Appendices A, B, and C provide user guides of UML 2.0 activity, sequence, and state 

machine diagrams to allow researchers in agent-oriented systems to use these diagrams in 

modelling the learning components of Intelligent Agents. 

The thesis aims to explore the ability of the structural and behavioural components 

of the Unified Modelling Language (UML 2.0 / 2004) to model the learning behaviour of 

Intelligent Agents. The research shows that the behavioural components of UML 2.0 are 

capable of modelling the learning behaviour of Intelligent Agents while structural 

components need to be extended to cover the structural requirements of Agents and 

Intelligent Agents. This thesis will lead to increasing interest in the intelligence dimension 

rather than the agency dimension of Intelligent Agents, and pave the way for object- 

oriented methodologies to migrate more easily to paradigms of Intelligent Agent-oriented 

systems. 
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Chapter 2: Learning Capabilities of Intelligent Agents 

This chapter presents an overview of the required components to describe the 

learning behaviour of Intelligent Agents. It also discusses the effects of each component of 

the learning capabilities on the performance of Intelligent Agents and the requirement for 

these capabilities. Section 2.2 discusses the description of learning behaviour. Section 2.3 

outlines learning goal properties and types. Section 2.4 provides an overview of 

knowledge types and representations that Intelligent Agents use during the learning 

process. It further outlines the forms of background knowledge and their relation with the 

input knowledge. Section 2.4 highlights how different types of learning use background 

knowledge. Section 2.5 explains the different types of learning strategies that Intelligent 

Agents can use during the learning process. Section 2.6 discusses learning feedback 

methods, through which Intelligent Agents receive feedback about their performance. 

Section 2.7 highlights the importance for identifying the mobility feature of Intelligent 

Agents, that is whether Intelligent Agents are static or mobile. Section 2.8 discusses the 

identification of scheduling for the learning process. Section 2.9 outlines the relation 

between learning and communication that is whether the Intelligent Agents learn to 

communicate or communicate to learn. 

2.1 Introduction 

Computer science community uses the phrase "Intelligent Agents" or "Agents" for 

the same entities while such usage indicates different meanings. What distinguishes 

Intelligent Agents from Agents is their ability to learn and to reach agreement. Sein and 

Weiss (1999) define learning as "the acquisition of new knowledge, motor, and cognitive 

skills and the incorporation of the acquired knowledge and skills in future system activities 

provided that this acquisition and incorporation is conducted by the system itself and leads 
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to improvement in the performance. " In addition, Intelligent Agents should exhibit 

negotiation skills and/or argumentation skills, as they are vital to achieve agreement with 

other Agents or users (Wooldridge, 2002). The lack of ability to learn or to reach 

agreement would reduce the efficiency of Intelligent Agents especially in dynamic multi- 

Agent environments. Analysts should provide unambiguous description about learning 

goals, leaming strategy, appropriate knowledge the Intelligent Agents need for leaming, 

knowledge representation used by the Intelligent Agents, learning location, learning 

schedule, and when the Intelligent Agents use the new hypothesis. 

2.2 Learning 

Learning is a key aspect of intelligence; systems that are capable of learning 

deserve to be classified as intelligent systems (Sein and Weiss, 1999). Schank and Kass 

(2000) claim that a machine is intelligent if it has the capability to explain, to learn, and to 

be creative. Michalski (1993) introduces inferential theory of learning that identifies 

leaming as a process that carries out inference from the infori-nation provided, the learner's 

background knowledge, and subsequently memorizing useful results. As Michalski (1993) 

puts it: "Learning = Inferencing + Memorizing. " Michalski (1993) highlights three 

components that describe a learning task: types of information acquired, background 

knowledge relevant to the learning goal, and aim of learning. 

Brenner et al. (1998) highlight the need to identify six aspects to model learning 

capabilities of Reactive Agents 2 that are as follows: 

* Identify the mechanism that Intelligent Agents use to select the action to 

perform; 

2 Reactive Agents: Agents that "possess no explicit internal knowledge representation and react to 

specific, standard events, by using sensors to monitor their environment and to look for specific situations 

that agree with their internal recognition patterns" (Brenner, 1998,40). 
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" Identify which principle Intelligent Agents use for the actual learning 

activity; 

" Identify the method that Intelligent Agents use to decide which information 

it saves and which it destroys; 

" Identify previous situations in which the Intelligent Agents gain 

knowledge; 

" Identify when the Intelligent Agents attempt to learn, and 

" Define how Intelligent Agents evaluate the results of actions. 

The minimum required features that an analyst should identify to model the 

learning behaviour of Intelligent Agents are learning goals, type of knowledge acquired, 

knowledge representations used, type of learning strategy, learning feedback mechanism, 

learning location, learning schedule, learning triggers, and when the new hypothesis 

should take effect. 

Learning is a central feature of intelligence; it involves inference and memorizing 

capability. Agents that exhibit capabilities to learn and to reach agreement with other 

Agents or users deserve to be called Intelligent Agent. To model learning behaviour of 

Intelligent Agents analysts should identify features relevant to the learning process, such as 

learning goals, the use of background knowledge, and the type of knowledge the Intelligent 

Agent uses during the learning process. 

2.3 Learning Goal 

The learning goal of Intelligent Agents is the first type of information that analysts 

identify to model their learning behaviour. Michalski (1994) explains that the Inferential 

Theory of Learning "assumes that learning is a goal-guided process of improving the 

learnees knowledge by exploring the learnees experience and prior knowledge. " The 

learning goal has two types: either to increase the amount of learnees knowledge (synthetic 
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learning) or to increase the effectiveness of the knowledge already possessed (analytic 

learning). The Intelligent Agents may use one or both types through the learning process 

(Michalski, 1993). Synthetic learning aims to acquire new knowledge that is not available 

within the current hypothesis while analytic learning transfers knowledge, already 

available in the current hypothesis, into the form that is most desirable and/or effective for 

achieving the learning goal. Synthetic learning employs induction and/or analogy as the 

primary inference while analytic learning employs deduction as the primary inference. 

The learning goal can be either a domain-independent or a domain-dependent goal. 

Domain-independent learning goal describes a certain generic type of learning activity, 

independent of the topic of discourse while domain-dependent goal acquires specific 

knowledge (Michalski, 1993). Different domains can use Intelligent Agents with domain- 

independent learning goal while specific domains can only use domain-dependent 

Intelligent Agents. 

In multi-Agent systems, analysts should identify if a learning goal requires the 

improvement of a single Intelligent Agent or a group of Intelligent Agents. In addition, 

they should determine the compatibility of learning goals among Intelligent Agents 

working in multi-Agent environments. Learning goals of Intelligent Agents can 

complement or conflict with each other (Sein and Weiss, 1999). Synchronisation of 

learning is an important issue in multi-Agent environments when the learning goals of 

Intelligent Agents complement each other. Analysts should clearly identify the sequence 

of learning among the different Intelligent Agents. On the other hand, with conflict-based 

learning Intelligent Agents, analysts should identify as much as possible what constraints 

affect the learning requirements of Intelligent Agents and what scenarios occur to 

overcome such constraints are. 

Commitment strategy is the mechanism that Agents use to determine when and 

how to drop their intensions (Wooldridge, 2000). Commitment strategy of Intelligent 

Agents affects their behaviour to achieve the learning goal. There are three types of 
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commitment strategies: blind, single-minded, and open-minded commitment strategies. 

Intelligent Agents which use blind commitment strategy will continue to maintain an 

intention to achieve their learning goal until they believe that they have achieved the 

learning goal. Intelligent Agents which use single-minded commitment strategies 

terminate trials to achieve their learning goal either when they believe that they achieved 

the learning goal or when it is no longer possible to achieve the learning goal. However, 

Intelligent Agents using open-minded commitment strategy will continue to achieve their 

learning goal as long as they believe that their learning goal has not changed. 

Intelligent Agents that use blind commitment strategy consume their efforts without 

realising that they cannot achieve their learning goal. Static environment is the most 

appropriate for using such strategy. Analysts can produce predicates for all or most of the 

states that will face Intelligent Agents working in static environment. For single-minded 

commitment strategy, analysts can choose such type for Intelligent Agents working in 

dynamic environment such as the Internet. Intelligent Agents stop the process of learning 

when they believe that they have accomplished the learning goal, or it is no longer possible 

for them to achieve the learning goal. Intelligent Agents with open-minded commitment 

strategy continue to try to achieve that learning goal as long as they believe that the 

learning goal has not changed. When Intelligent Agents realise that the learning goal has 

changed, they start to achieve the new learning goal. Analysts may identify constraints for 

Intelligent Agents using open-minded commitment strategy such as the duration after 

which the learning goal is no longer relevant; so, the Intelligent Agent can reconsider its 

learning goal. 

The identification of the learning goal of intelligent Agents is a key issue to model 

their learning behaviour. Learning can be either synthetic or analytic learning. The 

learning goal can be domain-dependent used by specific domains or domain-independent 

that could be utilised by any domain area. In multi-Agent environments, analysts need to 

identify if the leaning goals of different Agents complement each other or conflict with 
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each other. Commitment strategy of Intelligent Agents has a direct impact on their 

performance to achieve the required learning goal. 

2.4 Knowledge Types and Representations of the Learning Process 

Knowledge is "facts or conditions of knowing something with familiarity gained 

through experience or associations" (Bigus, 2001). Knowledge can be simple facts, 

complex relationships, mathematical formulas, rules for natural language syntax, 

associations between related concepts, and inheritance hierarchies between classes of 

objects (Bigus, 2001). Knowledge is a key issue that should be clearly analysed and 

described. Analysts should define four issues to describe knowledge essential for the 

learning process: knowledge type, knowledge representation, the level of using background 

knowledge, and relation between input knowledge and background knowledge. 

2.4.1 Knowledge Types 

According to Bigus (2001), there are three types of Knowledge: procedural, 

relational, and hierarchal. Procedural knowledge is a popular technique for representing 

knowledge in computers. Knowledge analysts encode facts and definitions of the sequence 

of operation which use and manipulate such facts. Relational knowledge defines a record 

of information about an item such as relational databases. Each record contains a set of 

attributes and values for different items. Data definition language defines the format of 

tables, parameters, and relationships while data manipulation language manipulates the 

values of the parameters. Structured query language is the most popular language for 

manipulating relational data. Hierarchal knowledge type depends on the ability to inherit 

knowledge that focuses on relationships and shared attributes between classes of objects. 
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2.4.2 Knowledize Representations 

Knowledge can have different representations, and Intelligent Agents should be 

capable of manipulating and reasoning such different types. Knowledge representations 

can be parameters in algebraic expressions, decision trees, formal grammars, production 

rules, fonnal logic-based expressions, predicate logic, graphs and networks, frames and 

schemas, computer programs, taxonomies, Bayesian networks, or multiple representations 

(Carbonell et al., 1983). Knowledge representation is a very complex issue; each of the 

above-mentioned types can have different variants. Analysts should be capable of 

understanding the properties of each representation and its variants. 

Parameters in algebraic expressions representation obtain the desired performance 

by adjusting numerical parameters or coefficients in algebraic expression of a fixed 

function. Decision trees discriminate among classes and objects. The nodes in a decision 

tree correspond with selected object attributes while the edges correspond with a 

predetermined alternative value for these attributes. Leaves of the tree correspond with 

sets of objects with identical classification. In learning to recognise a particular language, 

the sequence of expression in the language induces formal grammars. These grammars 

represent regular expressions, finite-state automata, context-free grammar rules, or 

transformation rules. Production rules representation is a condition-pair (C => A) where 

C is a set of conditions and A is a sequence of actions. When production rule satisfies all 

conditions, a sequence of actions will be executed. In formal logic-based expressions 

representation, the components can be propositions, arbitrary predicates, finite-value 

variables, statements restricting ranges of variables, or embedded logical expressions 

(Carbonell et al., 1983). 

Formal logic is a language with its own syntax and corresponding semantics. The 

language syntax defines how to make sentences, and the corresponding semantics 

describes the meaning of the sentences (Bigus, 2001). Predicate logic allows predicating 

on objects to define attributes and relations between objects. Predicate logic introduces the 
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concepts of quantifiers that allow refereeing a set of objects. Two types of quantifiers 

exist: existential and universal. Existential qualifiers define that some objects of certain 

types have specified attributes, while universal quantifiers define that all objects of this 

type have these attributes (Bigus, 2001). Intelligent Agent use resolution and unification 

techniques to process predicate statements to conf inn whether a particular statement is true 

or not, depending on other known facts. Resolution is an algorithm for proving that facts 

are true or false by virtue of contradiction, while unification is a technique for taking two 

sentences in predicate logic, and finding a substitution that makes them look the same. 

Carbonell et al. (1983) consider graphs and networks representations more suitable and 

efficient than logical expressions in many domains. Graph-matching and graph- 

transformation schemes are being used by some learning techniques to compare and to 

index knowledge efficiently. Frames and schemas representations provide larger 

expressions or production rules. Frames and schemas representations collect labelled 

entities ("slots"); each slot plays a certain prescribed role in the representations. Figure 2.1 

shows example of describing Hotel beds by using graphs and frames representations. 

hotel bed use steeping 

size king 

part 
_ 

mattress 
ý firmness 

part frame firm 

hotel bed 

superclass: bed 

use: weeping 

size: king 

parr (mattress 
frame) 

mattress 

superclass: cushion 
firmness: firm 

Figure 2.1 Conceptual graph and frame descriptions of a hotel bed (Luger and Stubblefield, 1993) 
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Computer programs and procedural encoding representation are more concerned 

about acquiring an ability to carry out a specific process efficiently rather than to reason 

about the internal structure of the process. Procedural encodings include human motor 

skills, instruction sequence to robot manipulators, and other "compiled" human or machine 

skills. Such representation type is different from logical description, networks, or frames 

representations in terms of the detailed internal structure of the resultant procedural 

encodings. Procedural encodings do not need to be comprehensive to a human or to an 

automated reasoning system. The external behaviour of the acquired procedural skills 

becomes directly available to the reasoning system. Learning from observation may result 

in global structuring of domain objects into a hierarchy or taxonomy representation. 

Clustering object descriptions into newly proposed categories and framing hierarchical 

classifications require the system to formulate relevant criteria for classification. 

Bayesian network is data that represents dependence between variables. Each 

variable has a corresponding node with a conditional probability table defining the 

relationships between its parent nodes (Bigus, 2001). The primary use of Bayesian 

networks is to utilize probability theory to reason with uncertainty. Some knowledge 

acquisition systems may use multiple representations for newly acquired knowledge such 

as discovery and theory-formation systems. Discovery and theory-formation acquire 

concepts, operations on those concepts, and heuristic rules for a new domain. Such 

systems should select appropriate combinations of representation schemes applicable to the 

different forms of knowledge acquired. 

Analysts should identify the knowledge representation that Intelligent Agents will 

use during learning. Knowledge representation types highlight major aspects such as the 

space of storing the newly acquired knowledge, the type of inference, the source of 

knowledge from which the Intelligent Agents will receive their knowledge such as users, 

Agents, or databases as well as accessibility to the source of knowledge. 
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2.4.3 Background Knowledge 

Russell and Norvig (1995) emphasise that the use of prior knowledge in learning 

improves Intelligent Agents learning ability. They highlight that background knowledge 

assists in developing consistent hypotheses. Analysts should identify the level of using 

background knowledge during the leaming process (Michalski, 1993). The level of using 

background knowledge can range from the need to use intensive background knowledge to 

the use of none of the available background knowledge. The form of background 

knowledge can be declarative, procedural, or both. The declarative form is a collection of 

statements representing conceptual knowledge while the procedural form is a sequence of 

instructions for performing some skills (Michalski, 1993). 

Empirical learning methods rely on relatively small amounts of background 

knowledge while constructive learning methods are knowledge intensive learning methods 

that use background knowledge and / or search techniques to create new attribute terms or 

predicates that are more relevant to the leaming task (Michalski, 1993). Constructive 

leaming techniques use the new attributes or predicate to drive characterization of the input 

where such characterisations can be generalised, explained or both. 

2.4.4 Relation between Backgound Knowledge and Input Knowledge 

Michalski (1993) introduces five relationships between the input knowledge and 

background knowledge as follows: 

* The first relationship exists when the input knowledge is a new knowledge that has 

no relationship with the current background knowledge. 

9 The second relationship exists when the background knowledge accounts for the 

input knowledge or is a special case of it. 

9 The third relationship exists when Intelligent Agents identify that part of the 

background knowledge contradicts with part or all of the input knowledge. 
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" The fourth relationship exists when the input knowledge does not match any 

background fact or rule exactly or when it is not related to any part of the 

background knowledge; however, there is a similarity between the background fact 

and some parts of the background knowledge at some level of abstraction. 

" The fifth and last relationship exists when some parts of the background knowledge 

match exactly the input knowledge. 

The Intelligent Agents act according to the identified relationship between the input 

knowledge and the background knowledge. For the first case where the input is new 

information, Intelligent Agents try to identify parts of the background knowledge that are 

sibling of the input under the same node in some hierarchy. If the Intelligent Agents 

succeed in such process, the Intelligent Agents generalise the related knowledge 

components and evaluate the input facts in terms of their importance to the learning goal. 

The Intelligent Agents store the input facts that pass threshold criteria. If the Intelligent 

Agents fail in the identification process, they store the input facts and pass control to case 4 

where the input invokes an analogy to part of the background knowledge. This case 

involves some forms of synthetic learning (Michalski, 1994). 

The second case occurs when the background knowledge accounts for the input or 

a special case of the input. Intelligent Agents create a deviational explanatory structure 

that links the input with the invoked part of background knowledge. Based on the learning 

task, Intelligent Agents use this structure to create new knowledge that is more adequate 

for future handling of such cases. Intelligent Agents store the new knowledge for future 

use if it passes an "importance criterion. " The second case handles situations requiring 

some forms of analytic learning (Michalski, 1994). The third case exists when the input 

knowledge contradicts the current background knowledge. Intelligent Agents identify the 

part of the background knowledge that contradicts the input knowledge and then attempts 

to classify this part in terms of specialisation. Intelligent Agents make no changes to this 

part of the background knowledge if the specialisation involves too much restructuring, or 
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the confidence in the input is low. This requires Intelligent Agents to set "input confidence 

parameter. " The value of such parameter provides information about the noise in the input 

knowledge that ranges from "no noise" to "noisy" information. The Intelligent Agents 

restructure some parts of the background knowledge to accommodate the input, and it 

stores the input if it passes "importance criterion. " This case requires some form of 

synthetic leaming (Michalski, 1994). 

The fourth case exists when the input neither matches any background fact or rule 

exactly, or when it is not related to any part of the background knowledge in the sense of 

case 1; however, there is a similarity between the fact and some part of background 

knowledge at some level of abstraction. In this case, Intelligent Agents conduct a 

matching process at this level of abstraction by using generalised attributes or relations 

(Michalski, 1994). If the new facts pass "importance criterion, " Intelligent Agents save the 

input with an indication of a similarity to a background knowledge component. This case 

uses a combination of synthetic and analytic leaming. The last relation between the input 

and background knowledge exists when the input matches exactly some part of the 

background knowledge. Intelligent Agents can update a measure of confidence and a 

frequency parameter associated with this part. In a dynamic environment, such as the 

internet, it is difficult for analysts to predict which case will occur. Analysts should 

provide a description for the actions of Intelligent Agents in each of the five cases. In 

addition, Intelligent Agents should be able to update procedures according to results 

obtained from executing them. 

Knowledge is a key aspect to describe the learning features of Intelligent Agents. 

Analysts should identify type(s) of knowledge used during the learning process, knowledge 

representation, the level of using background knowledge, and the relation between input 

knowledge and background knowledge. Knowledge can be procedural, relational, and 

hierarchical. Intelligent Agents can manipulate single or multiple representations of 

knowledge, required during the learning process. Intelligent Agents can also use 
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background knowledge during the learning process, or depend only on the new acquired 

knowledge. Relations between acquired knowledge and background knowledge can 

provide designers with scenarios for Intelligent Agents' behaviour. 

2.5 Types of Learning Strategies 

Intelligent Agent uses either mono-strategy learning or act like human beings in 

using multi-strategy learning. The type of learning strategy used by Intelligent Agents is a 

key aspect for designing their learning capabilities. Mono-strategy learning Intelligent 

Agents are intrinsically limited to solving only certain classes of learning problems, 

defined by the type of input information they can learn from, the type of operations they 

are able to perform on the given knowledge, and the type of output knowledge they can 

produce (Michalski, 1993). Multi-strategy learning Intelligent Agents are more competent 

and have a greater ability to solve diverse learning problems than mono-strategy Intelligent 

Agents; but they are more complex. The choice of creating a mono-strategy or a multi- 

strategy Intelligent Agents is crucial. Analysts should investigate different aspects before 

deciding which strategy to adopt, such as the type of input, the role of the background 

knowledge in learning, the mobility of the Intelligent Agent, and the available processing 

power of the host computer. Sein and Weiss (1999) highlight five main learning strategies 

that Intelligent Agents can use: rote learning, learning from instruction, learning from 

examples, learning by observation, and learning by analogy. 

2.5.1 Rote Learning 

Rote learning is a direct implantation of knowledge and skill without further 

inference or transformation from the leamer (Sein and Weiss, 1999). Rote learning 

corresponds to storing each observed training example in memory. Intelligent Agents 

classify subsequent instances by looking them up in memory. If Intelligent Agents finds 
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instance in memory, the memory returns the stored classification; otherwise, the system 

refuses to classify the new instances (Mitchell, 1997). Carbonell et al. (1983) emphasise 

two main variants of rote leaming: the first variant is learning by being programmed, 

constructed, or modified by an external entity such as the usual style of computer 

programming. The second variant is learning by memorising given facts and data with no 

inference drawn from the incoming infori-nation. Analysts should consider three main 

issues when designing rote learning Intelligent Agents: Memory-searching mechanism, 

indexing used to retrieve the memorised data, and the capacity to memorise the acquired 

knowledge (Michalski et al., 1986). 

2.5.2 Leaming from Instructions 

Learning from instruction transforms new information, like an instruction or 

advice, which is not directly executable by the learner, into an internal representation, and 

integrate new information with prior knowledge and skill. The learner acquires the new 

knowledge from a teacher or other organised source requiring that the learner transforms 

the knowledge from the input language to an internally usable representation. The 

Intelligent Agent integrates new information with prior knowledge for effective use 

(Carbonell et al., 1983). Learning from instructions can be unidirectional or interactive. 

Unidirectional learning occurs when a tutor provides Intelligent Agents with knowledge in 

a sequential series of instructions. in interactive learning, the tutor provides Intelligent 

Agents with knowledge when Intelligent Agents lack the knowledge or request instructions 

(Lemon et al., 2004). 

2.5.3 Leaminjz from Examples 

Leaming from examples exists when there is extraction and refinement of 

knowledge and skills like a general concept and a standardised pattern of motion either 
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from positive and negative examples or from practical experience (Sein and Weiss, 1999). 

Michalski et al. (1986) highlight that the main task of learning from examples is to 

determine a general description, explain all positive examples, and exclude all negative 

examples of the target concept. Michalski (1993) identifies two types of learning from 

examples: instance-to-class and part-to-whole. Instance-to-class type examples are 

independent entities that represent a given class or a set of concepts. The goal of instance- 

to-class generalization is to induce a general description of the class. The part-to-whole 

examples are independent components that have to be investigated together to generate a 

concept description. The goal of part-to-whole is to hypothesize a description of a whole 

object by giving selected parts. 

Carbonell et al. (1983) identify two main categories to classify learning from 

examples: classification according to the type of examples available to the learner and rate 

of supplying the examples. The type of examples can be either positive examples only or 

positive and negative examples. The rate of supplying the examples can be incremental 

learning rate or a non-incremental learning one. For sources of knowledge that provide 

positive examples, Intelligent Agents acquire instances of a concept but they do not acquire 

information for preventing overgeneralization of the inferred concept. Intelligent Agents 

can avoid overgeneralisations by considering only the minimal generalisation necessary, or 

by relying upon prior domain knowledge to constrain the overgeneralized concept to be 

inferred. Intelligent Agents that use positive and negative examples for learning act in two 

parallel ways: they use positive examples to force generalisation and negative examples to 

prevent overgeneralisations (Carbonell et al., 1983). Non-incremental learning is like 

training salesmen new skills in a private workshop and they go back to work after finishing 

the workshop. On the other hand, incremental learning allows Intelligent Agents to form 

one or more hypotheses of the concept, which are consistent with the available data, and 

subsequently refines the hypotheses after considering additional examples. In this type of 
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learning Intelligent Agents involve in on-the-job training; they acquire the new skills while 

they are working. 

Analysts should define when the new hypothesis should be executable. In addition, 

they should identify if the incremental learning will be concurrent with work or sequential. 

Unlike sequential learning, Concurrent incremental learning requires the Intelligent Agents 

to work on a multi-processor host computer. 

Learning from examples is a synthetic learning type that aims to create new 

knowledge and use induction as the primary inference (Michalski, 1993). Learning from 

examples is not adequate for Intelligent Agents that are working in dynamic environment 

such as the internet; it will be very difficult to provide examples for all states that might 

happen in the dynamic environment. 

2.5.4 Leaming from Observation and Discovery 

In this type of leaming, Intelligent Agents gather new knowledge and skills by 

conducting observations, experimentations, as well as generating and testing hypotheses, 

or theories based on observational and experimental results (Sein and Weiss, 1999). 

Michalski (1993) highlights that leaming from observation occurs when the input to the 

synthetic leaming method includes facts that Intelligent Agents use to describe or to 

organise into knowledge structure without the benefit of advice from a source of 

knowledge. Neither Intelligent Agents receives a set of instances of particular concepts 

nor are they given access to Oracle that can classify internally generated instances as 

positive or negative instances of any given concept. Carbonell et al. (1983) classify 

leaming from observation according to its degree of interaction with the environment; the 

two extremes are passive observation and active experimentation. Passive-observer 

Intelligent Agents classify taxonomies observations of multiple aspects of the environment 

while active-experimentation Intelligent Agents act on stimulating the environment to 
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observe the results of its stimulation. Experimentation may be random, dynamically 

focused according to general criteria of importance, or strongly guided by theoretical 

constraints. Such interaction with the environment would confirm or disconfirm the 

Intelligent Agents' hypothesis. Learning from observation and discovery includes different 

types such as conceptual clustering, constructing classifications, fitting equations to data, 

discovering laws explaining a set of observations, and formulating theories accounting for 

the behaviour of a system (Michalski et al., 1986). 

2.5.5 Leaming by Analogy 

Intelligent Agents that learn by analogy perform solution-preserving transformation 

of knowledge and skills from a solved problem to a similar but unsolved problem (Sein 

and Weiss, 1999). Carbonell et a]. (1983) identify learning by analogy as "acquiring new 

facts or skills by transforming and augmenting existing knowledge that bears strong 

similarity to a desired new concept or skill into a form effectively useful in the new 

situation. " Carbonell (1986) classifies learning by analogy as transformation analogy and 

derivational analogy. Transformational analogy exists when Intelligent Agents find a 

particular solution to work on a problem similar to the one at hand which they might use 

with minor modification. Derivational analogy formulates plans and solves problems 

where a considerable amount of intermediate information is available to the resultant plan 

or specific solution. The main difference between transformation and derivational analogy 

lies in the learnees background knowledge. In transformation analogy a person receives 

C++ code of a program, and transforms it to C# while in the derivational analogy the same 

person is the one who programmes the C++ version. The more experience Intelligent 

Agents have, the better understanding for conducting learning by analogy they develop. 

Learning by analogy is a combination of deductive and inductive learning. 

Learning from examples and learning by observation is an example of inductive learning. 
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Deduction learning includes knowledge reformulation, knowledge compilation, caching, 

chunking, equivalence preserving operations and another truth-preserving transformation 

(Michalski et al., 1986). Learning by analogy is a multi-strategy method which increases 

the load of inference conduct by Intelligent Agents. Human leaming is intrinsically 

multiple learning strategies where people can learn from a great variety of inputs, engage 

any kind of prior knowledge relevant to the problem, and perform all types of inference, 

using a multitude of knowledge representation. It is a challenge to develop Intelligent 

Agents that can mimic the leaming capabilities of their users (Michalski, 1994). 

Leaming strategy is the essence of describing the learning mechanism that 

Intelligent Agents use. Intelligent Agents can have mono-strategy or multiple strategies 

like humans. Intelligent Agents that use multiple learning strategies are more complex 

than those who use mono-leaming strategies. Learning strategies can be rote learning, 

learning from observations, learning from instructions, learning from examples, learning 

from observations, and learning from analogy. Each type of these strategies employs 

inference as inductive, deductive or analogy. Designers should choose the right strategies 

for their Intelligent Agents according to their learning goals, sources of knowledge, and 

working environments features. 

2.6 Learning Feedback Methods 

The feedback that Intelligent Agents receive on their performance, allow Intelligent 

Agents to update their hypothesis. Analysts should identify a feedback method to 

Intelligent Agents' performance and identify when Intelligent Agents receive the feedback. 

Sein and Weiss (1999) classify learning feedback methods as supervised, unsupervised, 

and reinforcement learning. The source of knowledge, which provides feedback about the 

performance of the Intelligent Agent, can be a user, an environment, or an Agent. In 
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addition, Intelligent Agents can receive the feedback immediately or after a period of 

delay. 

2.6.1 Supervised Leaming 

Michalski (1993) classifies learning from examples and instructions as supervised 

learning where the feedback specifies the desired activity of the Intelligent Agents. For 

dynamic environment, it will be an impractical task for the source of knowledge to provide 

all the desired behaviour of an Intelligent Agent for all situations. Analysts should identify 

the method of communication between the Intelligent Agent and the source of knowledge 

that is providing the feedback. If the source is a user, communication can be through user- 

friendly interface. If the environment is the critic then the Intelligent Agent should be able 

to access the environment whereas if the source is another Agent, the Intelligent Agent 

should be able to communicate with other Agents by using a specific Agent 

communication language. 

2.6.2 Unsupervised Leaminjz 

Michalski (1993) classifies Leaming from observation as unsupervised leaming 

where there is no source of knowledge to criticise the performance of the Intelligent Agent. 

The Intelligent Agent receives no explicit feedback and the objective is to find useful and 

desired activities based on trial-and-error and self-organisation (Send and Weiss, 1999). 

Unlike supervised learning, the environment or the Agent that is providing feedback is 

acting as observer. 

2.6.3 Reinforcement Learning 

Sutton and Barto(1998) highlight that Intelligent Agents use reinforcement learning 

to learn what to do and how to map situations to actions by maximising a numerical reward 
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signal. Intelligent Agents do not receive which actions to take; instead, they should 

discover which actions yield the most reward by trying them. Reinforcement learning is 

adequate for learning from interaction and dynamic environment. Intelligent Agents 

receive neither the correct action nor the source of knowledge provides which rewards are 

given which actions (Russell and Norvig, 1995). They only receive some evaluation of 

their actions 

Reinforcement learning has four components: policy, reward function, value 

function, and environment model (Sutton and Barto, 1998). The policy defines the 

Intelligent Agent's behaviour at a given time, and maps perceived states of the environment 

to actions. A reward function defines the goal in a reinforcement-learning problem. It 

maps each perceived state of the environment to a single number, that is a reward, 

indicating the intrinsic desirability of that state. The Agent's sole objective is to maximise 

the reward it receives on the long run. The value function specifies what is good on the 

long run. The value of a state is the total amount of rewards an Intelligent Agent can 

expect to accumulate over the future, starting from that state. The model of the 

environment mimics the behaviour of the environment. The working environment has a 

direct impact on the required skills for Intelligent Agent that uses reinforcement learning 

feedback method. The environment can be accessible or inaccessible (Russell and Norvig, 

1995). Intelligent Agents working in an accessible environment can preset different states 

of the environment while Intelligent Agents working in an inaccessible environment need 

to maintain some internal state to try to keep track of the environment. Background 

knowledge about the working environment is an important issue for Intelligent Agents to 

perform efficiently. If Intelligent Agents do not have knowledge about the working 

environment model, they need to learn the model of the environment as well as the utility 

function-state histories. 

Analysts should identify when Intelligent Agents receive rewards; Intelligent 

Agents can receive rewards at the end of accomplishing the task, at a terminal state, or at 
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any state. While the Intelligent Agents that receive their reward at the end of the task or at 

terminal state executing their tasks, they do not need to monitor their source of knowledge 

concurrently. Rewards can be component of the actual utility that Agents are trying to 

maximise, or they can be hints as to the actual utility (Russell and Norvig, 1995). 

Intelligent Agents that utilise a reinforcement learning feedback method can be 

passive or active learners (Russell and Norvig, 1995). A passive learner simply watches 

the world going, and tries to learn the utility in various states while an active learner should 

act using the learned information, and can use its problem generator to suggest exploration 

of unknown portions of the environment. Passive-learning Intelligent Agents have a fixed 

policy, and they do not need to worry about which actions to take. Active Intelligent 

Agents should consider what actions to take, what their outcome may be and how they will 

affect the rewards received. Intelligent Agents have to exploit what it already knows in 

order to obtain rewards; but it also has to explore in order to make a better selection of 

actions. The dilemma is whether Intelligent Agents pursue exploration or exploitation 

exclusively without deteriorating the task. 

Intelligent Agents should take a trade-off between their immediate good as 

reflected in their current utility estimates and their long-term well-being. An Intelligent 

Agent that simply chooses to maximise its rewards on the current sequence can easily be 

stuck in a nut. At the other end of the extreme, continually acting to improve its 

knowledge is useless if it never practices the knowledge (Russell and Norvig, 1995). 

Reinforcement learning is an appropriate learning feedback method for Intelligent Agents 

working in dynamic environment. One of the main features of Intelligent Agents is their 

capabilities to work in a dynamic environment as the Internet. 

Learning feedback methods has a direct impact on the performance of Intelligent 

Agents. The methods can be supervised, unsupervised or based on reinforcement learning 

feedback method. In supervised learning methods Intelligent Agents receive the correct 

answer from a source of knowledge about their performance while in unsupervised 
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learning method no source of knowledge is available to guide the learning behaviour. For 

reinforcement learning the source of knowledge provides some feedback about the 

performance of Intelligent Agents without providing what is the right answer. Designers 

should identify which method will be available to Intelligent Agents in order to develop 

their learning features. 

2.7 Learning Location 

Intelligent Agents can be static or mobile. Static Intelligent Agents work in a 

single host while mobile Intelligent Agents travel between different hosts. Analysts should 

identify at which host Intelligent Agents will conduct learning. Mobile Intelligent Agents 

should be able to access the host where they will conduct leaming. Static Intelligent 

Agents will learn at the same place where they live. 

2.8 Learning Schedule and Duration 

Analysts should identify the duration and schedule of Intelligent Agents learning 

activities. Failure to do so might allow the Intelligent Agents to start learning at the wrong 

time where needed resources may not be available to conduct the learning activity. 

Intelligent Agents have two methods of executing leaming: concurrently or sequentially 

with the execution of their tasks. In concurrent learning, Intelligent Agents will need a 

multi-processor host to conduct learning. On the other hand, in sequential learning 

Intelligent Agents can conduct learning on a single processor host. In addition, analysts 

should identify learning schedule and constraints. The learning schedule will identify 

when learning will start, end, and trigger. Learning triggers can be categorised as schedule 

triggers, hardware triggers, or software triggers. In schedule triggers, learning initiates at a 

specific time or date. For hardware triggers, learning starts when a hardware resource is 

available such as specific processor, host etc... For software triggers, learning initiates 
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when a specific variable exceeds the trigger threshold such as a negative value of 

reinforcement learning reward function. Analysts should identify learning constraints such 

as the availability of specific resource, internet access or the learning location where the 

Intelligent Agents execute learning only at a specific host. 

2.9 Executing the New Hypothesis 

Another important issue is the timing for the new hypothesis to execute. The new 

hypothesis can execute immediately or after specific conditions. New hypothesis can 

immediately execute when such immediate execution does not have a hazardous effect on 

the performance of the Intelligent Agents or the environment. For non-immediate 

hypothesis, analysts should clearly define the conditions when the new hypothesis should 

take place. 

2.10 Learning and Communication 

There are two types of relationships between learning and communication: learning 

to communicate and communicating to learn (Sein and Weiss, 1999). For the first type, 

leaming is a method for reducing the load of communication among individual Agents 

while in the second type communication is a method for exchanging information that 

allows Agents to continue or refine their learning activities. Learning can be low-level 

communication which is relatively a simple-query-and-answer interaction for exchanging 

missing pieces of information that result in shared information. On the other hand, 

learning can be high-level communication which is a complex communicative interaction. 

Negotiation and mutual explanation is a complex communicative interaction with 

the purpose of combining and synthesizing pieces of information that result in shared 

understanding or agreement. The ability to reach agreement and the ability to learn are the 

main features of Intelligent Agents that allow such Agent to be intelligent. Intelligent 
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Agents with a limited low ability to communicate with users and Intelligent Agents will 

have a limited ability to benefit from the knowledge and experiences of others. This might 

allow Intelligent Agents to make the same mistakes that other Agents do. 

2.11 Conclusion 

Intelligent Agent is an Agent that can learn and reach agreement with other Agents 

or users. To describe learning behaviour of an Intelligent Agent, analysts should clearly 

define the learning goal, the knowledge type and representation, the learning strategy, the 

learning feedback method, the learning location, the learning schedule and duration, the 

relation between learning and communication, and when the new hypothesis executes. 

The identification of the learning goals of Intelligent Agents is a key issue to model 

their learning behaviour. Leaming can be either synthetic or analytic. The learning goal 

can be domain-dependent used by specific domains or domain-independent utilised by any 

domain area. In multi-Agent environment analysts need to identify if the leaning goals of 

different Agents complement or conflict with each other. Commitment strategy of 

Intelligent Agents has a direct impact on their performance to achieve the required learning 

goal. 

Knowledge is a key aspect to describe the learning features of Intelligent Agents. 

Analysts should identify type(s) of knowledge used during the learning process, knowledge 

representation, the level of using background knowledge, and the relation between input 

knowledge and background knowledge. Knowledge can be procedural, relational, and 

hierarchical. Intelligent Agents can manipulate single or multiple representations of 

knowledge required during the learning process. In addition, Intelligent Agents can use 

background knowledge during the learning process or depend only on the new acquired 

knowledge. Relations between acquired knowledge and background knowledge can 

provide designers with scenarios for Intelligent Agents behaviour. 
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Learning feedback methods have a direct impact on the performance of Intelligent 

Agents. The methods can be supervised, unsupervised or based on reinforcement learning 

feedback. Intelligent Agents receive the correct answer from a source of knowledge about 

their performance while no source of knowledge is available for unsupervised method to 

guide the learning behaviour. For reinforcement learning, the source of knowledge 

provides some feedback about the performance of Intelligent Agents without providing 

what the right answer is. Designers should identify which method will be available to 

Intelligent Agents as to develop their learning features. 

Analysts should identify where and when Intelligent Agents will conduct learning 

to allow designers to provide learning requirements at the learning location and time. Such 

identification is crucial for mobile Intelligent Agents that work in a multi-Agent 

environment. Analysts should also identify whether Intelligent Agents use learning to 

reduce the load of communication among individual Agents or they communicate to 

exchange information to refine learning. 

The clear identification of the learning features described above has a crucial 

impact on the performance of Intelligent Agents. Failure to do so would allow Intelligent 

Agents to consume available resources and create difficult working environment for other 

Agents to perform efficiently. 
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Chapter 3: Research Directions of Extending UML to Model Agent-Oriented Systems 

This chapter reviews four research directions that use UML to model Agent- 

oriented systems. Section 3.2 describes the first direction, Agent Unified Modelling 

Language (AUML) that extends UML base language to describe behaviour and structural 

aspects of Agents, especially interaction among Agents and the description of Agent class 

diagrams. Section 3.3 introduces the second direction, Agent Graph Transformation 

Modelling, which is an Agent-oriented modelling technique that uses UNIL notation, and 

integrates the theory of graph transformation in the proposed modelling technique. Section 

3.4 reviews the third direction, Methodology for Engineering Software Agent (Message), 

which has a modelling language related to UML by sharing a common Meta modelling 

language and Meta Object Facility (MOF). Section 3.5 describes the fourth direction, 

Agent-object relation models (AOR), which extends UML, and provides a framework for 

the existence of Agents and objects in the same system under development. 

3.1 Introduction 

Wooldridge and Cinancaini (2001) recognise software Agents as complex systems 

that exhibit autonomy, reactivity, pro-activity, and social ability capabilities. Interaction is 

one of the most important characteristics of software Agents. Bauer et al. (2001) highlight 

that linking Agent-oriented standards to object-oriented ones will allow Agent-oriented 

systems to gain wide acceptance in the software industry. Unified Modelling Language 

(UML) is the de facto standard for modelling object-oriented systems. UML unifies and 

formalizes the methods of developing object-oriented software life cycle (Bauer, 2002). 

Lind (2002) identifies two possible approaches to allow UML fits some of the Agent- 

oriented software requirements: either to extend UML with new structural elements and 

diagrams or to use UML base language to describe Agent-specific aspects of the software 
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systems. The first approach provides new structural elements and diagrams to enhance the 

expressive power of the base language while the second approach adheres to the 

boundaries of the original language, and uses only those extension mechanisms that UML 

admits. 

3.2 Agent Unified Modelling Language (AUML) 

AUML, one of the intensive research directions, uses UML to model Agent- 

oriented systems comparable to the other above-mentioned directions. The early AUML 

research mostly concentrates on interaction among Agents. Currently AUML research 

extends UML 2.0 structural and behavioural diagrams to model Agent-oriented systems. 

The Foundation for Intelligent Physical Agent (FIPA) is an international organisation that 

promotes the industry of Intelligent Agents by openly developing specifications and 

supporting interoperability among Agents as well as Agent-based applications. FIPA 

establishes a Modelling technical committee (TC) to develop vendor-neutral common 

semantics, meta-model, and abstract syntax for Agent-based methodologies. While this 

research study was still in process, FIPA issued two main documents for AUML Agent 

class metamodel (2003a, 2004) and AUML interaction diagrams (2003b). AUML uses in 

both documents an extension to UML 2.0 that Object Management Group (OMG) 

proposes. Currently, the FIPA modelling TC is the only approach that uses the new 

proposed UML 2.0 standards. 

3.2.1 Extending UML Behaviour Component 

Recent research on extending UML concentrates on modelling interaction among 

Agents. Bauer et al. (2001) have developed one of the first approaches to extend UML by 

providing new structural elements and diagrams that enhance the expressive power of the 

base language. They have introduced Agents as an extension of active objects. They view 
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Agents as an object that can initiate tasks, and refuse requests from other objects or 

Agents. Bauer et al. (2001) have proposed to extend UML with a new diagram called 

protocol diagram. Figure 3.1 represents an interaction protocol diagram of English-auction 

protocol for surplus flight tickets. The Protocol diagram combines UML sequence 

diagram and notation of UML state diagrams to provide the specification of interaction 

protocols among Agents. Protocol diagrams extend UML sequence diagrams by 

introducing Agent roles, multithreaded lifelines, extended message semantics, 

parameterised nested protocols, and protocol templates. 
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Figure 3.1 English-Auction protocol for surplus flight ticket (Bauer et a], 2001) 
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Bauer et al. (2001) identify Agent interaction protocol (AIP) as a communication 

pattern with an allowed sequence of messages between Agents that have different roles and 

constraints on the content of the messages. The messages semantics are consistent with the 

communicative (speech) acts (CAs) within a communication pattern. Speech acts are 

certain class of natural language utterances that have the characteristics of actions where 

they change the state of the world in a way analogous to physical actions, such as accept- 

proposal performative from the FIPA Agent communication language protocol that allows 

an Agent to accept a proposal made by another Agent (Wooldridge, 2002). 

AND XOR OR 

Figure 3.2 And, XOP, and Or connectors (Bauer et al, 2001) 

Bauer et al. (2001) propose Agent roles as one of the extensions to UML. Agent 

roles are a set of Agents that satisfy distinguished properties, interfaces, service 

description, or have a distinguished behaviour. Agent roles can perform various roles 

within one interaction protocol. The general form for describing Agent roles in Agent 

UML is "instance-I ... instance-n / role-I ...... role-m: class" that distinguish a set of Agent 

instances instance- 1,..., instance-n satisfying the Agent roles role- 1,.., role-m, n, m >= 0 and 

the class it belongs to. Bauer et al. (200 1) propose new logical connectors for the protocol 

diagram, AND, OR, and XOR connectors, that can represent parallelism and decisions 

corresponding to branches in message flows. Figure 3.2 shows the proposed logical 

connectors. The XOR connector interrupts the threads of interaction by splitting it up into 

different threads of interaction; figure 3.3 shows different usage of XOR connector. The 

AND connector combines the inputs while the OR chooses either one or nothing from the 

input. 
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Figure 3.3 Full and abbreviated notation of XOR connection (Bauer et al. , 200 1) 

In addition, Bauer et al. (2001) identify that protocols do not only codify as 

recognizable patterns of Agents' interaction that can be reusable modules of processing; 

rather, they are also treated as first-class notations. Protocol diagrams can allow nesting 

and interleaving of protocols. Bauer et al. (2001) extend the semantics of UML messages 

by introducing the repetition of a part of a protocol. An arrow, or one of its variations, that 

is usually marked with some guards or constraints, represents a repetition part. Bauer et al. 

(2001) emphasise that AUML provides the user who is familiar with object-oriented 

software development with an easy method to understand multi-Agent systems. Analysts 

view such systems like a society of Agents rather than a distributed collection of objects. 

In addition, designers spend much less time for designing Agent-oriented system by a 

minor amount that grows with the number of Agent-based projects. 

Odell et al. (2001) further edit and explain how AUML is useful for representing 

Agent interaction protocols by providing three-layers approach. The first layer represents 

the protocol by extending sequence diagrams to act as protocol diagrams. Protocol 

diagrams indicate with the proposed XOR connector the Agent's feature of the freedom to 

choose to respond or not to the received request. Furthermore, Odell etal. (2001) highlight 

that analysts can codify protocols as recognisable patterns of Agent interaction. Protocols 

become reusable modules of processing that analysts can treat them as first-class notations. 
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Odell et a]. (2001) use UML package diagram to treat protocols as templates for 

custornisation of analogous problem domains (figure 3.4). 
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Figure 3.4 A generic AIP expressed as a template package (Odell et al, 2001). 

Odell et al. (2001) describe that the second layer represents interaction among 

Agents. They extend sequence diagrams to represent Agents or roles of Agents. Similar to 

objects in UML, they use the Agent-name/role: class syntax to describe Agents. They 

extend UML to support concurrent threads of interactions similar to those identified by 

Bauer et al. (2001). Although the connectors are similar to those described by Bauer ct al. 

(2001), they provide more examples for using concurrent communications as shown in 

figure 3.5. 
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Figure 3.5 Multiple techniques to express concurrent communication with an Agent playing multiple roles or 

responding to different CAs (Odell et al., 2001). 

Odell et al. (2001) emphasise that activity diagrams provide simple graphical 

representations to visualise processes and concurrent asynchronous processing being an 

important feature for some Agents. Odell et al. (2001) use state chart diagrams to 

represent state-centric views that emphasise permissible states more prominently than the 

transitions Agent processing does. The third layer represents internal Agent processing 

Odell et al. (2001) point out that activity diagrams and statechart diagrams can describe 

the internal processing of a single Agent. Their version of AUML does not only 

concentrate on interaction among Agents by specifying protocols as a whole but also 
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conveys the interaction pattern within a protocol, and expresses the internal behaviour of 

Agents. 

Huget (2003) proposes to extend AUML protocol diagrams with features that are 

useftil to work in the domain of reliability, electronic commerce, and supply chain 

management that previous AUML features lack. He provides extensions for AUML 

protocol diagrams to describe broadcasting messages, synchronization, triggering actions, 

exception handling, time management, atomic transactions, and message sending until the 

receiver acknowledges receipt features. Figures 3.6 and 3.7 depict the different extensions 

that Huget proposes for AUML protocol diagram that can fulfil the features he indicates. 

proposc bid 

a) Broadcast 

cuffent bid > max. mount, with 
TM 

c) Triggering actions 

b) Synchronization 

exception timcout 

not exception timeout 

d) Exceptions 

Figure 3.6 Huget extensions to AUML protocol diagrams (Huget, 2003) 
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Figure 3.7 Huget extensions to AUML protocol diagrams (Huget, 2003) 

Lind (2002) uses the second approach, adhering to the boundaries of UML, to 

model Agent-oriented systems. He proposes a notation for an Agent-interaction protocol, 

based on the basic elements of UML activity diagram. He highlights that extending UML 

by new structural elements and diagrams would provide a major risk, as the new 

extensions will not be universally understandable. He extends the idea of swim lanes 3 of 

activity diagrams as a means to describe the roles as <<stereotypes>> that occur within the 

3 Swim lanes: Activity diagram can be divided into partitions, referred to as swim lanes, to show 

who does which action. 
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application. Figure 3.8 depicts an example of augmented activity diagram. The roles 

within the diagrams link each other in explicit communication channels (<<channels>>) 

that manage the message exchange between two roles. 

-role>> Role II <<channel-> I -role- Role 2 

<<send>A I-ccreceive>> 

Figure 3.8 Augmented Activity diagram (Lind, 2002). 

Synchronisation points (figure 3.9) illustrate message exchange that models 

sending and receiving of messages. The <<synchronization point>> stereotype includes a 

semantic extension of the UML, <<timeout>>. Lind (2002) highlights the importance of 

<<timeout>> stereotype, as it protects either the sender or receiver from infinite blocking. 

As AUML is gaining more recognition within the Agent-oriented research 

community, Koning and Romero-Hernandez (2003) introduce a textual notation for the 

AUML modelling specification, and show how one could translate it in order to generate 

both an extended finite state machine and a specification that model-checker can directly 

process. 
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Figure 3.9 Synchronization Point (Lind, 2002). 

Koning and Romero-Hernandez (2003) present the Atos system that takes AUML 

sequence (protocol) diagram specifications from text files as input and translates them into 

a single Promela specification, C-like process modelling language. Next, a SpIN 4 model 

checker tests them. The Atos system policy uses "as is" policy regarding translation of 

input specification, and allows the developer to change the input specifications, the final 

Promela specifications, or even the intermediate specifications. The author tries to use 

Atos for developing Agent-oriented CASE tool. 

3.2.1.1 FIPA, 4gent Interaction Diagrams 

FIPA Modelling TC uses UML 2.0 interaction diagrams, namely sequence 

diagram, interaction overview diagram, communication diagram, and timing diagram to 

model Agent-oriented interactions (FIPA, 2003b). Through this AUML version, FIPA 

extends UML sequence diagram to act as AUML sequence diagram. In a previous version, 

FIPA Modelling TC calls the AUML extension of sequence diagram a protocol diagram. 

AUML sequence diagrams consider two parts: the first is a frame, which delimits the 

sequence and the second is a message flow between roles through a set of lifelines and 

4 Spin is a generic verification system that supports the design and verification of asynchronous 

process system (Holzmann, 1997). 
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messages. FIPA modelling TC tries as much as possible to use UML 2.0 notations while it 

does add new structural or behavioural components. AUML connectors, for AND, OR, 

and XOR proposed in previous versions, are eliminated with the use of the standard UML 

2.0 notations of splitting or merging. Unlike UML, FIPA modelling TC extends UML 

lifelines to represent several Agents. Figure 3.10 depicts an example of AUML sequence 

diagram for FIPA request Interaction protocol. 
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Figure 3.10 FIPA Request Interaction Protocol (FIPA, 2003b) 

UML Interactive overview diagram focuses on the overview of the flow of control 

where the nodes are Interactions or InteractionOccurrences fragments. FIPA modelling TC 

highlights the usefulness of the interaction overview diagrams to express the flow of 

interactions that are clearer rather than using the frame of an interaction operand. FIPA 
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also suggests that UML communication diagrams are useful to express Agent-oriented 

interaction by focusing on the interaction between lifelines where the architecture of the 

internal structure and how this corresponds with the message passing is central. 

Furthermore, the UML Timing diagram is useful to show the change in the lifeline state or 

condition of a classifier instance or classifier role over linear time. 

3.2.2 Extending UML Structural Component 

UML structural components such as class diagrams are vital UML components that 

need extending to model Agents and Agent roles. Bauer (2002) emphasises that there is a 

need to extend UML class diagram to support in relating the definition of Agent interaction 

protocol and the internal behaviour of an Agent. He expresses that an Agent has three 

components: communicator, head, and body. The communicator is responsible for doing 

physical communications by using speech acts; the head deals with goals, states, and 

beliefs while the body do the pure actions of an Agent. 

Figures 3.11,3.12, and 3.13 depict the Agent class diagrams that the author 

proposes. Figures 3.11 and 3.13 show the internal structure of the Agent while figure 3.12 

shows the extension for UML classes to accommodate Agents. Bauer (2002) describes the 

Agent roles as in his previous work (Bauer, 2001) to have general fonn "instance- 

I..... instance-n / role- I .... role-m: Class", which denotes a distinguished set of Agent 

instances instance-1, ... ' instance-m satisfying the Agent roles role-I,.., role-m with n, m 

>= 0 and class it belongs to. He identifies that sending and receiving of communicative 

acts are the main interface of an Agent to its environment. Figure 3.14 illustrates incoming 

and outgoing messages respectively. To trigger the required behaviour, the Agent matches 

the incoming message against incoming communicative acts of the Agent. He provides an 

extension to distinguish class for "well formed formula" (wft) for all kinds of logical 

descriptions of the state, independent of the underlying logic. Bauer (2002) highlights the 
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need to define two variables of type wff for a pure goal-oriented semantics: permanent- 

goals and actual goals, while BDI semantics need four variables: beliefs, desires, 

intentions, and goals. 
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slaw-desmption 

actions 

methods 

capabilities. service dcsmptiort. supported 
PrOtOODIS 

[constr2int] 

CA-I / CA-1 I 
protocol protocol 

CA-21 N CA-V 
! protocol 

agent-head- protocol !V 

sixornata-riaine I 

ckf3ult 
not- I 
undemood 

ff 
RPApent 

fix shoM e. g. 

Figure 3.11 Agent class diagrarn and its abbreviation (Bauer, 2002) 
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Figure 3.12 Different Kinds of Agent classes (Bauer, 2002) 
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Figure 3.13 using UML class diagrams to specify Agent behaviour and its abbreviations (Bauer, 2002) 

Bauer (2002) emphasises that UML sequence and collaborating diagrams are 

suitable for the definitions of an Agent's head behaviour while state and activity diagrams 

are more suitable for abstract specification of the behaviour of an Agent's head. He 

highlights that analysts can define pro-active behaviour through two different ways: using 

pro-active actions or using the Agent head automata. The Agent itself triggers Pro-active 

actions by using a timer or by reaching a special state. Incoming messages do not trigger 

Pro-active behaviour. 
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Figure 3.14 incoming and outgoing messages 
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3.2.2.1 FIPA, 4gent Class Superstructure Metamodel 

FIPA modelling Technical Committee (TC) (FIPA, 2004) extends UML 2.0 class 

specification to accomplish the relative complexity and differences between Agent- 

oriented and object-oriented systems. FIPA modelling TC extends UML 2.0 classifier to 

have Agent Classifier that provides classification of Agent instances (figure 3.15). In 

addition, Agent Classifier specialises in two ways: Agent Physical Classifier and Agent 

Role Classifier. Agent Role Classifier describes sets of normative features or roles that 

Agents may hold or request to play. While Agent Physical Classifier describes sets of core 

or primitive features for those associated instances of the Agents it classifies. A man can 

be a father, a manager, or a husband; Agents Role Classifier will describe such roles. 

Agent Physical classifier describes the feature of the man: height, eyes colour, etc. 

FIPA Modelling TC identifies that Agent classifier is the core modelling constructs. 

Such constructs define the instance of Agents for a system and the classification for those 

Agents (FIPA, 2004). FIPA Modelling TC defines Agent Class description, as "an Agent 

is an instance specification specifying the existence of an entity that is classified by an 

Agent Classifier; which completely or partially describes the entity" (FIPA, 2004). In 

addition, FIPA Modelling TC identifies groups as a set of Agents that associates together 

by some common interest or purpose. Groups encourage and support interaction among 

those Agents that are members of the same Group class extends UML 2.0 structured 

classifier. Thus, each Group is a UML composite structure. Groups can act as Agents, 

Agentified groUP5, or establish a set of Agents for a purpose, that is non-Agentificd group 6. 

5 "An Agentified group is a group that is also a subclass of Agent" (FIPA 2004,14). 

6 "A Non-Agentified group is a group that is not a subclass of Agent" (FIPA 2004,14). 
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Figure 3.15 FEPA proposed Agent class abstract syntax (FIPA, 2004) 

Agent Unified Modelling Language research is the most intensive research area for 

using UML to model Agent-oriented systems. The research in this direction has influenced 

the new standards of UML 2.0 to include notations for more complex behaviours than 

offered in UML Lx to be able to model some of the Agent-oriented system requirements 

such as concurrency, parallelism, and branching processes. The importance of the latest 

attempt by FIPA Modelling TC (June 2004) is currently the only research conducted to use 

UML 2.0 to model Agent-oriented systems. This research direction does not concentrate 

on developing a methodology; rather, it uses and extends the basic language of UML 2.0. 

The AUML research direction focuses on interaction behaviour of Agents with a recent 

attempt to model Agent Class Superstructure Metamodel. 

3.3 Agent Graph Transformation Modelling 

Depke et al. (2001) introduce Agent-oriented modelling techniques that use UML 

version Lx notation. They divide the modelling process of Agent-based systems like 

modelling of object-oriented systems: requirements specifications, analysis, and design 

phases. They express that the informal descriptions of the system functionality identifies 

the requirements of the system during the requirement specification phase. Through that 
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phase, Depke et al. (2001) use UML Use case diagrams to describe the functionality and 

actors of the system. They have introduced an extension to Use Case diagram by adding 

Agents that are UML actors but with a square head. The Use case diagram shows Agents 

required for the system and their Use Cases (figure 3.16). Then analysts describe each use 

case by proposing graph transformation rule that shows modelling a before-after scenario 

of the use case (figure 3.17). Depke et al. (2001) use the UML sequence diagram to 

describe communication between actors participating in a Use case. 
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Figure 3.16 Use Case diagram for banking example (Depke et al. 2001,108) 

Similar to object-oriented analysis phase, the analysis phase consists of a structural 

model, a dynamic model, and a functional model. The structural model -Agent class 

diagram specifies the types of objects and Agents, their attributes, associations, and 

messages. Agent classes depict an active class with bold borders that have an extra 

compartment for messages. 
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Figure 3.17 Graph transformation rule (Dcpke et al, 2001) 

The functional model specifies the overall effect of a use case on the state of the 

system. They use a theory of graph transformation act as a mechanism to specify the pairs 

of graphs that represent before-after scenarios of use cases. Figure 3.18 illustrates three 

rules specifying the possible effect of the use case "Select account" shown in figure 3.16. 

The dynamic model focuses on the communication required to execute a certain protocol. 

Sequence diagram describes communication that occurs in each graph transformation 

resulting from the functional model. The Design phase concentrates on how the system 

will conduct the functions that the analysis phase describes. Similar to the analysis phase, 

the design phase describes three models: a structural model, a dynamic model, and a 

functional model. 

In the structural model, Depke et a]. (2001) refine the class diagram of the analysis 

phase and add the Agent's autonomous operations in an extra compartment. They 

distinguish between the Agent's message and operation notations, whereas in objects, the 

notion of method integrates both notions. The dynamic model specifies the ordering of 

operations an Agent of this class may perforin. They use state diagrams to represent the 

ordering of operations. The functional model shows how operations declared in the design 

model affects the state of the system. Graph transformation rules specify operations 

declared in the structural model. 
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Figure 3.18 Three rules specifying the possible result of each interaction (Depke et a], 2001) 

The effort exerted by Depke et al. (2001) focuses on developing a method for 

processing Agent-oriented systems. Similar to object-oriented methods process, their 

method process starts with identifying system requirements. Then the analysis phases and 

ends up with the design phase. The method uses and extend components from UML Lx, 

which needs to be revised after the publication of the new UML standard, UML 2.0. 

Software developers of object-oriented systems will also need to learn more about graph 

transformation rules in order to be able to use the methods for developing Agent-oriented 

systems. 

3.4 MESSAGE / UML 

Caire et a]. (2002) claim that they present a methodology for engineering systems 

of software Agents (MESSAGE) by integrating the best of the two approaches: the first 

approach applies existing software engineering methodologies to develop Agent-oriented 

systems, and the second develop a new methodology based on Agent theories. They 

highlight that MESSAGE has well defined concepts and a notation that uses UML 
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notations whenever possible. They extend UML by modelling the concepts and diagrams 

for the Agent knowledge level. The diagrams extend UML class and activity diagrams. 

Caire et al. (2002) argue that the MESSAGE modelling language shares a common Meta 

modelling language with UML and a Meta Object Facility (MOF). They extend the UML 

metamodel with "knowledge level 0 Agent-oriented concepts. Caire et al. (2002) use UML 

as starting point and append entities and relationship concepts required for Agent-oriented 

modelling. MESSAGE uses standard UML as "data level" modelling language but 

provides additional "knowledge level" concepts that MESSAGE metamodel defines. 
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Figure 3.19 Agent centric MESSAGE concepts (Caire et al, 2002) 

7 Knowledge Level System is a system that "rationally brings to bear all its knowledge onto every 

problem it attempts to solve" (Lemon et al. 2004, cogarcb4/toe-defs/defs-theory/knowlevel. htmi) 
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MESSAGE Knowledge level entity concepts have mainly three categories of 

entities: concrete, activity, and mental-state entities. The main types of the concrete entity 

category are Agent, organisation, role, and resources. The major types of the activity 

category are tasks, interactions, and interaction protocols. Goal is one type of mental-state 

entity category. Figure 3.19 shows the links between these knowledge level concepts. 

The analysis model identifies first the top level of decomposition; level "0" with 

subsequent stages of refinement that result in the creation of models at level " L" Level "0" 

identifies the system stakeholders and environment. Then the analyst drafts the 

Organisation and Goal/task views. Caire et al. (2002) highlight that level "0" focuses on 

the identification of entities and their relationships according to the metamodel. Level "I" 

concentrates on identifying the structure and behaviour of entities. 

Caire et al. (2002) introduce different refinement strategies that analysts can use to 

refine level "0" models such as organisation-centred approaches, Agent-centred 

approaches, interaction oriented approaches, or goal / task decomposition approaches. 

Organisation-centred approaches concentrate on analysing overall system properties such 

as the system structure and the services offered. Agent-centred approaches concentrate on 

identifying the required Agents. Interaction-centred approaches concentrate on suggesting 

progressive refinements of interaction scenarios that describe the internal and external 

behaviour of organisations and Agents. Goal/task decomposition approach focuses on 

functional decomposition. Caire et al. (2002) suggest that it is preferable to use a 

combination of different refinement approaches with frequent loop-backs among them. 

Similar to the second direction, Caire et al. use UML Lx for their MESSAGE 

methodology. MESSAGE uses some of UML diagrams but also identify new views to 

model Agent-oriented features. The diagrams extend UML class and activity diagrams. It 

will not be direct transformation for well-trained object-oriented systems analysts using 

UML to work with the MESSAGE methodology. MESSAGE needs to review UML 2.0 
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diagrams to identify similarity. It will be better to adhere, as much as possible, to the core 

UML diagrams. 

3.5 Agent-Object Relation Models 

Wagner (2003a, b) proposes an Agent-oriented modelling language for the analysis 

and design of organizational information system called Agent-Object-Relationship 

modelling language (AORML or AOR), where an entity is an Agent, an event, an action, a 

claim, a commitment, or an ordinary object. Special relationships between Agents and 

events, actions, claims and commitments supplement the fundamental association, 

generalization, and aggregation relationships of UML class diagrams. Wagner (2003a, 

138) emphasises that AORML or AOR is an extension of UML. AOR models have two 

types: external and internal models. External models adopt the perspective of an external 

observer who is observing the Agents and their interaction in the problem domain under 

consideration. The internal model adopts the internal view of a particular Agent under 

modelling process. External AOR model consists of Agents, communicative and non- 

communicative action events, non-action events, commitments, / claims between Agents, 

ordinary objects, various designated relationships, and ordinary associations. External 

AOR model represents a conceptual analysis view of the problem domain without 

mentioning any software artefact. External AOR diagrams include one or combination of 

Agent diagrams: interaction frame diagrams, interaction sequence diagrams, and 

interaction pattern diagrams (Wagner, 2003a, and 2003b). 
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Figure 3.20 The core elements of External AOR modelling (Wagner 2003a, b) 

Agent diagrams depict Agent types of the domains, certain relevant object types, 

and relationships among them. Interaction frame diagrams represent the action event types 

and commitment/claim types that determine the possible interactions between two Agent 

types. Interaction sequence diagrams illustrate prototypical instances of interaction 

processes. Interaction pattern diagrams focus on general interaction patterns expressed by 

means of a set of reaction rules defining an interaction process type. Figure 3.20 shows the 

core elements of external AOR modelling (Wagner, 2003a, b). 

Internal AOR model consists of the following: other Agents, actions, commitments, 

events, claims, objects, designated relationships, and associations. Internal AOR models 

may consist of one or a combination of reaction frame diagrams, reaction sequence 

diagrams, and reaction pattern diagrams. Reaction frame diagrams depict other Agents, 

actions, and event types as well as the commitment and claim types that determine the 

possible interactions with them. Reaction sequence diagrams depict prototypical instances 

of interaction processes in the internal perspective. Reaction pattern diagrams focus on the 

reaction patterns of the Agent under consideration expressed by means of reaction rules. 

Figure 3.21 illustrates a comparison between entity relationship modelling, UML, and 

AOR (Wagner, 2003a, b). 
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Figure 3.21 A comparison of some important concepts of ER, UML, and AORML (Wagner 2003a, b) 

Wagner (2003a, b) highlights the strengths of AOR, with respect to UML, lies in 

the availability of a richer set of basic ontological concepts as compared to UML. This 

allows capturing more semantics of a domain. AOR allows integrating state and behaviour 

modelling in one diagram. He identifies that a major weaknesses of the approach is the 

lack of an entire development path from analysis to implementation and AOR does not 

allow modelling the proactive behaviour of Agents. 

Agent-Object Relation Modelling language (AOR), fourth direction, is one of the 

few methods that integrate objects and Agent in the same model. AOR uses and extends 

UML Lx components, but it will not be a direct transformation for object-oriented 

developers to use such method. The approach is still lacking important aspects such as the 
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lacking of defined entire development path from analysis to implementation. AOR needs 

more work to be able to act as a standard approach for developing Agent-oriented systems. 

In addition, AOR should review UML 2.0, similar to MESSAGE, to identify similarity, 

and use the core language as much as possible. 

3.6 Conclusion 

This chapter discusses four directions to model Agent-oriented systems by using 

Unified Modelling language. The four directions are Agent Unified Modelling Language, 

Agent Graph Transformation modelling, Methodology for Engineering Software Agent 

(MESSAGE), and Agent-Object Relation Model (AOR). Agent Unified Modelling 

Language research is the most intensive research area for using UML to model Agent- 

oriented systems. The research in this direction has influenced the new standards of UML 

2.0 to include notations for more complex behaviours than UML Lx to model some of the 

Agent-oriented systems requirements such as concurrency, parallelism, and branching. 

The importance of the latest attempt by FIPA Modelling TC is currently the only research 

conducted to use UML 2.0 to model Agent-oriented systems. This research direction does 

not concentrate on developing a methodology like the other three directions; rather, it uses 

and extends the basic language of UML 2.0. The AUML research direction is focusing on 

the interaction behaviour of Agents where other Agent features need more research. 

Depke et al. (2001) efforts focus on developing a method for developing Agent- 

oriented systems. Their method process, similar to object-oriented method, starts with 

identifying system requirements, then the analysis phases and ends up with the design 

phase. The method uses and extend components from UML Lx, which needs to be revised 

after the publication of the new UML standard, UML 2.0. In addition, software developers 

of object-oriented systems will need to learn more about graph transformation rules to be 

able to use the methods for developing Agent-oriented systems. 
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Similar to the second direction, MESSAGE has used UML I. x for their 

methodology. Not only does the methodology use some of UML diagrams but also 

identifies new views to model Agent-oriented features. The diagrams extend UML class 

and activity diagrams. It will not be direct transformation for well-trained object-oriented 

systems analysts using UML to work with the MESSAGE methodology. MESSAGE 

needs to review UML 2.0 diagrams to identify similarity. It will be better to stick as much 

as possible to the core UML diagrams. 

Agent-Object Relation Modelling language (AOR), fourth direction, is one of the 

few methods that integrate objects and Agents in the same model. AOR uses and extends 

UML Lx components but it will not be a direct transformation for object-oriented 

developers to use such methods. The approach still lacks important aspects such as the 

lack of defined entire development path from analysis to implementation. AOR needs 

more work to be able to act as a standard approach for developing Agent-oriented systems. 

In addition, AOR should review UML 2.0, similar to MESSAGE, to identify similarity, 

and use the core language as much as possible. 

The main objective of using UML as a base modelling language for describing 

Agent-oriented systems is to allow software developers using object-oriented systems to 

migrate more easily towards the development of Agent-oriented systems. Currently, we 

cannot declare that any of the available UML Agent-oriented efforts can act as a standard 

modelling language or a method for Agent-oriented systems as UML for object-oriented 

systems. AUML tries to use and extend UML to describe interaction among Agents. No 

research direction of the above has explored how the new UML notations, UML 2.0, can 

model different aspects of Agent-oriented systems such as the ability to learn, the ability to 

reach agreement among Agents, and the ability to describe mobility. 
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Chapter 4: Exploring UML 2.0 to Model Structural Components of Intelligent Agents 

This chapter explores the capability of UML 2.0 to model structural features of 

Intelligent Agents. During the writing of the thesis, the only work done to use UML 2.0 to 

model structural components of Agents was from the Foundation for Intelligent Physical 

Agent (FIPA). The research builds upon, explores, and utilises this work and provides 

further development to model the structural components of learning behaviour of 

Intelligent Agents. Section 4.2 discusses two scenarios to model Intelligent Agent 

structural features by using the FIPA Agent Class Superstructure Metamodel. Section 4.3 

introduces the required learning compartment attributes that describe the learning features 

of Intelligent Agent. 

4.1 Introduction 

As mentioned in Chapter 3, section 3.2.1.1, FIPA modelling Technical Committee 

(TC) is the only published work (during the writing of the thesis) to extend UML 2.0 to 

model Agent structural and behaviour features. FIPA modelling TC extends UML 2.0 

Classifier to have Agent Classifier that provides classification of Agent instances (figure 

4.1). This Agent Classifier is able to describe the differences between Agents and Objects. 

UML 2.0 standards allow such extension which is not available in UML IX Agent 

Classifier specialises in two ways: Agent Physical Classifier and Agent Role Classifier 

(FIPA, 2004). Until June 2004, FIPA Modelling TC has been the only effort that uses 

UML 2.0 to model Agent-oriented systems. 

This has encouraged the author to use FIPA legal UML 2.0 extensions to explore 

their capability in modelling structural components of the learning dimension of Intelligent 

Agents. To describe the learning features of Intelligent Agents, a Learning compartment is 

added to the structural notation of Intelligent Agents. The learning compartment should 
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contains attributes to identify the Intelligent Agents learning goal, commitment strategy, 

learning strategy, learning feedback method, learning location, learning schedule and 

duration, the use of background knowledge during learning, and the input knowledge 

representations. 
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Figure 4.1 FERA proposed Agent class abstract syntax (FIPA, 2004) 

4.2 Modelling Intelligent Agents 

The differences between Intelligent Agents and Agents should be clear in order to 

model structural components of Intelligent Agents by using FIPA Agent class 

superstructure meta-model, described in chapter 3, section 3.2.1.1. The differences can 

have two scenarios: the first scenario recognises that the relation between Intelligent 

Agents and Agents is similar to the relation between an active object and a passive object. 

An active object has its own thread of control while a passive object executes within the 

context of other objects. Thus, an active object has a different notation from a passive 

object. The second scenario identifies the Intelligent Agent as an Agent with extra 

attributes. The first scenario requires Intelligent Agent to have a distinct notation that is 

different from Agent notation and a Boolean attribute "islearning. " In UML 2.0, the 
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analyst identifies a Class is active, that each of its instances has its own thread of control, if 

"isActive" parameter equals true. The notation of active class is a class box with an 

additional vertical bar on each side as shown in figure 4.2. 

EngineControl 

Figure 4.2 Active Class (OMG 2003,387) 

FIPA modelling TC proposes the notation of the Agent to be a solid-outline 

rectangle, containing underlined concatenation of the instance name (if any), a colon (': ') 

and the classifier name or names. Intelligent Agents can have the same notation but with 

vertical bar on each side as shown in figure 4.3. In addition, a learning compartment is 

added to provide learning attributes. 

i(agent)) 
A. qent37: Mangger 

managementLevel: Integer-4 
authodzationLimit: Money=$10,000 

r., aqentmanaqer>, 1c- = a 
F I 

--i 
Compartment Leq ar ninc 

Figure 4.3 : FIPA Agent notation (FIPA, 2004) and proposed Intelligent Agent notation 

The second scenario uses Agent Physical classifier that FIPA modelling TC 

introduces. This scenario deals with Intelligent Agent as an Agent with extra attributes. 

The Agent Physical classifier will have a compartment to hold learning attributes that 

describe the learning behaviour of the Intelligent Agent. "An Agent Physical Classifier is 

an Agent Classifier defines those sets of core, or primitive features for those associated 

instances are Agent that it classifies" (FIPA, 2004). The notation of Agent is the same 
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notation that FIPA proposes. Figure 4.4 depicts the modelling of Intelligent Agent and 

shows the learning compartment in Agent physical classifier that holds learning attributes. 

* 

1 

Agent Physical 
Classifier 

I 

Learning 
Compartment 

Agent 

Figure 4.4 Agent class and Agent Physical Classifier 

4.3 Learning Compartment Attributes: 

Learning compartment provides the designer with attributes that describe the 

learning features of the Intelligent Agent. These learning attributes guide the designers in 

identifying the learning characteristics such as learning algorithms, communication 

requirements, and reasoning capabilities. The following section describes the proposed 

attributes that the learning compartment includes. 

Learning-goal: literalinteger' [1] This attribute identifies the type of the learning goal. 
"I"- synthetic learning 
"2" - analytic learning 
"3" - both 

Commitment-strategy. This attribute defines the type of commitment strategy the 
literalinteger[l.. *] Intelligent Agent uses during learning. The following is the 

values of the attributes: 
"0"- Unknown commitment strategy 
"I "- Blind commitment 
"2"- Single-minded commitment 
"3"- Open-minded commitment 

Background-knowledge: This attribute identifies if the Intelligent Agent uses 
Boolean [1] background knowledge during the learning process. 

True: uses background knowledge 
False: does not use background knowledge. 

a"A literal integer specifies a constant integer value" (OMG 2003,49) 
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Learning-strategy: literaistring9[l.. *] This attribute identifies the learning strategies that the 
Intelligent Agent uses. The first character identifies the 
learning strategy and the other two describe its variant. 

"000% Unknown 
"100% Learning from observation and discovery - 
unknown features 
"101% Learning from observation and discovery - Passive 
learner 
" 102% Learning from observation and discovery - Active 
learner 
"200% Learning from examples 
"2 10% Learning from examples - instance to class 
"211% Learning from examples - part to whole 
"221 "- Learning from examples - positive examples 
"222% Learning from examples - positive and negative 
examples 
"231 " -Learning from examples - incremental 
"232" -Learning from examples -non incremental 
"300% Learning from analogy 
"3 10" -Learning from analogy - transformational 
"320" -Learning from analogy - derivational 
"400" -Learning from instructions 
"400" -Learning from instructions - unidirectional 
"4 10" -Learning from instructions - interactive 
"500% Rote Learning 
"5 10% Rote learning - by being programmed 
"520% Rote learning - by memorising 

Learnin&feedback- literalstring[l.. *] This attribute identifies the learning feedback method that 
the Intelligent Agent uses. 
"100" -unsupervised learning 
"200" - supervised learning 
"300" - reinforcement leaming 
"3 10" - reinforcement learning - Immediate Reward 
"311 "- reinforcement learning - Terminal State 
"312" - reinforcement leaming - End of Learning 
"320" - reinforcement learning - exploitation 
"330" - reinforcement leaming - exploration 

Learning-location: string [I 
... 

This attribute identifies the location(s) where Intelligent 
Agent conducts learning 

Learning-schedule: This attribute describes the schedule and the duration of 
timeintervallo [I ... *] leaming. 
Knowledge-representation: This attribute identifies the knowledge representation that 
I iteral integers[ I.. *] the Intelligent Agent uses during the learning process. 

0- parameters in algebraic expression 
I -decision trees 
2- formal grammar 
3- production rules 
4- formal logic based expression 
5- predicate logic 
6- graph and network 
7- frames and schemas 
8- computer program 
9- taxonomies 
10 -Bayesian network 

9 "A literal string specifies a constant string value" (OMG, 2003) 

10 "A Time interval defines the range between two Time expressions" (OMG, 2003). 
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4.3.1 Leaming Goal Attribute 

Learning goal attribute identifies whether the learning goal type is synthetic, 

analytic or both. Synthetic learning objective is to acquire new knowledge that is not 

available by the knowledge possessed while analytic learning transfers the knowledge 

already possessed into the form that is most desirable and/or effective for achieving the 

given learning goal. Synthetic learning employs induction as the primary inference while 

analytic learning employs deduction as the primary inference (Michalski, 1993). 

Designers should identify the required resources to accomplish the learning goal. In so far 

as synthetic learning is concerned, designers should estimate the required space to hold the 

new acquired data, the acquisition rate, and the access privileges required to access and 

collect the new data. Designers also identify the capability needed by programming 

language to accomplish the learning goal type. Synthetic learning needs programming 

language that is able to provide an induction mechanism, that is tracing backward, while 

analytic learning needs programming language able to perform a deduction mechanism, 

that is tracing forward. For analytic learning, analysts should identify the method of 

refining the current hypothesis and whether the Intelligent Agent should keep a copy of 

current and new hypotheses. 

4.3.2 Commitment Strategy Attribute 

As mentioned in Chapter 2, Section 2.3, commitment strategy has an impact on the 

behaviour of Intelligent Agents. The strategy can be a blind, single-minded, or an open- 

minded strategy (Wooldridge, 2002). Analysts can use two scenarios during the analysis 

of Intelligent Agent to design the commitment strategy: the first scenario analysts design 

the commitment strategy of Intelligent Agent according to the type of environment while 

in the second, they design the Intelligent Agent according to the required commitment 

strategy. 
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For the first scenario, analysts will identify whether the Intelligent Agent will work 

in a dynamic or a static environment. Intelligent Agents working in static environment can 

have blind commitment strategy, whereas Intelligent Agents working in dynamic 

environment can use single-minded or open-minded strategy. For the second scenario, 

analysts should identify how Intelligent Agents conclude learning. Intelligent Agents 

using blind commitment strategy and working in dynamic environment will consume their 

efforts without realising that the learning goal is not achievable. Analysts can identify 

constraints that affect the continuation of learning. In an open-minded commitment 

strategy, analysts should identify when the Intelligent Agent should believe that the 

learning goal is no longer valid to stop achieving the learning goal, such as the expiration 

of the learning goal after a specific duration. 

4.3.3 Background Knowledfze Attribute 

The background knowledge attribute identifies to what level Intelligent Agents use 

their background knowledge during the leaming process. The analysts would provide 

notes about the constraint and specification for the use of Intelligent Agents background 

knowledge. If the learning strategy attribute identifies that the Intelligent Agents use 

learning from examples, that is incremental leaming, analysts should provide a note about 

which type of incremental leaming Intelligent Agents are using: no-memory, partial 

memory, or complete memory. Each type of incremental learning will need a special 

design. For example, for complete memory type, designers should develop efficient 

mechanism to provide a fast search in current and past hypotheses. During the leaming 

process, Intelligent Agents will need more space for partial or complete memory rather 

than no memory type. This might be critical for a multi-Agent environment where Multi- 

Intelligent Agents are using a partial or a complete memory leaning type. Mobile 

Intelligent Agents that also use a partial or a complete memory leaming type need more 
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time to travel between servers than mobile Intelligent Agents using no-memory learning 

type. Intelligent Agents size increases during the learning process; designers should take 

special consideration during the development of such mobile Intelligent Agents to cater for 

such increase. 

4.3.4 Learning Strategy Attribute 

Learning strategy attribute identifies the type of learning strategy that Intelligent 

Agents use. They can have single learning strategy or multi-leaming strategies. 

According to the learning strategy of Intelligent Agent, the designer designs the learning 

algorithm, and identifies the required resources needed to perform the algorithm. Learning 

strategy attribute identifies whether the learning Agent is utilising learning from 

observation and discovery, learning from examples, learning by analogy, learning from 

instructions, or rote learning strategies. The attribute also can describe the variants of the 

utilised learning strategy. 

4.3.4.1 Learningfrom Observation and Discovery 

Learning strategy attribute equals to "100" indicates that the Intelligent Agent is 

capable of learning from observation and discovery. The Intelligent Agent should be able 

to monitor the actions and reactions of the environment or the users to learn. Designers 

should identify the type of learning from observation whether it is clustering1l or 

discovery. Clustering learning would guide the designer to use learning algorithm to 

conduct statistical, conceptual, or kohonen net clustering techniques. For discovery 

learning, the designer might use theory-driven or data-driven algorithms (Smith 1996, 

11 Clustering algorithms organises unclassified objects into a hierarchy of classes by measuring the 

similarities between objects and gathering maximally similar objects into the same group or cluster" (Smith 

2004, Jstaffpages/serengul/Clustering. htm). 
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,. /ML/unsupervised. html#4.2 . Learning strategy attribute of "101" indicates that the 

Intelligent Agent is a passive learner while learning strategy attribute "102" indicates the 

Intelligent Agent is an Active learner. Intelligent Agent with passive-leamer features 

should be able to monitor actions of the environment or users. As far as an active learner 

is concerned, designers should identify triggers at which Intelligent Agent starts exploring 

the reactions of users or the environment, such as time triggers or action triggers. It should 

also be able to trigger the environment or users to monitor their feedback; designers should 

provide the Intelligent Agent with required resources, as access rights, to be able to 

perfon-n exploration. Furthermore, designers should be able to identify the learning 

algorithm that Intelligent Agent will use during exploration. Other attributes from the 

learning compartment, such as hackground knowledge attribute, will guide the designer in 

identifying the algorithm. 

4.3.4.2 Leamingfrom Examples 

Intelligent Agents that use leaming-from-examples strategy should have access to 

the source of knowledge and tutor to receive training examples needed for learning. 

Failure to have such access will terminate the whole process of learning. According to the 

type of learning from examples, designers should design the reasoning behaviour, learning 

algorithm, according to the classification method that Intelligent Agent will use. For 

learning-strategy attribute equals "210, " instance-to-class type, the Intelligent Agent 

should use a learning algorithm capable to learn how to classify independent entities into a 

common class. Learning-strategy attribute equals "21 l, "part-to-whole type, requires the 

Intelligent Agent to use learning algorithm capable to link different parts of a whole object. 

In addition, Intelligent Agent with learning-strategy attribute equals "221 " or "222" stands 

for learning from positive or positive and negative examples respectively. The types of 

examples guide the designers to select learning algorithm that can use the type of available 

examples in learning. For the first case, designers should identify conditions to limit 
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overgeneralisations, as there are no negative examples to perform this task. For the second 

case, learning from positive and negative examples would require the designers to use 

learning algorithms that employ positive examples to generalise concepts, and use negative 

example to prevent overgeneralisations such as cand idate-el im i nation algorithm 12 
. 

For learning strategy attribute of "23l, "(Leaming from examples - incremental) 

designers should identify a learning algorithm capable of updating the hypothesis after 

providing each example, such as candidate-elimination, ID4, ID5, or ID5R algorithms. As 

for learning strategy attribute "232, " non-incremental learning, designers should identify 

whether the Intelligent Agent requests to start and stop learning or the teacher has the 

control. In addition, designers should identify the proper conditions for the learning 

process, where the absence of the Intelligent Agent will not trigger hazard situations. 

Nevertheless, designers should identify non-incremental learning algorithm such as ID3 

algorithm. 

4.3.4.3 Learning by Analogy 

Intelligent Agent with learning strategy attribute equals to "300" is achieving 

learning by analogy which is a complex strategy that requires the Intelligent Agent to be 

able to conduct inductive and deductive inferences. Intelligent Agent using learning from 

analogy can mimic the human-like features of learning. As learning by analogy is a 

knowledge-intensive-learning mechanism and depends on background knowledge and 

experiences, Intelligent Agent should be capable of storing, indexing, and retrieving its 

experience to perform effective learning. Leaning strategy attribute has value of "3 10" and 

exhibits transformational analogy capabilities. Designers should be able to identify 

appropriate learning algorithm for the intelligent Agent, such as case-based reasoning. 

12 Candidate-Elimination algorithm "finds all describable hypotheses that are consistent with the 

observed training examples" (Mitchell 1997,29) 
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Intelligent Agent with learning strategy attribute equals to "320" exhibits capability to 

learn by the derivational analogy method. Designers can identify the learning algorithm 

used by the Intelligent Agent that may use case-based learning that depends on its own 

experience. This entities the Intelligent Agent to be able to memorise, index, and restore 

its own experience to be able to conduct learning. 

4.3.4.4 Learningftom Instructions 

Intelligent Agent with a learning strategy attribute equals to "400" exhibit learning 

by instruction method. Designers should provide the needed resources to accomplish 

communication between the Intelligent Agent and Instructor, such as friendly-user 

interface or authorisation. They should also identify the learning algorithm that will 

transform instructions received to executable procedures. Learning strategy attribute of 

"410" indicates that the type of learning from instruction is uni-directional where Instructor 

provides instructions to the Intelligent Agent on a sequential basis. Designers should 

identify when these sequential instructions are available and should provide the Intelligent 

Agent with the proper conditions to receive the instructions and transform them into 

operational procedures. Learning strategy attribute equals to "420" indicates that 

Intelligent Agent learns through interactive learning from instruction. Designers should 

identify conditions where the instructor would provide his/her instructions; when the 

Intelligent Agent identifies that, it should ask for instruction or advice from instructor. 

Designers should also provide all the. needed resources for conducting such 

communication, as the Intelligent Agent might be in a hazardous situations and might 

request the instruction or advice from the instructors. 

4.3.4.5 Rote Leaming 

Intelligent Agent with learning strategy attribute equals "500" indicates that it has 

capabilities to learn by rote-leaming strategy. Designers should identify the required 
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resources to store, index, and retrieve the provided learning knowledge. The learning 

strategy attribute of "510" indicates that Intelligent Agent conducts rote learning by being 

programmed type. Designers should identify when the Intelligent Agent will receive the 

program from the instructor, the method for the Intelligent Agent to receive the input data 

and transform it to operational actions. Intelligent Agent with learning strategy attribute of 

"520" identifies that the rote-learning type is accomplished through memorising. 

Designers should estimate the amount of input knowledge and provide the Intelligent 

Agent with the required capacity to store the input knowledge and efficient methods for 

indexing and restoring the stored knowledge. 

The learning strategy attribute guides the designer to the type of the learning 

strategy the Intelligent Agent uses. Each learning strategy has different variants that 

require different algorithms to perform learning. In addition, some of the learning 

strategies are knowledge intensive processes that require the designer to provide efficient 

mechanisms for acquiring, indexing, and restoring background and newly acquired 

knowledge. Designers should also identify the method of communication between 

Intelligent Agent and the source of knowledge such as learning from example strategy to 

allow the success of the learning process. Failure to understand and provide the required 

resources for the learning strategy jeopardises the Intelligent Agent capability to learn and 

adapt to new situations. 

4.3.5 LeaminR Feedback Attribute 

Learning feedback attribute identifies the feedback method that the Intelligent 

Agent uses during learning. The learning feedback can be supervised learning, 

unsupervised learning, or reinforcement learning. There is a direct relation between the 

learning strategy attribute and the learningfeedback attribute. When the learning strategy 

attribute is "IY. X"- that is learning from observation and discovery, the learningfeedback 
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attribute is "100"- that is unsupervised learning. When the learning strategy attribute is 

"2XX"- that is learning from examples, the learning feedback attribute is "200" - that is the 

supervised learning method. According to the learning feedback method, designers 

provide the Intelligent Agent with the required communication skills to perform the 

learning process. For supervised learning, Intelligent Agent should be capable to 

communicate with the source of knowledge, which is the tutor. Therefore, the designers 

should identify the method of communication established between the Intelligent Agent 

and the tutor. The tutor can be a user or another Intelligent Agent. If the tutor is a user, 

Intelligent Agent should have a user-friendly interface while if the tutor is another Agent, 

the Agent communication language can be implemented. The Intelligent Agent that has 

multi-type tutors should be able to communicate with any type. In that way the Intelligent 

Agent will be more complex. For unsupervised learning, the Intelligent Agent should be 

capable of monitoring environmental actions and reactions or users during the learning 

process. 

Reinforcement learning method requires the Intelligent Agent to be able to 

communicate with users, other Intelligent Agents, or objects to receive the reward. 

Designers need to identify the main elements of reinforcement learning, such as policy, a 

reward function, value functions, and model of the environment. According to the 

learning feedback attribute, designers should identify how the Intelligent Agent will 

receive its rewards for its actions. Learning feedback attribute equals to "3 10" indicates 

that the Intelligent Agent should receive its reward immediately after each action. This 

method has considerable communication between the Intelligent Agent and its tutor. 

Designers should provide resources to accomplish such intensive communication method. 

Learningfeedback attribute of "311 " highlights that designers should identify the terminal 

state where the Intelligent Agent receives its reward. It also points out that required 

communication resources should be available at this state to allow communication between 

the Intelligent Agent and the tutor. Intelligent Agent with learning feedback attribute 
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"312" will receive its reward at the end of the learning process. This type is a less 

communicative load than the other previous feedback methods. Intelligent Agent can 

exploit its existence hypothesis, "320, " or explore new opportunities, "330. " For each 

state, the designer should guarantee the resources required for conducting the learning 

process. 

Learning feedback attribute has a direct impact on the performance of the 

Intelligent Agent. Each type of feedback method has different requirements of the 

communication capabilities and learning algorithms. Designers should clearly understand 

the behaviour of Intelligent Agent, and identify the right learning algorithm. Designers 

will identify the supervised and unsupervised learning algorithms during the identification 

of the learning strategy attribute whether the type of the learning strategy is learning from 

observation and discovery or learning from examples. Reinforcement learning requires the 

designer to identify the main elements needed to conduct learning. This attribute can be 

renamed to reinforcement learning attribute, as the supervised and unsupervised feedback 

method can be identified from the learning strategy attribute; however, for classical 

classification of learning, it is better to keep the attribute with the same name. 

4.3.6 Leaming Location Attribute 

Learning location attribute specifies the location(s) where the Intelligent Agent 

performs learning. Analysts specify one location for static Intelligent Agent and different 

locations for mobile Intelligent Agent. Designers should take into consideration the 

requirements and constraints at the learning location to allow the Intelligent Agent to 

conduct learning. Intelligent Agents that are using reinforcement learning and would like 

to perform an exploitation or exploration processes should be able to trigger the 

environment at the learning location. It will need to have access, authorisation and 

privileges to monitor the environment or user reactions... etc. 
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4.3.7 Leaming Schedule Attribute 

Leaming schedule attribute provides infonnation about when the Intelligent Agent 

conducts learning and the duration of the learning process. During the identified learning 

duration, designers should make sure that the Intelligent Agent would have all the required 

resources to accomplish learning. For multi-Agent environments, designers should 

construct a mechanism to reduce the effects of competition between Intelligent Agents to 

use available resources during learning, such as memory usage, network bandwidth... etc. 

Analysts should provide notes to the Agent class diagram about constraints for conducting 

learning during the identified learning schedule. 

4.3.8 Knowledge Representation Aftribute 

Knowledge representation attribute provides the designer with the types of inputs 

representations. According to the representation type, designers develop the algorithm for 

manipulating such representation. Intelligent Agent can acquire inputs from single or 

multiple representations. Intelligent Agents that acquire input from multiple 

representations are more complex to develop. Analysts should provide a Note to describe 

the data input specification such as time and duration for the data acquiring process. There 

are variants for each type of representation. Analysts can add more codes to such 

attributes, indicating its type and requirements. 

4.4 Conclusion 

This chapter has introduced two scenarios to use FIPA modelling TC Agent class 

superstructure meta-model to model Intelligent Agents: the first scenario extends Agent 

class and the second one uses the available Agent Physical Classifier and has introduced a 

learning compartment to model Intelligent Agents. The second scenario is more 

appropriate as there will be no need to develop new Intelligent Agent structures. The 
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second scenario also allows for global usage of UML to model Intel I igent-Agent oriented 

systems. 

The learning compartment provides description about the learning behaviour of 

Intelligent Agents. This description will guide the designers and the developers during 

both the design and the development phases of the system. The description consists of 

attributes and notes. The attributes describe the main learning parameters, and the notes 

provide behaviour description or constraints for the attached attribute. The learning 

compartment contains the following attributes: learning-goal, commitment-strategy, 

learning-strategy, learning-feedback method, knowledge-representation, background- 

knowledge, knowledge-representation, and learning-schedule. 

During the writing of the thesis, the only work done to use UML 2.0 to model 

structural components of Agents was from the Foundation for Intelligent Physical Agent 

(FIPA). The research builds upon, explores, and utilises this work and provides further 

development to model the structural components of learning behaviour of Intelligent 

Agents. Using the FIPA UML Agent Class superstructure meta-model would allow the 

development of a single modelling language to model Objects, Agents, and Intelligent 

Agents. 
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Chapter 5: Exploring UML 2.0 to Model the Learning Behaviour of Intelligent 

Agents 

This chapter explores the capability of the behaviour components of the Unified 

Modelling Language (UML) version 2.0 to model the learning behaviour of Intelligent 

Agents. Section 5.1 introduces the work done in this chapter. Section 5.2 explores the 

capability of UML 2.0 activity diagrams and sequence diagrams to model learning 

strategies of an Intelligent Agent, namely learning from observation and discovery and 

learning from examples. The section proposes different scenarios of learning strategies 

with examples from real life applications. Section 5.3 evaluates if UML 2.0 state machine 

diagrams can model specific reinforcement learning algorithms, namely dynamic 

programming, Monte Carlo, and temporal difference algorithms. Section 5.4 provides 

conclusions of the result of the work done in this chapter. 

5.1 Introduction 

Unified Modelling Language (UML) version 2.0 is an upgraded release from UML 

I. X especially behaviour diagrams: activity diagrams, use case diagrams, state machine 

diagrams, and interaction diagrams. Research conducted during the past five years for 

extending UML I. X to model Agent-oriented systems encourages the Object Management 

Group (OMG) to include features in the new UML standard to be able to model dynamic 

behaviours such as concurrency, branching, and paralleling processes. This research uses 

UML activity diagrams and sequence diagrams to model learning behaviour. Activity 

diagrams show the workflow of the learning process while sequence diagrams highlight 

collaboration between Intelligent Agent and other entities during the learning process. 

The research explores two types of learning strategies: learning from observation 

and discovery and learning from examples. Learning from Observation and discovery is 
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an appropriate learning strategy for Intelligent Agents. Intelligent Agents will mostly work 

in dynamic environments where examples for all environment states cannot be determined. 

However, Intelligent Agents can use a learning from examples strategy to enhance their 

skills if the rate of change in the environment is slower than the learning process, or if 

there is a capability of cloning Intelligent Agents, and replacing them after learning. The 

research provides different scenarios for each learning strategy case and examples of real- 

life applications of the discussed scenarios to visualise the use of UML 2.0. 

The research also evaluates whether UML 2.0 behaviour diagrams, namely state 

machine diagrams, can model the learning feedback methods, namely learning 

reinforcement. It explores the capability of state machine diagrams to model specific types 

of dynamic programming algorithms, namely, iterative policy evaluation, policy 

evaluation, policy improvement, and value iteration algorithms. It also investigates if state 

machine diagrams are able to model Monte Carlo algorithms, namely policy evaluation 

and control algorithms. Moreover the research uses this type of diagram to model temporal 

difference (TD) algorithms, namely TD prediction, Sarsa, Q-1earning, Sarsa (k), and QO') 

algorithms. 

Reinforcement learning and unsupervised learning are the appropriate learning 

feedback methods for Intelligent Agents working in a dynamic environment. Learning 

from observation and discovery strategy uses the unsupervised learning feedback method 

while learning from examples uses the supervised learning feedback method. 

5.2 Modelling Learning Strategies of Intelligent Agents 

This section explores UML version 2.0 capabilities in modelling Intelligent Agents' 

leaming strategies. The research concentrates on two learning strategies; namely, leaming 

from observation and discovery and learning from examples. The research provides 

different scenarios for each leaming strategy. UML 2.0 behaviour diagrams model the 

loo 



scenario by illustrating UML 2.0 activity and sequence diagrams for each scenario. The 

research also highlights examples from real life internet applications for the proposed 

scenarios. 

5.2.1 Leaming from Observation and Discovery Strategy 

Learning from observation and discovery is an appropriate learning strategy that 

Intelligent Agents can use especially in dynamic environments. For Intelligent Agents 

working in dynamic environments, it is very difficult to program the required behaviour for 

every status of the environment or action of users. Intelligent Agents should have the 

capability to update the current hypothesis by observing the actions and reactions of either 

the environment or users. Intelligent Agents should have the ability to trigger the 

environment or the users to discover their reactions, to confirm or negate the current 

hypothesis. Below are different modelling scenarios of learning from observation and 

discovery strategy. 

5. Z1.1 Scenario 1.1: "Learning From Observation and Discovery, Passive Observation, 

Event action" 

This scenario describes the Intelligent Agent that monitors the actions of the 

environment or users, and learns by passive observation strategy. The Intelligent Agent 

starts the learning process as soon as the environment sensors detect an action. Figure 5.1 

shows the UML activity diagram of this scenario with the parameters of the learning 

strategy at the figure title. The following steps describe the UML activity diagram of this 

scenario: 

1. The activity diagram contains two swim lanes: environment sensors and 

Intelligent Agent (iAgent). Each swim lane contains actions and activities 

of the owner of the mentioned swim lanes. 
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2. The Intelligent Agent records the received actions of the environment 

sensors with which it observes the environment status. 

a. If the Agent decides to continue monitoring the actions of the 

environment, the control of flow moves to the event-arrive 

action (Italic format represents UML activity titles) in the 

environment sensors' swim lane. 

b. If the Agent decides to stop observation, flow of control 

moves towards the cluster-actions activity. 

Activity Diagram 
Learning from Observation and Discovery 

Passive Observation - Event Action 

environment sensors lagent 

[End of observation] 

Event-arri e 

-7 
ecordl-actionj-->ý cluster. ir actions 

update. 
hypothesis 

[Continue teaming] 

Figure 5.1 Activity diagram of scenario 1.1 

3. After classifying the recorded actions, the Intelligent Agent updates the 

current hypothesis. 
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a. If the Intelligent Agent wishes to continue learning, the flow 

of control will point to the event-arrive action state. 

b. If the Intelligent Agent decides to finalise learning, the flow 

of control will point to the end of flow action state. 

Autonomous Email Filter 
Activity Diagram 

Learning from Observation and Discovery 
Passive Observation - Event Action 

environment sensors lagent 

(End of observation] 

Email-arrives Record user- Cluster-actions 
action 

Update-Email-Filters-I 
database 

[Continue learning] 

Figure 5.2 Activity diagram of email filter Intelligent Agent 

An example of this scenario is an Intelligent Agent that filters users' email 

messages. The Intelligent Agent assists the user to sort the received email messages and 

move each email message to its relevant folder. Through the observation process, the 

Intelligent Agent starts to mimic the same actions the user conducts after a specific 

threshold count of similar actions repeated a number of times. For example, the Intelligent 

Agent observes that the user deletes without reading an email message. If the user deleted 

an email five times without reading from the same sender, the Intelligent Agent 
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automatically updates the current hypothesis to allow the deletion of any new email 

message received from that email address. Such a technique is very useful in combating 

email sparnming and managing junk emails. Figure 5.2 shows an activity diagram for an 

Intelligent Agent that is acting as an email filter. 

Autonomous Email Filter 
Cluster-actions Activity 

Activity Diagram 
Passive Observation - Event Action 

iagent 

<<datastore>> 
Observation-buffer 

(weight >=51 

Identify-number- 
. of-clusters us ter-o bse ýrve 7d-a 

cýfiý 

Figure 5.3 cluster-actions activity diagram 

UML 2.0 activity diagrams show actions or activities of a process. Activity is a 

combined action abstract to allow diagrammatic visualisation. Figure 5.3 shows the 

activity diagram of the decomposition for the cluster-actions activity. The following are 

the steps taken by the Intelligent Agent to cluster the recorded actions: 

1. Retrieve the actions that the user has repeated five times or more from the same 

email address from the observation_ buffer data-store node, where the Agent has 

recorded observations. 

2. Identify the number of clusters according to the number of actions. 
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3. Assign each email address according to the email taken by the user to its relevant 

cluster. Different conceptual clustering algorithms can be used for this activity 

4. The flow of control points to the end of flow action state. 

Sequence Diagram 
Leaming from Observation and Discovery 

Passive Observation, Event Action 

E Jig-cient ±I : sensor 
I 

I 

!! ý I hygothesis 

I 

[continueobservaboý = twel 

Send saved observations 

Return saved observation 

Cluster observations 

Select current hypothes S, 

Return cu--r-r-en Tjp-ýti;; si; F 

Update hypothesis 

Figure 5.4 Sequence diagram of scenario 1.1 
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The UML sequence diagram identifies four entities for scenario 1.1: Intelligent 

Agent, environment sensor, buffer, and hypothesis. The notation of the Intelligent Agent is 

as proposed in chapter 4. The interaction fragment loop indicates that the Intelligent Agent 

conducts learning, until it decides to stop learning. This shows the autonomous behaviour 

of the Intelligent Agent. Figure 5.4 shows the sequence of messages between the 

Intelligent Agent and the other entities during the learning process. 

5.2.1.2 Scenario 1.2: "Learningfrom Observation andDiscovery, Passive Observation, 

Time Event" 

This scenario describes an Intelligent Agent that uses learning from observation 

learning strategy. The Intelligent Agent is a passive learner as in the previous scenario. 

The Intelligent Agent starts to learn actions of the environment or users according to 

specific time or duration rather than action received, as in the previous scenario. The 

following are the steps that describe the UML activity diagram of this scenario: 

1. The activity diagram contains two swim lanes: environment sensors and Intelligent 

Agent. Each swim lane contains actions and activities of the owner of the above 

mentioned swim lanes 

2. The Intelligent Agent starts to record the actions of the environment or users when 

a time signal arrives. The Intelligent Agent observes the environment status 

through environment sensors. 

a. If the Intelligent Agent decides to continue monitoring events, the control of 

flow moves to the time-event action in the environment sensor's swim lane. 

b. If the Intelligent Agent decides to stop monitoring events, object flow 

moves towards the cluster-observations activity. Recorded actions will be 

delivered to the cluster-observations activity 

3. After clustering actions, the object flow transfers the clustered actions to the 

update-hypothesis activity. The Intelligent Agent updates the current hypothesis. 
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a. If the Intelligent Agent wants to resume learning, the flow of 

control will point to the time-event action state. 

b. If the Intelligent Agent decides to finalise learning, the flow 

of control will point to the end of flow action state. 

Activity Diagram 
Learning from Observation and Discovery 
Passive Observation -Time Event Action 

environment sensors lagent 

t= special value 
[End of observation] 

-Eustter-observati 
ýs 

-ý ecord-actio)ýný ! r - 

Epd-ate-hypothesis 

[Continue teaming] 

Figure 5.5 Activity diagram of scenario 1.2 

An example of such a scenario is an Intelligent Agent that learns the internet 

browsing behaviour of enterprise employees. The Intelligent Agent starts to identify a 

schedule for the browsing habits of the employees. The Intelligent Agent monitors if there 

are some websites visited regularly during a specific duration, and classifies them 

according to their access time. The Intelligent Agent browses the identified websites and 

updates the cache of the enterprise internet server before the identified time. Such process 

assists in the efficient use of the enterprise internet bandwidth. The Intelligent Agent 

learns the enterprise employees browsing habits from observing the visited websites; any 

change in any previous learned schedule will require the Intelligent Agent to update the 
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hypothesis with a new browsing schedule. Figure 5.6 shows the activity diagram of the 

enterprise Internet server. 

Activity Diagram 
Learning from Observation and Discovery 
Passive Observation - Time Event Action 

Internet Proxy Server Intelligent Agent 

environment sensors lagent 

[End of observation] t special value 
'K7 Record-visited- Cl t b it us er-we s es website 

C 
e v ý 

T 

we gluster ed - websites 

Update-websites-database] 

[Continue leaming] 

Figure 5.6 Activity diagram of internet proxy server Intelligent Agent 

UML Sequence diagram of scenario 1.2 (figure 5.7) shows the time constraint T 

where the Intelligent Agent starts to record action when the time constraint parameter is 

equal to T. This sequence diagram shows the sequence of messages between the 

Intelligent Agent and other entities in the system. The Intelligent Agent starts learning 

when the time variable t equals T. 
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Sequence Diagram 
Leaming from Observation and Discovery 
Passive Observation, Time Event Action 

E Jaaent : hyoothgaia 

I 
: sensor : bufter 

I 

[continueobservatio true] 

021ý . --j I 

Record eýent 
t-T 

Eventsaved 

Send saved observations 

Return saved observation 

Cluster- observations 

Select current hypothesisl 

-- -- --- ---- - --------- Return current hypothesi 

Update hypothesis I 

I -ii 7yyppo -th esi-s-u -pd-a-t e--d-f 

Figure 5.7 UML Sequence diagram for scenario 1.2 

5.2.1.3 Scenario 1.3: "Learningfrom Observation and Discovery, Passive Observation, 

Time orAction event" 

This scenario integrates the above two scenarios (figure 5.8). The Intelligent Agent 

starts to learn actions of the environment or user at a specific time or action. The 

Intelligent Agent is also a passive learner during this scenario. This scenario integrates 

event action and time event nodes to allow the Intelligent Agent to start learning as soon as 

one of the nodes is active. The following steps describe the UML activity diagram: 
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1. The activity diagram contains two swim lanes: environment sensors and Intelligent 

Agent. Each swim lane contains the actions and activities of its owner. 

2. The Intelligent Agent monitors and records time events and actions received by the 

environment sensors. 

a. If the Intelligent Agent decides to continue monitoring 

events, the control of flow is directed towards the 

monitoring actions: time events and action events. 

b. If the Intelligent Agent decides to stop monitoring events, 

object flow points towards the cluster-observations activity. 

Recorded actions will be delivered to the cluster- 

observations activity 

2. After clustering the recorded actions, object flow delivers clustered actions to the 

update-hypothesis activity. 

3. The Intelligent Agent updates the current hypothesis. 

a. If the Intelligent Agent wants to resume leaming, the flow of 

control will point to the monitoring actions 

b. If the Intelligent Agent decides to finalise learning, the flow 

of control will point to the end of flow action state 
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Activity Diagram 
Learning from Observation and Discovery 

Passive Observation -Time Event Action and Event Action 

environment sensors lagent 

t= special value [End of observation] 

cluster. iir 111,11 ction obserrvations 

E%WK affk* 

e-hypothesiýs 

[Continue learning] If 

Figure 5.8 UML activity diagram for Scenario 1.3 

An example of such a scenario is the previous Intelligent Agent example of 

scenario 1.2 where the Intelligent Agent not only monitors time and clusters the visited 

website according to the time users who have visited this website, but also monitors the 

updating schedule of the selected websites. Thus, the Intelligent Agent updates the 

enterprise intemet cache with new versions of the selected websites according to their 

updating rate. This allows the Intelligent Agent to access the intemet according to the 

updating schedule and not to congest the enterprise intemet bandwidth with browsing the 

selected websites regularly. Figure 5.9 illustrates the activity diagram of intemet proxy 

Intelligent Agent during leaming. 
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Activity Diagram 
Learning from Observation and Discovery 

Passive Observation -Time Event Action and Event Action 
Internet Proxy Cache Server Intelligent Agent 

0- 

environment sensors lagent 

t special value Record-visited- 
website cluster-observation 

Website- [End of observationj 
r s 

Event arrive 
esse 

Update-webslýe 
database 

Update cache 

(Continue leaming] 

Figure 5.9 UML activity diagram for Intemet Proxy Server 

The UML sequence diagram in Figure 5.10 shows the combination of looping and 

parallel notation to describe the behaviour of an Intelligent Agent. The sequence diagram 

depicts how that Intelligent Agent communicates with three entities: environment sensor, 

buffer, and hypothesis. The sequence diagram demonstrates the sequence of message and 

requests between the Intelligent Agent and other entities during the learning process. Two 

loops and one parallel interaction fragment control the learning process. This sequence 

diagram is more complex than the previous two diagrams. 
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Sequence Diagram 
Learning from Observation and Discovery 
Passive Observation, Time or Event Action 

: iaQent : bvpothesis : sensor : buffer 

I 

i [contnueobservato) = true] II 

P Event arrive 
Record event 

------- I- ---- : 21 
t=Tl Record event 

Send saved observations 

Return saved observation 

Cluster-observation 

Select current hypothesis, 
ý4 

-- - ---------- -- current hypothesis[ 

Update hypothesis 

-------------------------- 

Figure 5.10 UML sequence diagram for scenario 1.3 

5.2.1.4 Scenario 1.4: "Learning From Observation and Discovery, Active 

Experimentation, EventAction" 

Unlike the previous scenarios, this scenario describes Intelligent Agents that act as 

an active leamer. The Intelligent Agent learns the environment or user reactions after 

issuing a triggering action. According to the observed reaction , the Intelligent Agent 

updates its hypothesis by confirming or negating an entry in the hypothesis. 
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Activity Diagram 
Learning from Observation and Discovery 

Active Experimentation - Event action 

iagent environment- 
sensors 

trigger-environment _ 
rEvent-a: 

rýdve] 

record-. 
reaction 

(Cluster-observatiýý reactions 

Continue-leaming 

I'f 
(§>*--<ýýUTpdate-7-hypothesisý 

Figure 5.11 UML activity diagram for Scenario 1.4 

Figure 5.11 shows a UML activity diagram for scenario 1.4. This activity diagram 

introduces the node by sending a signal action to trigger the environment or a user. The 

following steps describe the UML activity diagram: 

1. The activity diagram contains two swim lanes: environment sensors and Intelligent 

Agent. Each swim lane contains actions and activities of the owner of the said 

swim lanes. 

2. The Intelligent Agent issues a triggering action to the environment. 
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3. The Intelligent Agent monitors the reaction of the environment and as soon as the 

Intelligent Agent observes reaction, it records the reaction and passes the reaction 

to the cluster-observations activity. 

4. The Intelligent Agent classifies the reaction and passes the classified reaction to the 

update-hypothesis activity. 

5. The Intelligent Agent updates the current hypothesis by conf inning or negating an 

entry in the Intelligent Agent! s hypothesis. 

a. If the Intelligent Agent decides to continue learning, the 

flow of control points to the merge node to provide another 

trigger action. 

b. If the Intelligent Agent decides to finalise learning, the flow 

of control points to the end of flow action state. 

Figure 5.12 shows UML sequence diagram for scenario 1.4. The diagram 

illustrates how the Intelligent Agent sends a message to trigger the environment through a 

gate to an entity outside the sequence diagram. The Intelligent Agent receives the reaction 

to the triggered message through the environment sensor. 

An example of such a scenario is 'enterprise Intelligent Agent search assistance' 

When an employee searches through the enterprise search engine, the search engine might 

return the results in multi-pages due to the large number of returned links. Users browse 

the upper entries in the returned list, and do not give much attention to results at the bottom 

of the list. The search engine sorts the entries in the returned list according to the rank of 

the link. The rank of links depends on the number of times employees have browsed the 

link with the same or similar queries. 

The Intelligent Agent would like to discover whether the returned links at the 

bottom of the returned list might have higher rank or not. The Intelligent Agent selects 

some of the lowest ranking returned links and lists them at the top section of the returned 

list when an employee executes a similar query. The Intelligent Agent observes the 
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reactions of the employees and learns if they browse the link or not. If the number of 

employees browsing the link exceeds a specific threshold, the rank of the link is increased; 

otherwise, the link keeps its low rank. The Intelligent Agent search assistance would assist 

the employees to share their experience of searching and browsing with each other and 

would allow better search results as each enterprise or group has common interests. 

Sequence Diagram 
Learning from Observation and Discovery 

Active Experimentation, Event Action 

: iaQent : senspr r : byffer 
[yr, 

othesis 1 
[continue-learning true) 

iment 

Event arrive 

record reaction 

r---------reaction 
saved 

duster observafion 

Select current hypothesis 

current 

Update hypothesis 

----- -- ---------------- 
t 
---------- - ---------- --- hypothesis updated II 

Figure 5.12 UML Sequence diagram for scenario 1.4 
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Activity Diagram 
Learning from Observation and Discovery 

Active Experimentation -Time action 

iagent environment- 
sensors 

> 
Ftrigg-ýeýr-envtronment 

record- 
reaction 

Continue4eaming 

Cluster-observabons reactions 

Update-hypothesis 

Figure 5.13 UML activity diagram for Scenario 1.5 

5.2.1.5 Scenario 1.5: "Learningfrom Observation and Discovery, Active 

Experimentation, Time reaction" 

This scenario describes an Intelligent Agent that issues a trigger action to the 

environment or a user, and monitors the reaction related to time. According to the 

observed action, the Intelligent Agent updates the current hypothesis by confirming or 

negating an entry in the hypothesis. The UML activity diagram is similar to the previous 

scenario but only differs in having a node of the type 'Accept time event action' rather than 

the 'Accept event action' node. The following steps describe the UML activity diagram: 

1. The activity diagram contains two swim lanes: environment sensors and Intelligent 

Agent. Each swim lane contains actions and activities of the owner of the 

abovementioned swim lanes. 

2. The Intelligent Agent issues a triggering action to the environment or the user. 
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3. The Intelligent Agent monitors the reaction of the environment over a specific 

duration, and records the received reaction. 

4. The Intelligent Agent clusters the observed reaction, and passes the observed 

clustered reactions to the update-hypothesis activity. 

5. The Intelligent Agent updates its hypothesis by confirming or negating an entry. 

a. If the Intelligent Agent wants to continue learning, the flow 

of control will point to the merge node for providing another 

triggering action. 

b. If the Intelligent Agent decides to finalise learning, the flow 

of control will point to the end of flow action state 

The Enterprise Internet Search Intelligent Agent is an example of such a scenario 

where the Intelligent Agent tests the response time for searching through specific web 

servers. The Intelligent Agent sends a query for different web servers and records the 

response time. According to the response time, the Intelligent Agent updates its 

mechanism by sending a query to slow-response servers before fast-response servers. This 

allows the Intelligent Agent to acquire the results of the query from all servers over an 

acceptable duration. Such a learning mechanism will enhance the performance of the 

Intelligent Agent in terms of time and quality. 

Figure 5.14 shows UML sequence diagram for scenario 1.5. The diagram shows 

two-loop interaction fragment frames. The first one continues to execute until the 

Intelligent Agent decides to stop observation and learning. The second loop stops when 

the t operand is equal to T, where T represents a specific time. The rest of the sequence 

diagram is similar to the sequence diagram of the previous scenario. 
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Sequence Diagram 
Learning from Observation and Discovery 

Active Experimentation, Event Action 

lanent 

I 
: senspr tuffer 

I 

othesis 

[confinue-learning 
1 

truel T 
ger-environment 

loopI t -T I 
I 

record reaction 

reaction 

cluster observation 

Select current hypothesis, 

------ - --- - ------------ 
t-- 

--------- -- --------- Return current hypothesiq 

Update hypothesis 

--- - ---- - -------- - ---- ---------- - ------------ 4 
hypothesis updated 

Figure 5.14 UML sequence diagram for scenario 1.5 

5.2.2 Leaming from Examples Strategy 

Leaming from example strategy is not adequate for Intelligent Agents that are 

working in dynamic environments. It is very difficult to provide examples for all 

situations that Intelligent Agents will deal with. Intelligent Agents can use the learning 

from examples strategy, if the rate of change in the environment is slow, or if there is a 

process of cloning the Intelligent Agent and replacing it after learning. The objective of 

using learning from examples is to enhance an Intelligent Agents'skills. Below are some 

scenarios for using UML version 2.0 behaviour diagrams to model learning from example 

strategy. 
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5. Z2.1 Scenario 2.1: "Learningfrom Examples, Non-Incremental Learning, Use 

Background Knowledge, Retrieve all Examples, Classify" 

This scenario describes an Intelligent Agent that uses learning from examples as a 

learning strategy. The Intelligent Agent learns through non-incremental learning, and uses 

available background knowledge in classifying the available examples. After receiving all 

the available examples, the Intelligent Agent starts the classification process. The 

Intelligent Agent updates the current hypothesis with the new classified examples. The 

UML 2.0 activity diagram for scenario 2.1 has two swim lanes, one for the Intelligent 

Agent and the other for the tutor. The tutor can be a user, another Intelligent Agent, or any 

source of knowledge that can provide examples. Figure 5.15 shows the activity diagram 

for scenario 2.1. The following steps describe the scenario: 

1. The Intelligent Agent requests the tutor to send an example. 

a) If there is an available example, the tutor sends the requested example, and the 

control of flow points towards 'receive example activity' (Step 3) 

b) If there is no available example, the tutor returns end of example flag and the 

control of flow point toward the join node (step 4). 

2. The Intelligent Agent conducts parallel actions shown by the fork node: 

a) The Intelligent Agent stores the received example in a buffer; 

b) The Intelligent Agent requests another example from the tutor. 

3. When the end of an example flag is true, the Join node transfers the stored 

examples in the buffer with a relevant hypothesis to the classifiLyxamples activity. 

4. After classifying the received examples, the flow of control points towards 

updateý_ýpothesis activity. 

5. After updating the hypothesis, the control of flow terminates at End of flow node. 
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Activity Diagram 
Leaming trom Examples 

Non-incremental, Use Background Knowledge. Receive Examples first then Classify 

iagent tutor 

Request example ý,. 
(. 

end exampl 

Receive exampllýes 

[end of examples) 

example 

<<datastore>> -c<centralBuffer>> 
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_j 

Example buffer 

[all] 

classify examples 

=updat 
hypothesis 

Figure 5.15 UML activity diagram for scenario 2.1 

Figure 5.16 illustrates UML sequence diagram for this scenario. The Intelligent 

Agent communicates with three entities to conduct learning from examples: tutor, buffer, 

and hypothesis. 
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UML 2.0 introduces the central-buffer' 3 and data-store 14 object nodes; buffer and 

hypothesis are central-buffer and data-store object nodes respectively. The loop fragment 

shows that the Intelligent Agent conducts learning from examples until there are no more 

available examples. 

Sequence Diagram 
Learning from Examples 
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Figure 5.16 UML sequence diagram for scenario 2.1 

13 Central buffer node is an "object node for managing flows from multiple sources and destination" 

(OMG, 2003) 

14 Data store node is "a central buffer node for non-transit information" (OMG, 2003). 
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Activity Diagram 
Learning from Examples 
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Figure 5.17 UML activity diagram of scenario 2.2 

5.2.2.2 Scenario 2.2: "Learningfrom Examples, Non-Incremental, Does not Use 

Background Knowledge, Receive Examples, Classify" 

The difference between this scenario and the previous one lies in the use of 

background knowledge in classifying examples. In this scenario, the Intelligent Agent 

123 



does not use background knowledge in the classifying examples. Figure 5.17 shows that 

examples stored in the buffer are the only input to the "classifying examples activity". As 

in the previous scenario, the activity diagram has two swim lanes: one for the Intelligent 

Agent and another for the tutor. The tutor can be any source of knowledge that can supply 

examples, such as user, another Agent ... etc. 

The activity diagram steps for this scenario are the same as for the previous one but 

they are only different at Step 3. The inputs to the classify-examples activity are the 

examples in the buffer. The Intelligent Agent does not use the available hypothesis during 

the classification process. Figure 5.17 illustrates the activity diagram for this scenario. 

Sequence Diagram 
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Figure 5.18 UML sequence diagram for scenario 2.2 
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The UML sequence diagram for this scenario shows that the Intelligent Agent 

communicates with the available hypothesis only to update its entry after classifying the 

received examples. Figure 5.18 demonstrates the sequence of communication between the 

Intelligent Agent and other entities within the sequence diagram. 

5.2.2.3 Scenario 2.3: "Learningfrom Examples, Non-incremental, Use Background 

knowledge, Receive example, classify, update hypothesis, and then request 

another example " 

This scenario describes the Intelligent Agent that uses the learning from example 

strategy. The learning process is a non-incremental one, and the Intelligent Agent uses 

background knowledge during the classification of the received example. The Intelligent 

Agent classifies the example immediately before requesting another example. The 

learning process ends when end ofexamples flag is true. Figure 5.19 illustrates an activity 

diagram for this scenario. The Intelligent Agent requests an example from the tutor, 

classifies the example, and updates the hypothesis before requesting a new example. The 

following steps describe the scenario: 

1. The activity diagram contains two swim lanes, the Intelligent Agent and the 

tutor swim lanes. 

2. The Intelligent Agent requests an example from the tutor 

a. If end of examples flag is false, tutor sends example. 

b. If end of examples flag is true, flow of control points towards the 

end of flow node. 

3. The Intelligent Agent receives the example and integrates the example with 

the current hypothesis. 

4. The Intelligent Agent classifies the received example. 

5. The Intelligent Agent updates the hypothesis with the new classification. 

6. The Intelligent Agent requests new examples (Step 1). 
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Activity Diagram 
Leaming from Examples 

Non-incremental, Use Background Know4edge. Receive Example, Classify, Update Hypothesis, and then 
Request another Example 

! agent tutor 

Request example Send example -T 

example 

Receive examples 
T 

exami2le [end of ex mples) 

<<datastore>> 
Example buffer 

all 

classify examples 

_! 

SJ 

Ld 

update hypo-tho-si-s] 

Figure 5.19 UML activity diagram for scenario 2.3 
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Unlike the previous scenario, the UML sequence diagram (figure 5.20) for this 

scenario shows that the Loop Interaction Fragment holds all communications between the 

Intelligent Agent and other entities in the sequence diagram. The diagram has three 

lifelines: Intelligent Agent, tutor, and hypothesis. The Intelligent Agent terminates 

learning when the available-example flag is false. This scenario is recommended when all 

entities are available and on-line. 

Activity Diagram 
Learning from Examples 

Non-incremental, Use Background Knowledge, Receive Example, Classify, Update 

, and then Request another Lxample 

sd scenario 2.3 

E-ia( 
ent Autor 

I 

Jhvoolhesis 

I 

10 [available examples] 

Request example 

I-C 
--------------------------- Send example 

Select cuffent hypothesis 

Return cýrrent hypothesis 

xamples 

Update hypothesis 

k ---------------------------- .................................. hypothesis updated III 

Figure 5.20 UML sequence diagram for scenario 2.3 
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5.3 Modelling Learning Feedback Methods of Intelligent Agent 

There are three types of leaming feedback methods: supervised leaming, 

unsupervised leaming, and reinforcement learning. Learning from examples is a 

supervised leaming feedback method whereas learning from observation and discovery is 

an unsupervised learning feedback method. The most appropriate leaming feedback 

methods for Intelligent Agents that deploy in dynamic environments are reinforcement 

learning and unsupervised learning. In dynamic environments, it is very difficult to assign 

a tutor that provides the correct answer for every action Intelligent Agents carry out. 

Nevertheless, Intelligent Agents require some guidance for the achieved performance that 

is lacking in unsupervised learning feedback method. Unlike the two previous sections in 

modelling scenarios, the following section evaluates the capability of UML state machine 

diagrams to model specific reinforcement learning methods and algorithms, namely 

dynamic programming, Monte Carlo, and temporal difference methods and their different 

algorithms. 

5.3.1 Reinforcement Learning Feedback Methods 

Intelligent Agents that use the reinforcement-leaming method learn what to do, and 

how to map situations to actions in order to maximise a numerical reward signal (Sutton 

1998). Unlike supervised learning, the tutor does not inform the Intelligent Agents which 

actions to take; rather, Intelligent Agents discover which actions yield the most reward by 

trying them. Reinforcement leaming is adequate for learning from interaction and when 

the environment is dynamic. The Intelligent Agent receives some evaluation of its actions 

but the tutor does not tell it the correct action (Russell and Norvig, 1995). The tutor in 

reinforcement learning can be a user, an environment, or another Agent. The following 

sections evaluate if UML 2.0 state machine diagrams can model dynamic programming, 

Monte Carlo, and temporal difference algorithms. 
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5.3.1.1 Dynamic Programming- Policy Iteration Algorithm 

The Intelligent Agent uses Policy iteration algorithm to find an optimal policy that 

it can use. Figure 5.21 shows the policy iteration algorithm that contains policy 

evaluation and policy improvements algorithms. Figure 5.22 depicts a UML state 

machine diagram for policy iteration algorithm. The diagram shows five states; 

initial, initialisation, poliqLyvaluation, policy_improvement, andfinal states. The 

polioLyvaluation and policy. im 
_ provement are composite states that contain sub- 

states. The initialisation state initialises value states and policy used by the 

intelligent agent. 

1. Initialization 
V(s) ER and -, r(s) E A(s) arbitrarily for all sES 

2. Policy Evaluation 
Repeat 

A 4-- 0 

For eacli s C- S: 
V *--- V(S) 
V(S)., - E "Pir('s) "+ -yv(sl) liz,, (, I 88 0 as 

I llA. X(A, IV -V (S) 

until A<0 (asintill positive number) 

3. Policy Improvement 
policy-stable +-- true 
For eacli s (=- S: 

b +- v(s) 
7r(S) 4-- Ug 11'111Xa Eat P, 

881 
If b -76 7r(s), then policy-stable false 

If policy-stable, flien stop; clsw. - go to 2 

Figure 5.21 Policy iteration algorithm (Sutton and Barto, 1998) 
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State Machine Diagram 

Reinforcement Leaming - Dynamic Programming - Policy Iteration Algorithm 

Policy_iteration) 

InTitialisation 

entry I Tr (s) 6 A(s) 
(s) 0R xit /Vr 

Policy_evaluation 

C>-(: ) 

Policy_improvement 

[not policy_stable] CX: ) 

[policy_. §table) 

Figure 5.22 UML State machine diagram for policy iteration algorithm 

The following sections describe thepolicy_evaluaflon and thepolicyjmprovement 

sub-states. The Intelligent Agent stops learning when the policy- stable parameter is true, 

i. e. stable policy. If the policy_stable parameter is false the Intelligent Agent transfers to 

thepoliQLýevaluafion state to continue the exploration of stable policy. 
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Input 7r, the policy to be evaluated 
Initialize V(s) = 0, for all sE S+ 
Repeat 

A +- 0 
For each sES: 

v . 4- V(S) 
V(s) 7r(s, a) E,,, P. ",, + 7V(si)] 
A 4-- In' tX(A, IV -V (S) 

Until A<0 (a Small 1)ositi-v-c witilber) 
Output V ý- V7, 

Figure 5.23 Iterative policy evaluation algorithm (Sutton and Barto, 1998) 

5.3.1.2 Dynamic Programming - Policy Evaluation Algorithms 

The policy evaluation algorithm attempts to change the current value function to 

resemble the true value function of the current policy. Figure 5.23 depicts the policy 

evaluation algorithm as described by Sutton and Barto (1988) and Figure 5.24 shows UML 

state machine diagram that models the algorithm. The diagram has three states: start, 

initialise, and PoUQLýevaluation states. Each state contains activities that the Intelligent 

Agent performs during the state. PolicXyvaluation state is a composite state that contains 

sub-states for the Intelligent Agent. The following are the descriptions of the components 

of the state machine diagram: 

1. Initialise state: While the Intelligent Agent is in this state, it acquires the policy 

through Read 7r activity and initialises the Value function, V(s) to 0 for al I states. 

2. Policy-evaluation state: This a composite state that consists of multiple states as 

follows: 

a. Inifialise_s state: During this state the Intelligent initialises counter s and A 

to zero 

b. Learn value fn: The Intelligent Agent conducts three activities during this 

state; the first one setvalue (v, V(s)) which set v to the current V(s), where s 

is the counter for the current state. The second setvalue activity sets V(s) to 
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the results of Z. n (s, a) Is' p'ss, [ R'ss- +0 V(s')]. The Third setvalue activity 

sets A to highest value of current A and the Iv-V(S)I. 

c. If the value of A is less than a specific, small, positive number 

StopLeaming state the agent sets V" to V 

d. Otherwise, the Intelligent Agent will continue to the decision "pseudostate", 

if this is the last state s in S. 

State Machine Diagram 

Reinforcement Learning - Dynamic Programming - Policy Evaluation Algorithm 

Policy_Evaluation 

L The agent would go to the StopLearning state. During the 

H. Go to final state 

i. Set s to 0 and then transfers flow to state b, Learn value fn sub-state. 

fn sub ii. Else set s to s' and then go to state b, Learn value -state. 

Initialise 
entry I Read 7T 
oo / Inifialise (V(s), 0) 

[No] setvalue (s, s'y 

\-1 &>= 

[yes] setvalue(s, O) / 

11 Leam_Valuefn 

entry I setvalue( v, V(s)) 
do / setvalue(V(s), 1. Tr (s, a) Is* +a V(s')]) 
pxit / setvalue(A, max(A. Iv - V(s)l)) 

t entry /setvalue (A, 0) 
exit / setvalue (s. 0) 

t A< 0] 

StOPLOarning 

entry / setvalue (\r , V) 

Figure 5.24 State Machine Diagram for policy evaluation algorithm 
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5.3.1.3 Dynamic Programming -Policy Improvement Algorithm 

The policy improvement algorithm tries to change the current policy to make it 

better. Figure 5.25 depicts the UML state machine diagram for the policy improvement 

algorithm as stated in Figure 5.21. The diagram shows five states: initial, initialise-Policy, 

set tem . 
- p, improve_polic)4 and decision states. The following describe the main sub-states 

of the policy improvement state: 

y state: During this state, the Intelligent Agent sets the 1. Initialise Polic 

policy-stable parameter to true and s parameter to zero, first state. 

2. Set tem state: During this state, the Intelligent Agent sets the b parameter -P 
to Tr (s), current policy value for state s. 

State Machine Diagram 

Reinforcement Learning - Dynamic Programming - Policy Improvement Algorithm 

Policy Imigovemwit 
Initiallsq_policy 

------ > entry/ setvalue (Policy-stable. True) 
exit if setvalue (s, O) 

I 

SeLtemp 

[No] setvalue (s, s) I entry/ setvalue (b , (S9)) 

[Yes] Ms) =bj Improve_policy 

; 

ast State; ---'ý 

ýe/ 

setvalue (Tr(s), arg max. Ts' p', - ( R4... + a WWAD 

I Tr(s) b] setvalue (Policy-stable, falsey IT(s) 

j 

Figure 5.25 UML State machine diagram for policy improvement algorithm 

3. Improve_policy state: during this state, the Intelligent Agent sets the current 

policy value for state s to "arg maxa Is' pNs' [ Rass' +0 V(s')]". 
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a. If TT(s) is not equal to b, then the intelligent Agent sets policy_state 

parameter to false and transits to the decision state 

b. Else, go to decision state. 

4. Decision state: 

a. If the current state is not the last state, then Intelligent Agent 

increments s to s' and goes back to set_temp state to continue 

leaming 

b. Else, the Intelligent Agent moves to final state to exit from the 

policy improvement composite state. 

5.3.1.4 Dynamic Programming - Value Iteration Algorithm 

Figure 5.26 depicts the value iteration algorithm as identified by Sutton and Brato 

(1998). The UML state machine diagram of this algorithm has three states; initial, 

initialize, and value-iteration states (figure 5.27). The value_iteration state is a composite 

state that includes six sub-states; set_s, set_value n, learn_yaluefn, decision, stoplearning, 

andfinal node sub-states. 

Initialize V arbitrarily, e. g., V(s) = o, for till sE S+ 

Repeat 
A 4-- 
For each sES: 

V +- V(S) 

V(. 5) +- In aa ax p.., [Ra + yV(SI)] ss A +- max(A, Iv - V(s)D 
until A<0 (a small positi've number) 

Output a deterministic policy, 7r, such that 
[jZa 

L 8 -YV(S')] ir (s) = arg m ax,,, so + 

Figure 5.26 Value iteration algorithm (Sutton and Barto, 1998) 
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During each state or sub-state of the UML state machine diagram of the value- 

iteration algorithm, the Intelligent Agent performs the following activities: 

1. Inifialise state: The Intelligent Agent acquires the policy under evaluation 

and initialises V to 0 for all available states. 

2. Set-s sub-state. The Intelligent Agent set A and s to 0. 

3. Set-valuefn sub-state: During this state, the Intelligent Agent sets the 

parameter v to the current value function, V(s). 

4. Leam-yaluefn sub-state: The Intelligent Agent conducts two activities 

during this state: entry and exit activities. At entry activity, it calculates 

current Value function V(s) by the getmax procedure. Before exiting from 

this state, it sets A to the highest of A and Iv - V(s)l. 

5. If A<e (a small positive number) 

i. StopLeaming sub-state: The Intelligent Agent sets policy 7E 

(s) to arg maxa Es' pss' [ Rass' +a V(s')] 

H. Go to Final state. 

6. Else; transfer flow to Decision sub-state 

i. If this is the last state then the Intelligent Agent sets s to 0 

ii. else, the Intelligent Agent sets s to s' 

7. The Intelligent Agent returns to set Value 
- 

fn sub-state to continue learning. 
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State Machine Diagram 

Reinforcement Learning - Dynamic Programming - Value Evaluation Algorithm 

ol Initialise 

entry I Read iT 
, exit/ initialise ( V(s), 0) 

value valuation) [No] set (s, s') / 

1-1 1., Selý_Valuefn 
st State) nt! ry / ste(ts(A, 0) --texit 

/s 6)0) tentry / se NNW) e 7 (yes] set ts, u) I 

[A 01 
Learn Valuefn 

entry I (V(s) = getmax( Es' Pa. - [ Rn. e +a VOID 

ý-4exit 

/ set (A. rnax(A, Iv - V(S)I) 

g ei 

entry I seq Tr(s), arg max, Is' pl... [ R'... +a V(S')]) 

Figure 5.27 UML state machine diagram for value evaluation algorithm 

5.3.1.5 Monte Carlo Policy Evaluation Algorithm 

Figure 5.29 depicts the UML state machine diagram for first-visit Monte Carlo 

policy evaluation algorithm that is shown in Figure 5.28. The diagram has four states; 

initial, initialise geLepisode, and receive_return states. During each state, the Intelligent 

Agent conducts the following activities: 

1. Initialise state: The Intelligent Agent initialises policy, sets V to an arbitrary state- 

value function, and initialises R(s) to an empty list. 

2. Gq e _ pisidde state: The Intelligent Agent requests to get an episode through the 

pisode activity and set counters to -1. generatq e 
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Initialize: 
7r policy to be erOuated 
V an arbitrary state-%mlue function 
Returns(s) +- an empty list, for all s ES 

Repeat forever: 
(a) Generate an episode using -, r 
(b) For each stme s appearing in the episode: 

R- return following the first occiurence of s 
Append R to Rctm-mv(s) 
V(s) --- average (Returns (s)) 

Figure 5.28 First-visit Monte Carlo method for V estimating V "(Sutton and Barto, 1998) 

3. Receive_relum state: During this state the Intelligent Agent increment counters at 

entry, receives reward R through geLreward activity, appends R to R(s) through 

append R activity, and calculates V(s) through averaging R(S). The get-reward 

activity provides the return following the first occurrence of s. 

4. If this is the last state, the flow returns to gq_episode state to generate a new episode. 

5. Else, the Intelligent Agent loops back to receive_return state. 

State Machine Diagram 
Reinforcement Learning - Monte Carlo Policy Evaluation - First Visit MC Algorithms 

ý ntry I Initialise (Tr) 
d, o I set (V, arlAtrary state-value function) 
At I Set (Returns (s), an empty list) 

j 

entry I generate__eplsode 
exit / set (s. -1) 

j 

Receive-retum 

entry / increment (s) 
do / set (R, get reward) -I)P 

Past s in 

ýteplsodej 

do/ set (R(S), append_R (not last sl 
do / set (V(s), average (R(s)) 

Figure 5.29 UML state machine diagram for first-visit Monte Carlo policy evaluation algorithm 
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This algorithm does not have a final node as the Intelligent Agent always continues 

to learn the value function for the current episode or generate a new episode to enhance its 

perfortnance. The geLreward activity can be adjusted to provide a return at each visit of s, 

thus the UML state machine diagram will be the same for Every-visit Monte Carlo policy 

evaluation algorithm. 

Sutton and Barto (1998) have provided the Black Jack card game as an example of 

the Monte Carlo policy evaluation algorithm. Figure 5.30 depicts the UML state machine 

diagram for the Intelligent Agent which tries to learn the best policy to play the card game. 

The diagram has five main states; initialise, receive_cards, decision, dealer_turn, and 

receive return states. The diagram also includes start, final, and merge states. The states 

include activities that the Intelligent Agent conducts during the active state as follows: 

1. Initialise state: This state has three activities; the first activity, initialise iT, 

initialises the policy that the intelligent agent uses during the game. This 

policy is to hit whenever the sum of the cards is less than 20. The second 

activity, set V, initialises V to an arbitrary state-value function, while the 

third activity, Return(S), sets the Return(s) to an empty list. 

2. Receive-Cards state: During this state, the Intelligent Agent receives cards 

from the Dealer. 

3. Current-Sum decision state: This decision state routes the flow according to 

the current sum of cards available with the Intelligent Agent as follows: 

a. For Current Sum < 20: The Intelligent Agent requests cards and the 

flow is transferred to the initialise state (step 2). 

b. For 20 >=Current Sum< 21: The Intelligent Agent sticks and the 

flow of transfer points to the dealer turn state. 

c. For Current Sum> 21: The flow transfer to the Receive_return state. 

4. Dealer turn state: During this state, the Intelligent Agent waits until the 

dealer continues playing 
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5. Receive_rctum state: Ilic Intelligent Agent conducts three activities during 

this state, in the first it gets the re%%m-d by get-reivard activity. The second 

one is to append the return to the return list. Third, it calculates the value 

function, V(s), by avcraging Return(s). 

a. If the Intelligent agent decides to stop playing, the flow transfers to 

final node. 

b. Else, the flow transfers retums to receive_cards status and the 

Intelligent Agent requests the start of a new game. 

State Machine Diagram 
Reinforcement Leaming - Monte Carlo Policy Evaluation - Blackjack Card Game 

entry I initiallse Tt (hit < 20) 
do I set V 
exit I Returns (s) - an empty list 

Receive-Cards 

1<201 hit % /' \ r2O >=Current Sum =<211 stick% 

J>211 

Receive-return 44 
-- 

entry IR ge1ljeward 

V V(s 
tstoP-. Playing it false] do/ R(S)I apperiO-R 

e V(s), stakýrnez- e average (R(s)) 

[stop playinge true] 

dealer turn 

Figure 5.30 UNIL state machine diagram for Black Jack game 
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5.3.1.6 Monte Carlo Control Algorithm 

Figure 531 shows the Monte Carlo control algorithm assuming exploring starts 

(Sutton and Barto, 1998). The UML state machine diagram for this algorithm consists of 

six states; inifia4 inifialise. geLepisode. receive_returns, improve_j7oliqýý and decision 

states. The algorithm has infinity loop, which the diagram describes by the absence of the 

final node. The following is the description of the states and the activities that the 

Intelligent Agent conducts: 

1. Initialise state: During this state the Intelligent Agent conducts three 

activities; at entering this state it initialises the policy a(s), then sets action- 

value, Q(sa), to an arbiftwy,. -alues, and at exit it sets Retums(s, a) to an 

Cmpty I isL 

Initialize, for all -s E S, aE A(s): 
Q(s. a) ý arbitrary 
v(s) - arbitrary 
I? clurns(s. a) - cuipty list 

Repeat forever: 
(n) Generate an episode msing exploring starLs and z 
(b) For each pair s, a appearing in the episode: 

R- return follcming the first occurrence of s, a 
Append R to Returns(s, a) 
Q(s, a) +. - average(Returns(s, a)) 

(c) For each s in the episode: 
v(s) - arg intx. Q (s, a) 

Figure 531 Monte Carlo control algorithm assuming exploring starts (Sutton and Barto, 1998) 

2. GeLepisode state: The Intelligent Agent generates episode and sets 

parameters "a" and "s" to zero. 

3. Receh-e_retums state: During this state, the Intelligent Agent receives 

rmurds, R(s, a) by the gqjeu-ard activity, appends R (s, a) to the Retum 

(s, a) list by the qppemý_R activity, and calculates the action-value function, 

Q(s, a) by averaging Rctums(s, a) list. 

140 



a If this is the last episode state, s, the flow transfers to 

improvejvlicy state. 

b. Else, the flow transfers to the decision state. 

4. Decision state: 

a. If this is the last action for this state, counter "s" is incremented and 

flow retums to receii-e-retums state. 

Else, counter "a" is incremented and flow returns to receive_returns 

statc. 

5. Improivjvlicystatc: During this state, The Intelligent Agent updates the 

current policy by setting policy 2r(s) to max. Q(s, a). The flow transfers to 

geLepisode state to generate a new episode. 

State Machine Diagram 
Reinforcement Learning - Monte Carlo Control Algorithm Assuming Exploring Starts 

entry I initiabse Tr (s) 
do I set (CI(s. a). O) 
@xftl set (Retums (saý Null) 

F getý_episode 
do I generate-episode(s, a) 
do I set (a, O) 
exit I set (s. 0) 

Ol receivejeturns 
s =yes] 

entry I R(s, a) = get-reward 
do/ Retums(s, a) a append_R 
do I O(s. a) = average (Retums(s, a)) 

past s= no] 

bvs] lm: reff*nt (s) I 
a 

[no] kx; mment (a) I)I do / set_policy(TT (s), arg max. Qs, a)) 

Figure 532 UNIL state machine diagram ror the Monte Carlo control algorithm assuming exploring starts 
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5.3.1.7 Temporal Difference Predication, 41gorithm 

Figure 533 shows the algorithm of tabular Temporal Difference (TD) prediction 

algorithm (Sutton and Barto, 1998). The UNIL state machine diagram for this algorithm 

(Figure 534) has four states; initial. initialise gq e _ phode. and updmý_v states. The 

Intelligent Agent conducts the following activity within the following states: 

1. Inifialise state: The Intelligent Agent initialises V(s) such as to zero and 

read the policy, ; r(s) that needs evaluation. 

2. GeLepisode state: The Intelligent Agent generates a episode by the 

_ pisode activity, and sets the value of a, a, and s. if there are no generaleý e 

new episodes, flow transfers to Final flow state 

3. Update-y state: During this state the Intelligent Agent gets the value of V(s) 

and V(s') by using get-value activity, receives rewards through the 

geLmrard activity, and calculates the expected V(s). Before exiting from 

this statc, it sets s to s'. 

a. If the Intelligent Agent reaches a terminal state, then the flow 

transfers to gcLepisýe state to generate new episode. 

b. Else, the flow loops back to the updahý_v state. 

Initialize V(s) arbitrarily, -, r to the policy to be evaluated 
Repeat (for e. wh epL-A: )dc): 

Initialize a 
Repalt, (for (-. Wll step of episxxle): 

a- action gi%-rn hy r for s 
Take action a; olwer%-e reward, r, and uenxt state, s' 
V(s) V(s) +a [r + V(s)] 

until a b; terminal 

Figure 533 Tabular TD(O) for estimating V (Sutton and Barto, 1998) 
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State Machine Diagram 
Tr 

Reinforcement Learning -Tabular TD(O) for estimating V Algorithm 

I entry I kuUartse iT (s) 
koo I irtwize V(S) 

i 

get_episcWe 
do I generwe_episode(s, a) 
do I set a 

[episode z Wsel do I set cl 
, exit / set (s. 0) 

[episý = true] 

update-v 
entry I v(s) - get-value(s. a) 
do I v(s) = get-value(s*. al 
do Ira gek_reward (sa) (terminal state =yes] dof v(s) = v(s) +a Ir + W(s) - V(s)) 

., exA I set (s. sl 

pem*%W state - no] 

Figurc534 UNIL state machine di3gram for TD algorithm of figure 533 

5.3.1.8 Temporal Difference - Sarsa Algorithm 

Figure 535 depicts the temporal difference - Sarsa algorithm. The UML state 

_ pisode, and diagram for this algorithm (f igure 536) has four states; initial, initialise gq e 

uPdate-Q states. The Intelligent Agent conducts activities during each state on entering, 

during or exiting from this state. The following are the activities that the Intelligent Agent 

conducts during each state: 

1. Inifialise state: The Intelligent Agent initial ises both the policy that it will 

use and the action-valuc, Q(s,: i), that it will calculate to an arbitrary value. 

2. GeLepisode state: The Intelligent Agent initial ises counter "s" on entering 

this state; -s" represents state number in the episode. It also generates 

episode to pcrfonn learning. The Intelligent Agent also sets a and cl to 
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specific values to use them for computing the action-value function. If there 

arc no new episodM flow tmnsfers tofinal flow state. 

I Update_Q state: The Intelligent Agent updates the action-value function 

during this state by conducting the flowing activities: The Intelligent Agent 

gets the Q value for s and s' in the generated episode by get_pvalue 

activity. It also receives the re%%2rd through the geLreward activity. Then it 

computes the Q(sa) according to the shown equation. Finally, it increments 

s to s' and a to a' before exiting from that state, where s' and a' are the next 

state and action respectively. 

a. If s is at a terminal state of this episode, then flow transfers to the 

_ pisode state gq e 

b. Else, the flow loops backs to continue in updating the action-value 

function. 

Initialize Q(s. a) arbitrarily 
Repmt (for cadi epism1c): 

Initialize s 
Moose a from s using policy derivml from Q (e. g., c-greedy) 
Rejx-at (for eacli step of episode): 

Tak-c action a, ol)tcr%v r, W 
Choose a' from s' using policy derived from Q (e. g., C-greedy) 
Q(s, a) - Q(s, a) +a [r + -IQ(s, a) - Q(s, a)] 
s 4-- W; a 4- a'; 

until s is tern inal 

Figure 535 Sarsa. - An on-policy TD control algorithm (Sutton and Barto, 1998) 
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State Machine Diagram 

ReInforcefftent Learning - Sam Algorithm 

entry I kvUa5se TT (s) 
do I kutarise 0(s. 8) 

i 

C ge"Pis(we 
entry 1 Wliarsse s 
do I Ger*rate epis IrdO-Od* w falsel do I set a 
ýdo / set a 

[episode = yes] 

updatq_0 

entry i o(sa) - geLovalue(s. a) 
do I O(V. a') a get. Qvak*s*. e) 
do Ir- get_"ard (Sa) gerrWnal state = yes] do/ 0(s. a) a O(s. a) +a (r +a o(s*. a*) - 0(s, a)] 
do Is- s* 
do Ia-W 

Iteminal state -no) 

Figure 536 UNIL state machine diagram for sarsa algorithm 

5.3.1.9 Temporal Difference Q-1earning Algorithm 

Figure 537 describes the Q-leaming algorithm that Sutton and Barto (1998) have 

described. The UNIL state machine diagram of the Q-learning Algorithm (Figure 5.38) 

contains four states; initial. initialise geLepisode. and update_Q states. Ile following are 

the activities that Intelligent Agents conducts during each state: 

1. Inifialise state: During this state the Intelligent Agent initialises the Q(s, a) to 

an arbitrary value such as 0 and the policy, x (s) that it will use during 

leaming. 

2. Get-episode state: The Intel I igcnt Agent initial ises counter "s" that 

represents number of state in the episode, conducts the activity 

generaleý_episode(sa), and sets learning rate a and the discount factor 0. 
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luitWize Q(s. a) arbitrarily 
tIrpent (for cadi t1iWx1e): 

laitwim a 
Relmit (for twit sul) of epi-Axle): 

Clumjw a frrAn s wing polk-y tleri%-txl from Q (e. g., e-grmdy) 
Tale wiion a. otx-4-nv r. s' 

Q(s. a) ý Q(s, a) +a fr + -y inaxe Q(s', a') - Q(s, a)) 
a- S': 

until s6 t4muinal 

rigum 537 Q-learning Algorithm (Sutton and Barto, 1998) 

3. Update_Q state: During this state the Intelligent Agent updates the value of 

Q(s, a). It calculates thevalues of Q(s, a) and Q(s', a'). Get_mar-Ovalue 

activity selects the maximum action-state for the next episodic state, 

Q(s', a'). The Intelligent agent receives the reward, r and updates Q(s, a) 

according to the shown equation. Tbe Intelligent Agent sets s and a to s' and 

a' respectively. If s is a terminal state then flow transfers to the geLepisode 

state. Else, the flow loops back to updaieý_Q state. 
UaW Madsift Diowun 

R*Womom*M Lean*V - 04. earroing Algorid" 

er*y I bitsue it (S) 
do I kA*he O(Sa) 

I 

got-tpisodo 
brAsise s 

do I qweraleý_eprsode(S. 3) 
do I set a 
401sma i 

W" I O(LS) a tqt-ovo*s. &) 
do I 0(s*. al a qet_rmxOvak*(s7. Sj 
do Ir* ge_mwwd (s. a) ___j 
dol 0(&. &) a O(sA) *a Ir O(S. 24 lwmf*w suto - yes] 
do 15 a S, 
0012fila, j 

p«fnb-%d zute a r41 

Figure 538 UML state machine diagram for q-1carning algorithm 
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5.3.1.10 Temporal Difference - Sarsa 0 Algorithm 

Figures 539 and 5AO show the tabular Sarsa (A) algorithm and its UML state 

machine diagram respectively. The state machine diagram has three main states as in the 

previous Sarsa algorithm described in section 53.1.8, but each state has different activities 

conducted by the Intelligent Agent as foliows: 

1. Inifialise state: During this state, the Intel I igcnt Agent initial ises the policy 

that it %%ill use during learning and action-values function Q(s, a) that it will 

learn for all s and a such as 0. It also sets e(s, a) to 0 for all s and a. 

2. Gq_episode: The Intelligent Agent initialises s and a Nvhen entering this 

_ pisode (sq) activity. The state. Then it generates episodes by the generateý e 

Intelligent Agent before leaving this state, sets a and cl to the required 

values. If there are no more episodes the flow transfers tofinal state, else it 

continues to the next state. 

Initialize Q(s, a) arbitrarfly and c(s. a) = 0, for all s, a 
Repent (for etch epismle): 

Initialize a. a 
Repeat (for ".! h step of episode): 

Take action a, obwn-e r, W 
Choose a' from so using policy derived from Q (e. g., E-grecdy) 
6-r+ -)Q(s'. a') - Q(s, a) 
C(S'a) - f(S'a) +I 
For all x, a: 

Q(s, a) - Q(s. a) +a Jc(s. a) 
r(. q. a) -yAr(s. a) 

- so: a a# 
until a b. tMilinal 

Figure 539 Tabular Sarsa (k) Algorithm (Sutton and Barto, 1998) 

3. Update_Q state: During this state, the Intelligent Agent conducts the main 

activities that it needs to conduct learning. First, the Intelligent Agent 

conducts the takraction activity to get the next state, s'. Then it receives the 

rc%%-aM by the gcLreu-ard activity. Foliov. -ing these two activities, the 
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Intelligent Agent chooses a' from s' through the policy. selectaction activity. 

Then it gets the values for current and next action-state function, Q(s, a) and 

Q(s', a'), by conducting get_Qvalues activity. The next activity is to 

compute 8 according to the given equation. For all the available s and a in 

the episode, the Intelligent Agent conducts updateý_Q%, alues activity to 

update Q and c according to the following equations: Qs, a)= Q(s, a) +a8 

c(s, a) and c(sa)-- y ). e(s, a) 

Finally, s and a are incremented to s' and a' respectively. If s is a terminal 

state, then flow transfers to geý e phode state or else it loops back to 

update_Q state. 

State Machine Diagram 

Reinforcenwnt Learning - Sarsa (A) Algorithm 

r initialise 
entry I ir"alse iT (s) 
do I irultakse O(s, a) 
4W set (e(s. aý 0) 

get_episode 

entry I htialse s 
dc) I kutaise, a 

(episode a falsel do I gererate - episode(s, a) 
do / set a 
Oo/seta 

[episode a yes) 

r updat@_Q 
entry I s' a takeactom(s. a) 
do Ira geý_reward (s. a) 
do I a' a pobcy. sekKUcbon(s) 
do I O(s. a) geLOyalue(s. a) 
do / 0(s*. a') get_0fakje(s'Aj 

perminal state yes) 
do/kvtoric, (c(&m4l) 
dckf updata_Cývakies(Q(sa). Se(sa)) 
dots a s! 
do /a a a' 

fteffninal state -no) 

F egure 5.40 I. Atl. state machine diagram for tabular Sarsa (A) algorithm 
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5.3.1.11 Temporal Difference - Q(A) Algorithm 

Figure 5A I sho%vs the tabular version of Watkins's Q(X) algorithm as described by 

Sutton and Barto, (1998) Watkins's algorithm combines Q-Ieaming and eligibility traces. 

The UNIL state machine diagram for this algorithm (figure 5.42) has four states; initial, 

inilialise, geLepisode. and updateý erence between this state machine _Q states. The diffi 

diagram and the previous Q-1carning state machine diagram is in the activities conducted 

within each state. The activities the Intelligent Agent conducts are as follows: 

1. Inifialise state: during this state the Intelligent Agent initialise the policy 

and action-%-alue function, Q(sa). It also sets e(s, a) to 0. 

2. Gq e _ pisode: 'I'lie Intelligent Agent initialises variable s and a. It also 

generates an episode to start the learning process through the 

generafeý e _ pisodefta) activity. Finally, it sets a and 0 to the required values. 

InitL-lim Q(s. a) arNtrarily aW ef s. a) = 0, for 0 a. a 
tIrpral (fic rad) 

lUitiAliA- A. 0 

ItrPent (ffjlr ench strp of c-pb4xk, ): 
TAP Act k)n a. O*wnr r. a' 
Cboow a' from S' wsiDg Polky dcsi%vd fmm Q (e. g., E-grecdy) 
a' - wX max, Q(s. b) (if a' ties for the max, tlicii a* - d) 
6r +)Q(#'. a*) - Q(A. a) 
c(O's) ý C(. C. G) 
Fur all a. a: 

Q(x. a) - Q(s, a) +a ir(s. a) 
If a- 0% then c(s. a) - -yAr(s, a) 

e6r r(s, a) -0 
aýa, a le 

unt a8 is to R itud 

Figure 5.41 Tabular version of Watkins's Q(I) algorithm (Sutton and Barto, 1998) 

3. Updaleý_Q state: This is the main activitY Of the state machine diagram 

through %%hich the Intelligent Agent updates the action-value function. The 

lntclligcnt Agcnt conducts the follming activities during this state: 

a. At entry the Intelligent Agent conducts an action through the 

laleaction(s, q) activity and identifies the next state, S'. 
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b. The Intelligent agent receives the reward, r, through the activity 

geý_mswrdft. q). 'nie geLreward (sq) activity observes the 

takeaction(s, q) activity and sets r to the received reward. 

Stm MacNme Diagram 

R&b*=*m*r4 Learning - W&OLkW a 04. eaming JUgorfthm 

14w*lr 1 k%"cse Tt (s) 

(*(S. 4 S., 'L 

entry I ixtaLse s 
do I k%talso a 
do I generuteý-opiso*sa) 
dalseto 
Oalwy 

I 

entry I a' a takeacoon(SA) 
do Ira go1jeward (") 
do I a* a POLICy. Sebsdacbon(3*) 
do i a(&. 8) a Get-Ovakse(sa) 
do I CK VX) a --i 
do 16 -r-y Qq s'. a* I si) peffninal stWe a yes) 
wi Imicaw" I CKA. 
ow wuls-ovak-s(c)(S-8). 6 O(s. a)) 
do IsaS, 
do Is a a' 

Pormind sUle a nol 

Figum 5.42 UNIL state m3diýinc diagram for Watkins's Q(X) algorithm 

Through the policysclectacion(s )activity, the Intelligent Agent 

idcntirics a*. 

d. Then the Intelligent Agent computes Q(s, a) and Q(sl, a*) through the 

gq_Q%wlucs(s, a) and gcLmaxQralucs(sa*). 

c. The Intelligent Agent computes 8 through the given equation and 

increment eligibility tracc, e(sa). 
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f. For all s and a, the Intelligent Agent updates Q(s, a) and e(s, a) by the 

update__Ova1ues(Q(s, q) activity, 8, e(s, a)). 

g. Lastly, the Intelligent Agent sets s to s' and a to a' 

h. If s is a terminal state then flow transfers to the geLepisode state, 

else flow goes back to updatq_Q state. 

5.4 Conclusion 

This chapter shows the ability of UML version 2.0 behaviour diagrams, namely 

activity diagrams and sequence diagrams, to model the learning behaviour of Intelligent 

Agents that use learning from observation and discovery as well as learning from examples 

strategies. It also illustrates the capability of state machine diagrams of UML 2.0 to model 

specific reinforcement learning algorithms, namely dynamic programming, Monte Carlo, 

and temporal differences algorithms. 

UML 2.0 behaviour diagrams provide more advanced modelling techniques than 

previous behaviour diagrams in UML version Lx. The introduction of techniques to 

model parallelism, alternative execution, and looping behaviour in sequence diagrams 

allow modelling complex behaviour that are exhibited by Intelligent Agents such as 

learning behaviour. UML 2.0 activity diagram also uses Petri-net-like notations that allow 

a powerful tool for modelling the workflow. The activity diagrams show the workflow of 

the leaming process while the sequence diagrams show the sequence of interaction 

between Intelligent Agent and other entities required to perform the leaming process. State 

machine diagrams provide capable tools to describe the behaviour of a single Intelligent 

Agent across different states. During the writing of the thesis, available tools to model 

applications by using UML version 2.0 were limited. The research writer has used 

Microsoft Visio program with UML stencil for version 2.0 templates to model the above 

diagrams. 
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This chapter provides different scenarios to explore whether the activity and 

sequence diagrams can model learning from observation and discovery. Intelligent Agents 

deploy mainly in dynamic environments requiring learning without gaining advice from a 

source of knowledge. The source of knowledge is not able to provide advice about the 

correct actions for all the different states of the dynamic environment. Furthermore, 

activity and sequence diagrams are capable of modelling scenarios for Intelligent Agents 

that use a learning from examples strategy. Intelligent Agents that work in dynamic 

environments can use a learning from examples strategy in one of the following 

conditions: 

1) The rate of examples is higher than the rate of changes in the environment or 

2) Cloning the Intelligent Agent and then replacing it after learning. 

UML 2.0 state machine diagrams have proven resourceful for modelling specific 

reinforcement learning methods and their different algorithms. This chapter illustrates the 

capability of modelling different types of dynamic programming algorithms namely, 

iterative policy evaluation, policy evaluation, policy improvement, and value iteration 

algorithms. It also shows the capability of state machine diagrams to model Monte Carlo 

algorithms, namely policy evaluation and control algorithms. Moreover These type of 

diagrams are also successful in modelling temporal difference (TD) algorithms, namely TD 

prediction, Sarsa, Q-1earning, Sarsa (X), and Q(X) algorithms. Appendices A, B, and C 

provide user guides for the main components of activity, sequence, and state machine 

diagrams to allow researchers in agent-oriented systems use the UML 2.0 diagrams in 

modelling the learning components of Intelligent Agents. 

Future information systems will contain objects, Agents, and Intelligent Agent as 

the main software entities. However, it will be impractical to imagine for the time being 

that Agent-oriented systems will replace object-oriented ones. The integration of the 

capabilities for both systems will pave the way for implementing reliable and capable 

software systems especially for dynamic environments. 
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Chapter 6: Conclusions and Future Research Directions 

6.1 Thesis Conclusions 

This thesis has shown the ability of structural and behavioural components of the 

Unified Modelling Language version 2.0 to model the leaming behaviour of Intelligent 

Agents. The research focuses on the learning of a single Agent, as it is the core of multi- 

agent systems. The research shows the ability of UML version 2.0 behaviour diagrams, 

namely activity diagrams and sequence diagrams, to model the learning behaviour of 

Intelligent Agents that use learning from observation and discovery as well as leaming 

from examples strategies. The research also illustrates the capability of UML 2.0 state 

machine diagrams to model specific reinforcement learning algorithms, namely dynamic 

programming, Monte Carlo, and temporal difference algorithms. 

UML 2.0 behaviour diagrams provide more advanced modelling techniques than 

previous behaviour diagrams in UML version Lx. The introduction of techniques to 

model parallelism, alternative execution, and looping behaviour in sequence diagrams 

allow the modelling of complex behaviour that is exhibited by Intelligent Agents such as 

learning behaviour. UML 2.0 activity diagram also uses Petri-net-like notations that allow 

a powerful tool for modelling the workflow of the leaming process while the sequence 

diagrams show the sequence of interaction between the Intelligent Agent and other entities 

required to perform the learning process. UML 2.0 state machine diagrams provide tools 

capable of describing the behaviour of a single Intelligent Agent across different states. 

Appendices A, B, and C provide user guides for the main components of activity, sequence, 

and state machine diagrams to allow researchers in agent-oriented systems to use the UML 

2.0 diagrams in modelling the learning components of Intelligent Agents. 

The research highlights that learning is a crucial feature for Intelligent Agents. 

Intelligent Agents are Agents that can learn and reach agreement with other Agents or 
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users. It recognises different learning components required to model the learning behaviour 

of Intelligent Agents such as learning goals, learning strategies, and learning feedback 

methods. 

The research has highlighted the need to extend the structural components of UML 

2.0. During the writing of the thesis, the Foundation for Intelligent Physical Agent (FIPA) 

proposed an extension to UML 2.0 to model structural components of Agents. This 

research utilises FIPA's UML 2.0 Agents' structural components extension and provides 

further development to model the structural components of not only Agents but also 

Intelligent Agents. It has introduced two scenarios for using FIPA modelling TC Agent 

class superstructure meta-model to model Intelligent Agents: the first scenario extends 

Agent class while the second one uses the available Agent Physical Classifier to model 

Intelligent Agents. The second scenario is more appropriate as there will be no need to 

develop a new Intelligent Agent structures. It introduces a learning compartment to the 

Agent Physical Classifier that provides a description of the learning behaviour of the 

Intelligent Agent. This description will guide both designers and developers during both 

the design and the development phases of the system. The description consists of 

attributes and notes. The attributes describe the main learning parameters, and the notes 

provide behaviour description or constraints for the attached attribute. The learning 

compartment contains the following attributes: learning-goal, commitment-strategy, 

learning-strategy, learning-feedback method, background-knowledge, knowledge- 

representation, and learning-schedule. 

The main objective of using UML 2.0 as a base modelling language for describing 

Agent-oriented systems is to allow software developers using object-oriented systems to 

shift more easily towards the development of Agent-oriented systems. Currently, no one 

can declare that any of the available UML Agent-oriented efforts can act as a standard 

modelling language or method for Agent-oriented systems as UML for object-oriented 

systems. No research direction that the author has tackled in this research has explored 
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how the new UML notations, UML 2.0, can model the intelligence aspects of Agent- 

oriented systems such as the ability to learn and the ability to reach agreement among 

Agents. 

The research has shown the capability of activity and sequence diagrams to model 

a learning from observation and discovery strategy. Intelligent Agents deploy mainly in 

dynamic environments which require learning without gaining advice from a source of 

knowledge. The source of knowledge is not able to provide advice about the correct 

actions for all the different states of the dynamic environment. Moreover, activity and 

sequence diagrams are able to model scenarios for Intelligent Agents that use a learning 

from examples strategy. Intelligent Agents that work in dynamic environments can use a 

learning from examples strategy in one of the following conditions: 

1) The rate of examples is higher than the rate of changes in the environment or 

2) Cloning the Intelligent Agent and then replacing it after learning. 

UML 2.0 state machine diagrams have proven resourceful for modelling specific 

reinforcement learning methods and algorithms. The research shows the capability of these 

diagrams to model dynamic programming algorithms namely, iterative policy evaluation, 

policy evaluation, policy improvement, and value iteration algorithms. It also uses the state 

machine diagrams to model Monte Carlo algorithms, namely policy evaluation and control 

algorithms. UML 2.0 state machine diagrams are also successful in modelling temporal 

difference (TD) algorithms, namely TD prediction, Sarsa, Q-learning, Sarsa (k), and Q(X) 

algorithms. 

Future information systems will contain objects, Agents, and Intelligent Agent as 

the main software entities. However, it will be impractical to imagine for the time being 

that Agent-oriented systems will replace object-oriented ones. The integration of the 

capabilities for both systems will pave the way for implementing reliable and capable 

software systems especially in dynamic environments. 
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6.2 Future Research Directions 

This Thesis will stimulate new directions for future research into Agent-oriented 

systems. The first research direction is expected to concentrate on the Intelligence 

dimension of Intelligent Agents. The second one focuses on customizing UML 2.0 for the 

use of modelling Agents and Intelligent Agents. The third direction aims to develop a 

standard methodology for developing software systems that integrates the capabilities of 

objects, Agents, and Intelligent Agents. 

The first future research direction inspired by this thesis would explore the 

capability of UML 2.0 in modelling the ability to reach agreement, being a major 

component of the intelligence dimension. This ability includes negotiation and 

argumentation skills. This research is expected to shed more light on the ability of UML 

behaviour components to model the three main types of negotiation: one-to-one, one-to- 

many, and many-to-many (Wooldridge, M., 2002). it would also sustain the ability of 

UML to model the different types of argumentation skills: logical, emotional, visceral, and 

kisceral modes (Wooldridge, M., 2002). There are efforts to model Agent interaction 

protocols by using UML 2.0, as in FIPA, 2003b, but there is still a need to model the 

negotiation and argumentation skills exhibited by Intelligent Agents. 

The second future research direction would focus on customising UML 2.0 to 

model Agents and Intelligent Agents components. The proposed research direction would 

continue to explore the capability of other UML 2.0 components such as state machine 

diagram, use case diagram, and interaction view diagram to model Agents and Intelligent 

Agents. This research direction would also investigate the capability of modelling 

communication patterns among objects, Agents, and Intelligent Agents. The research can 

customise UML 2.0 to present Agents and Intelligent Agents components profiles. 

The third future research direction would focus on producing a software 

development methodology that is able to model objects, Agents, and Intelligent agents as 

the main software entities. The methodology would study the requirements of objects, 
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Agents, and Intelligent Agents during the different phases, such as analysis, design, 

implementation, and testing phases. The use of UML 2.0 as the modelling language for 

this methodology would allow the use of one modelling language to model the above 

mentioned diversified software entities. The development of future software systems, that 

include objects, Agents, and Intelligent Agents, requires a new standard methodology that 

is able to cover all the requirements of the software development life cycle. 

This thesis has stressed the eligibility of Intelligent Agents as the most appropriate 

software entities to work in dynamic environments, and provide adaptive behaviour to 

meet their designated tasks. Thus, the thesis paves the way for an increase in attention to 

the intelligence dimension of Intelligent Agents. Future research directions will not only 

concentrate on the agency dimension but will also concentrate on the dimension of 

intelligence itself. 
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Appendix A: UML 2.0 Activity Diagram User Guide 

Activity diagrams are useful in modelling the workflow of a process conducted 

interactively between the Intelligent Agent and other players such as users, agents, or 

environment. This user guide has three sections: the first section is a simple guide that 

introduces the major components of the Activity diagram to the researcher of Agent 

learning field. The second section provides a step-by-step guide to sketch a simple activity 

diagram. The third section shows a table of all the major components of UML 2.0 activity 

diagram. The following steps guide the researcher in agent learning to use UML 2.0 

activity diagrams to model the learning behaviour of Intelligent Agents: 

Section A. l: Activity Diagram Components Guide 

This section is extracted from the Sparx Systems, 2005a. In UML an activity 

diagram is used to display the sequence of activities. Activity Diagrams show the 

workflow from a start point to the finish point detailing the many decision paths that exist 

in the progression of events contained in the activity. They may be used to detail situations 

where parallel processing may occur in the execution of some activities. Activity Diagrams 

are useful for Business Modelling where they are used for detailing the processes involved 

in business activities. 

The below diagram shows an example of an Activity Diagram. 

Figure A. 0.1 Example of activity diagram 
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The following sections describe the elements that constitute an Activity diagram. 

Activities 

An activity is the specification of a parameterized sequence of behaviour. An activity is 

shown as a round-comered rectangle enclosing all the actions, control flows and other 

elements that make up the activity. 

ad Activity 

Activity 

Figure A. 0.2 illustration of activity 

Actions 

An action represents a single step within an activity. Actions are denoted by round- 

cornered rectangles. 

ad Action 
---l 

Perf or m 
Action 

Figure A. 0.3 Illustration of Action 

Action Constraints 

Constraints can be attached to an action. The following diagram shows an action 

with local pre- and post-conditions. 

174 



clocalPreCondition* 
(A drink is selected that the 
vending machine contains) 

ýDispeýnse 

il i kj Drink 

clocalPostCondition* 
(The vending machine 

dj dispensed the drink selecte 

Figure A. 0.4 Example of action constraints 

Control Flow 

A control flow shows the flow of control from one action to the next. Its notation is 

a line with an arrowhead. 

ad Activity Edge 

Acce 
Pay=d 

Figure A. 0.5 Illustration of control flow 

Initial Node 

An initial or start node is depicted by a large black spot, as depicted below. 

ad Initial 

Perf or m *--->Cý: ) 

Action 

Figure A. 0.6 Illustration of initial node 
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Final Node 

There are two types of final node: activity and flow final nodes. The activity final 

node is depicted as a circle with a dot inside. 

ad Activity Final 

lose 
GC 

ose 
Order 

Figure A. 0.7 Illustration of final node 

The flow final node is depicted as a circle with a cross inside. 

ad Flow Final 

Close 
C 

losc 
EOrde 

IOS4" 

ý-->& 
-D 

Figure A. 0.8 Illustration of flow final node 

The difference between the two node types is that the flow final node denotes the 

end of a single control flow; the activity final node denotes the end of all control flows 

within the activity. 

Objects and Object Flows 

An object flow is a path along which objects or data can pass. An object is shown 

as a rectangle. 

ad Object 

Document 

Figure A. 0.9 Example of an object 
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An object flow is shown as a connector with an arrowhead denoting the direction in 

which the object is being passed. 

ad Objeý 

Invoice Mak 
Paym: rd 

Figure A. 0.10 Object flow 

An object flow must have an object on at least one of its ends. A shorthand notation 

for the above diagram would be to use input and output pins. 

ad Object Flow (alt)/ 

FSe 

... i. e 

Figure A. 0.1 I Another illustration of object flow 

A data store is shown as an object with the ((datastore>> keyword. 

ad Data Store 

ad atastore 
Data 

Figure A. 0.12 Data store example 

Decision and Merge Nodes 

Decision nodes and merge nodes have the same notation: a diamond shape. They 

can both be named. The control flows coming away from a decision node will have guard 

conditions which will allow control to flow if the guard condition is met. The following 

diagram shows use of a decision node and a merge node. 
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ad Decision or Merge / 

[co nd iti (o n is tru el 
Action on 

True 

De ion Node Merge No e 

Ach on of 
[co nd iti on is fa Ise) False 

Figure A. 0.13 Example of decision and merge nodes 

Fork and Join Nodes 

Forks and joins have the same notation: either a horizontal or vertical bar (the 

orientation is dependent on whether the control flow is running left to right or top to 

bottom). They indicate the start and end of concurrent threads of control. The following 

diagram shows an example of their use. 

Concurrent 
Action I 

Concurrerd 
Action 2 

Figure A. 0.14 Example of Fork and Join nodes 

A join is different from a merge in that the join synchronises two inflows and 

produces a single outflow. The outflow from ajoin cannot execute until all inflows have 

been received. A merge passes any control flows straight through it. If two or more inflows 

are received by a merge symbol, the action pointed to by its outflow is executed two or 

more times. 
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Expansion Region 

An expansion region is a structured activity region that executes multiple times. 

Input and output expansion nodes are drawn as a group of three boxes representing a 

multiple selection of items. The keyword iterative, parallel or stream is shown in the top 

left comer of the region. 

ad Expansion Region 

------------ 
-------------- ---------- 

parallel 

----------------------------- f ---------- 

Figure A. 0.15 Example of expansion region 

Exception Handlers 

Exception Handlers can be modelled on activity diagrams as in the example below. 

Protected Node 11 
ELxceptionType 

( Exception Handler Node 

Figure A. 0.16 Illustration of exception 

Interruptible Activity Region 

An interruptible activity region surrounds a group of actions that can be interrupted. 

In the very simple example below, the Process Order action will execute until completion, 

when it will pass control to the Close Order action, unless a Cancel Request interrupt is 

received which will pass control to the Cancel Order action. 
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--- --------------------- 

C: nc: 
slt R qu 

Figure A. 0.17 Example of interruptible activity region 

Partition 

An activity partition is shown as either horizontal or vertical swimlanes. In the 

following diagram, the partitions are used to separate actions within an activity into those 

performed by the accounting department and those performed by the customer. 

Figure A. 0.1 8 Example of activity diagram with partition 
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Section A. 2: Step by Step UAIL 2 Activity Diagram Drawing Guide 

To understand the following steps, users must read the previous section to be 

familiar with the UML 2.0 activity diagram's terminologies. 

Activity Diagram 
Learning from Observation and Discovery 

Passive Observation -Time Event Action and Event Action 

0- 

environment sensors lagent 

ta Special value [End of observation] 

record-action cluster. 4 

ol servatlonDs ob no 

Q. 

Update-hypotheele 

[Continue learning] 

Figure A. 0.19 Example of activity diagram 

* Step 1: Identify the users, object, and agents that are involved in this 

activity diagram with the Intelligent Agent 

o For each user, object, agent, or Intelligent Agent, draws a partition. 

Each partition will include the activities and actions of the 

partition's owner. 

o Figure A. 0.19 shows an activity diagram with two partitions; one 

for the Intelligent Agent and the other for the environment sensor 

agent. 

* Step 2: Identify the sensors that the Intelligent Agents uses 

o If the trigger is a time trigger such as a lapse of time of a specific 

duration or the performance of an action at a specific time, draw the 
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x 
time signal at the relevant partition . Write the time condition 

beside the time signal notation 

o If the trigger is the occurrence of an action, then draw the accept 

signal notation at the relevant partition 
ý-] 

. Write the triggering 

action beside the accept signal notation. 

* Step 4: Identify the activities and actions that the Intelligent Agent performs 

o Draw the activities and actions that the Intelligent Agent conducts in 

the relevant partition. Each activity or action must have at least one 

title. 

* Step 5: Identify the activities and actions that other users or agents perform 

o Draw the activities and actions that are conducted by other users in 

the relevant partition. 

* Step 6: Identify Decision Nodes 

o Draw the required decision nodes in the activity diagram, its 

condition, and the relevant action for each condition as shown in the 

diagram below. 

[condition is true] 

[co nd iti on is fa Ise] 

Figure A. 0.20 Example of decision node 

* Step 7: Identify Fork nodes 

o Draw the needed fork nodes that represent concurrent flow 
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Concurrendt 

r 

Acti On 1 

COncurrerd CO r erd 

0c 

Accti on 2 

C-: 

Figure A. 0.21 Fork nodes 

e Step 8: identify Join and Merge Nodes 

o Draw the necessary join and merge nodes of control flows. The join 

node output does not execute until all inflows have been received 

No e -I 

Figure A. 022 Notation ofjoin and merge Nodes 

* Step 9: Complete all missing flows 

o Draw all the missing control and object flows between the activity 

and actions in the activity diagarn 

o Step 10: Revisit the diagram 

o Refine the diagram from redundant flows or actions. 

o Add exception handling and action interruption notations 

o Add Expansion region notation if needed 

9 Step 11: Draw initial and final nodes 
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Appendix B: UNIL 2.0 Sequence Diagram User Guide 

Sequence diagrams are good for representing the communication behaviour of an 

Intelligent Agent with other users, objects, agents, or Intelligent Agents. They provide a 

clear view of the sequence of communication and interaction among the entities of the 

sequence diagram. This user guide has three sections: the first presents a simple guide to 

the main components of a sequence diagram, the second section provides a step-by-step 

guide to allow researchers in the Agent learning field to sketch a simple sequence diagram. 

The third section shows a table of the main components of a sequence diagram. 

Section Bl: Sequence Diagram Components Guide 

This section is an extraction from Sparx Systems, 2005b. A sequence diagram is a 

form of interaction diagram, which shows objects as lifelines running down the page and 

with their interactions over time represented as messages drawn as arrows from the source 

lifeline to the target lifeline. Sequence diagrams are good for showing which objects 

communicate with which other objects and what messages trigger those communications. 

Sequence diagrams are not intended for showing complex procedural logic.. 

Lifelines 

A lifeline represents an individual participant in a sequence diagram. A lifeline will 

usually have a rectangle containing its object name. If its name is self then that indicates 

that the lifeline represents the classifier which owns the sequence diagram. 
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sd Utelines 

Lifeline Instance : Class 

Figure B. O. 1 Example of lifelines 

Sometimes a sequence diagram will have a lifeline with an actor element symbol at 

its head. This will usually be the case if the sequence diagram is owned by a use case. 

Boundary, control and entity elements from robustness diagrams can also own lifelines. 

sd More Ufelines 

10 0 0 

Actor Boundary Control Entity 

Figure 01 Example of actor lifeline 

Messages 

Messages are displayed as arrows. Messages can be complete, lost or found; 

synchronous or asynchronous; call or signal. In the following diagram, the first message is 

a synchronous message (denoted by the solid arrowhead) complete with an implicit return 

message; the second message is asynchronous (denoted by a line arrowhead) and the third 

is the asynchronous return message (denoted by the dashed line). 
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Target 

retum- message(parameter) 

m ge(parameter) 

M-e-ss-a- ge(tatum) 

FigUre B. 03 Examples of message exchange 

Execution Occurrence 

A thin rectangle running down the lifeline denotes the execution occurrence or 

activation of a focus of control. In the previous diagram, there are three execution 

occurrences. The first is the source object sending two messages and receiving two replies; 

the second is the target object receiving a synchronous message and returning a reply; and 

the third is the target object receiving an asynchronous message and returning a reply. 

Self Message 

A self message can represent a recursive call of an operation, or one method calling 

another method belonging to the same object. It is shown as creating a nested focus of 

control in the lifeline's execution occurrence. 

Figure B. O. 4 Example of self message 
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Lost and Found Alessaaes ft 

Lost messages are those that are either sent but do not arrive at the intended 

recipient, or which go to a recipient not shown on the current diagram. Found messages are 

those that arrive from an unknown sender or from a sender not shown on the current 

diagram. They are denoted going to or coming from an endpoint element. 

lifeline, 

lost message 
u 

found message 

Figure B. O. 5 Example of lost and found messages 

Lifeline Start and End 

A lifeline may be created or destroyed during the timescale represented by a 

sequence diagram. In the latter case, the lifeline is terminated by a stop symbol, 

represented as a cross. In the former case, the symbol at the head of the lifeline is shown at 

a lower level down the page than the symbol of the object that caused the creation. The 

following diagram shows an object being created and destroyed. 

Parert 

new 

delete 
u 

Figure B. O. 6 Example of creating and destroying an object 
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Duration and Time Constraints 

By default, a message is shown as a horizontal line. Since the lifeline represents the 

passage of time down the screen, when modelling a real-time system, or even a time-bound 

business process, it can be important to consider the length of time it takes to perform 

actions. By setting a duration constraint for a message, the message will be shown as a 

sloping line. 

Source Tarnet 

call 1>10msl 

- 
call 1>10msl 

re p ly (>5 msj 

j 
reply J>5 msj 

Figure B. O. 7 Example of duration and time constraints notation 

Combined Fragments 

It was stated earlier that Sequence diagrams are not intended for showing complex 

procedural logic. While this is the case, there are a number of mechanisms that do allow 

for adding a degree of procedural logic to diagrams and which come under the heading of 

combined fragments. A combined fragment is one or more processing sequence enclosed 

in a frame and executed under specific named circumstances. The fragments available are: 

" Alternative fragment (denoted "alf') models if .. then ... else constructs. 

" Option fragment (denoted "opt") models switch constructs. 
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e Break fragment models an alternative sequence of events that is processed 

instead of the whole of the rest of the diagram. 

* Parallel fragment (denoted "par") models concurrent processing. 

e Weak sequencing fragment (denoted "seq") encloses a number of sequences 

for which all the messages must be processed in a preceding segment before 

the following segment can start, but which does not impose any sequencing 

within a segment on messages that don't share a lifeline. 

* Strict sequencing fragment (denoted "strict") encloses a series of messages 

which must be processed in the given order. 

* Negative fragment (denoted "neg") encloses an invalid series of messages. 

* Critical fragment encloses a critical section. 

9 Ignore fragment declares a message or message to be of no interest if it 

appears in the current context. 

9 Consider fragment is in effect the opposite of the ignore fragment: any 

message not included in the consider fragment should be ignored. 

* Assertion fragment (denoted "assert") denotes that any sequence not shown 

as an operand of the assertion is invalid. 

9 Loop fragment encloses a series of messages which are repeated. 

The following diagram shows a loop fragment. 
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od Fragmwt 

requ*sLitem(n) 

------ 
send(array) 

------------ 

Figure B. O. 8 Example of loop fragment 

There is also an interaction occurrence, which is similar to a combined fragment. 

An interaction occurrence is a reference to another diagram which has the word "ref 'in the 

top left comer of the frame, and has the name of the referenced diagram shown in the 

middle of the frame. 

Gate 

A gate is a connection point for connecting a message inside a fragment with a 

message outside a fragment. EA shows a gate as a small square on a fragment frame. 

: ScKirce : Tarnet 

critic Oate 
mso msg 

u 

Ia 

Figure B. O. 9 Example of a gate 
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Part Decomposition 

An object can have more than one lifeline coming from it. This allows for inter- 

and intra-object messages to be displayed on the same diagram. 

ad Pwt D-Wosrbý / 

pwti class P042 

au ? tom 

mqu*A A 

moue't 

------------ ------------- -- 

Figure B. O. 10 Example of part decomposition 

State Invariant / Continuations 

A state invariant is a constraint placed on a lifeline that must be true at run-time. It 

is shown as a rectangle with semi-circular ends. 

: Lifeline 

Figure B. O. II Example of state invariant 

A Continuation has the same notation as a state invariant but is used in combined 

fragments and can stretch across more than one lifeline. 
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Section B. 2: Step by Step UAIL 2 Sequence Drawing Guide: 

Sequence Diagram 
Learning from Observation and Discovery 
Passive Observation, Time Event Action 

E2, 
loop III (continueobservabol true] 

iconfinueobservatiol truel 

Record eýent 

t=T III 

-- ------------------ - --- Eventsaved 

Send saved cýbservations 

------ - -------- Return saved observation 

Cluster- observations 
k---J 

Select current hypothesisl 

k- 
Return current hypothesi) 

Update hypothesis 

Hypothesis updated 

Figure B. O. 12 Example of sequence diagram 

To understand the following steps, users must first read the previous section to be 

familiar with the UML 2.0 sequence diagram's terminologies. 

9 Step 1: Identify and draw lifelines 

o Identify the main entities of the sequence diagrarn such as Intelligent 

Agent, users (actors), agents, or objects. 

o Draw the lifeline of each of the identified entities as shown in the 

example below: 
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ipcent : sensor 
I 

: buffer 1 
Figure B. O. 13 Example of lifelines 

L`211 I 

* Step 2: Draw messages and Interactions among the sequence diagram 

entities 

o Draw the arrows that represent the messages and interactions 

between the Intelligent Agent and the other lifelines of the sequence 

diagram 

c, Draw duration and time constraints if needed 

9 Step 3: Draw combined frames if needed 

o Identify any procedural logic that needs to be represented by a frame 

such as parallel or optional interaction 

o For each procedural logic draw a frame that covers the area where 

this logic applies. Figure B. O. 12 shows a sequence diagram with two 

loop frames. 

0 Step 4: Identify any needed Gates 

o If there is any message that needs to be transferred outside the 

existing frame, draw a gate notation to allow this transfer as shown 

in the below figure. 

critica Gate 
msg msg 

Figure B. O. 14 Example of transferring message through a gate 
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e Step 5: Identify Start and End of lifelines 

o Identify any entity that will be created or destroyed during the 

sequence diagram 

o Draw the notation of a start and end of the needed lifeline as shown 

in the example below: 

Child 
neuv 

delete 
L4 

Figure B. O. 15 Example of start and end of lifline 
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Appendix C: UML 2.0 State Machine Diagram User Guide 

State machine diagrams are good for describing the behaviour of an Intelligent 

Agent during different states of its life. State machine diagrams are not efficient at 

describing interactions among Intelligent Agents and other entities such as other agents, 

users, or objects. This user guide has three sections: the first presents a simple guide to the 

main components of state machine diagrams, the second section provides a step-by-step 

guide to allow researchers in the Agent learning field to sketch a simple state machine 

diagram. The third section shows a table of the main components of a state machine 

diagram. 

Section CA State Machine Diagram Components Guide 

This section is an extraction from Sparx Systems, 2005c. A State Machine Diagram 

models the behaviour of a single object, specifying the sequence of events that an object 

goes through during its lifetime in response to events. 

As an example, the following State Machine Diagram shows the states that a door goes 

through during its lifetime. 

sm Protocol State Mactine 

Opened Closed 
Create/ Close/ [doorWay->isEmpty] 

Open/ 
LOW Unlodd 

I 

Looked 

Figure C. O. 1 Example of state machine diagram for a door 
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The door can be in one of three states: Opened, Closed or Locked. It can respond to 

the events Open, Close, Lock and Unlock. Notice that not all events are valid in all states: 

for example, if a door is Opened, you cannot lock it until you close it. Also notice that a 

state transition can have a guard condition attached: if the door is Opened, it can only 

respond to the Close event if the condition doorWay->isEmpty is fulfilled. The syntax and 

conventions used in State Machine Diagrams will be discussed in full in the following 

sections. 

States 

A State is denoted by a round-cornered rectangle with the name of the state written 

inside it. 

Lldle 

Figure B. O. 2 Notation of a state 

Initial and Final States 

The Initial State is denoted by a solid black circle and may be labelled with a name. 

The Final State is denoted by a circle with a dot inside and may also be labelled with a 

name. 

Alive 
Create 2D !e ýst r ýo 

a Initial Final 

Figure C. O. 3 Example of initial and final states 
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Transitions 

Transitions from one state to the next are denoted by lines with arrowheads. A 

transition may have a trigger, a guard and an effect, as below. 

Source State Target St 
Tfigger [Ouardl /Effect 

Figure C. O. 4 Notation of a transition 

"Trigger" is the cause of the transition, which could be a signal, an event, a change 

in some condition, or the passage of time. "Guard" is a condition which must be true in 

order for the trigger to cause the transition. "Effect" is an action which will be invoked 

directly on the object that owns the state machine as a result of the transition. 

State Actions 

In the transition example above, an Effect was associated with the transition. If the 

target state had many transitions arriving at it, and each transition had the same effect 

associated with it, it would be better to associate the effect with the target state rather than 

the transitions. This can be done by defining an entry action for the state. The diagram 

below shows a state with an entry action and an exit action. 

sm Entry and Exit 

f'-Teceiving 
LOnEn! 

lpid(, jp 
+ On . 1. On Exit/ disconnect 

tryf! t 

Figure C. O. 5 Notation of state actions 

It is also possible to define actions that occur on occasion , or actions that always 

occur. It is possible to define any number of actions of each type. 
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Self-Transitions 

A state can have a transition that returns to itself, as in the following diagram. This is most 

useful when an effect is associated with the transition. 

alte12 se con ds/poll input 

R Vftiting 

Figure C. O. 6 Example of self -transition 

Compound States 

A state machine diagram may include sub-machine diagrams, as in the example 

below. 

Figure C. O. 7 Example of state machine with compound state 

An alternative way to show the same infonnation is as follows : 
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Check PIN 

pn0 i Iq 

Searoh Netv#Drk poy 

poweroff 

D---\ 

netmodc found 

Ready I 
poweroff_( 

Off 

Figure C. O. 8 Example of state machine diagram with composite state 

The notation in the above version indicates that the details of the Check PIN sub- 

machine are shown in a separate diagram. 

Entry Point 

Sometimes you won't want to enter a sub-machine at the normal Initial State. For 

example, in the following sub-machine it would be normal to begin in the Initializing state, 

but if for some reason it wasn't necessary to perform the initialization, it would be possible 

to begin in the Ready state by transitioning to the named Entry Point. 

Figure C. O. 9 Example of entry points 
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The following diagram shows the state machine one level up: 

sm Ertry Poird (Hgher) 

Nat Already 
k-itialized 

AJ ready INU al i zed Pe orming Activity 

Skip InitiaNzing 

IC-cD, 

Figure C. O. 10 Example of entry point 

Exit Point 

In a similar manner to Entry Points, it is possible to have named alternative Exit 

Points. The following diagram gives an example where the state executed after the main 

processing state depends on which route is used to transition out of the state. 

sm bdt 

Processing 

Reacling Instructions iOkiting Error Report 

Initial Failed to 
Read 

Processing DisplaýOng Results 
Instructions 

Final Final 

Figure C. O. II Example of exit point 

Choice Pseudo-State 

A choice pseudo-state is shown as a diamond with one transition arriving and two 

or more transitions leaving. The following diagram shows that whichever state is arrived at 
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after the choice pseudo-state, is dependent on the message format selected during 

execution of the previous state. 

Ch 

(Voice] Creating Voice 
Message 

r 

Selecting Message Creating SMS 
Format isms] Message 

Creat 
M 

[Fax) 

Figure C. O. 12 Example of choice pseudo-state 

Junction Pseudo-State 

Junction pseudo-states are used to chain together multiple transitions. A single 

junction can have one or more incoming and one or more outgoing transitions and a guard 

can be applied to each transition. Junctions are semantic-free; ajunction which splits an 

incoming transition into multiple outgoing transitions realizes a static conditional branch as 

opposed to a choice pseudo-state which realizes a dynamic conditional branch. 
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sm wbon.,, -' 

ReceivingVoi e Receiving SMS Receiving Fax 
Message Message Message 

[Rep"- oice] 
[Repl 

I 
SMS] [Reply--Fax] 

Creating Voice Creating SMS Creating Fax 
Message Message Message 

Figure C. O. 13 Example of Junction Pesudo-state 

Terminate Pseudo-State 

Entering a terminate pseudo-state indicates that the lifeline of the state machine has 

ended. A tenninate pseudo-state is notated as a cross. 

LRur"ng 

ff Power Off 

Terminate 

Figure C. O. 14 Example of terminate pseudo-state 

History States 

A History State is used to remember the previous state of a state machine when it 

was interrupted. The following diagram illustrates the use of history states. The example is 

a state machine belonging to a washing machine. 
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Sm" 
Rurd-ing 

W Vt*asNng Rinsing Spirwing 

---- 

H--3 

restore 
I 
Power p owe r cut 

Pov, er Off 

Figure C. O. 15 Example of history state 

In this state machine, when a washing machine is running it will progress from 

Washing through Rinsing to Spinning. If there is a power cut, the washing machine will 

stop running and will go to the Power Off state. Then when the power is restored, the 

Running state is entered at the History State symbol meaning that it should resume where it 

last left off. 

Concurrent Regions 

A state may be divided into regions containing sub-states that exist and execute 

concurrently. The example below shows that within the state "Applying Brakes", the front 

and rear brakes will be operating simultaneously and independently. Notice the use of fork 

and join pseudo-states rather than choice and merge pseudo-states. These symbols are used 

to synchronize the concurrent threads. 
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Figure C. O. 16 Example of concurrent regions 
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Section C. 2: Step-by-Step State Machine Diagram Drawing Guide 

State Machine Viagram 

Reinforcemnt Leaming - Monte Carlo Policy Evaluation - Blackjack Card Game 

r initialise 

entry 1 Initialitse Tr (hit < 20) 
do i set V 
ýexit I Retums (s) ý an empty W 

Receive-Cards 

1<201 Nt %/ r2O: -ýurrent Sum -Ql) shrki 

1>211 

_j 
entry IR- geýjreward 

Istop_ playing- false] ido/R(S)zappend_R 

starLnew_game I kýýtl V(s) - average (R(s)) 

Istop playing z true] 

dealetý_turn 

Figure C. O. 17 UML state machine diagram for Black Jack game 

-P Step 1: Identify the Intelligent Agent states 

o Identify and draw the states that the Intelligent Agent exhibits during 

this state machine diagram. The above diagram shows four states: 

initialise, receive-cards, receive-returns, and dealer-turn states 

9 Step 2: Identify any choice orjunction pseudo states 

o Draw choice orjunction pseudo states. The blackjack diagram 

shows choice state titled "current-sum. " 

* Step 3: Identify if there is any composite or concurrent state 

o Draw the symbol of the composite diagram on the relevant state 

e Step 4: Draw the transitions between the states identified above . 

o Draw the transitions between the states as needed 

o Write the trigger / guard on each relevant transition arrow. 
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* Step 5: For each state identify the entry, exit, and do actions 

o For each state, write the entry, do, and exit actions if needed. 

Receive-return state has three actions : one on entering this state, the 

second is executed during the state, and the third on exiting the state. 

9 Step 6: Identify concurrent region 

o Draw any concurrent region needed to identify concurrent 

behaviour. 

o Step 7: Identify initial and terminate states 

o Draw the initial and terminate states 
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