110,153 research outputs found

    Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

    Get PDF
    Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.Comment: 36 pages, 5 figures, resubmitted to J.Phys.: Condens. Matte

    Parallelized Rigid Body Dynamics

    Get PDF
    Physics engines are collections of API-like software designed for video games, movies and scientific simulations. While physics engines often come in many shapes and designs, all engines can benefit from an increase in speed via parallelization. However, despite this need for increased speed, it is uncommon to encounter a parallelized physics engine today. Many engines are long-standing projects and changing them to support parallelization is too costly to consider as a practical matter. Parallelization needs to be considered from the design stages through completion to ensure adequate implementation. In this project we develop a realistic approach to simulate physics in a parallel environment. Utilizing many techniques we establish a practical approach to significantly reduce the run-time on a standard physics engine

    Matrix Factorization at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies

    Full text link
    We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics on cluster computing platforms with access to local disks and is optimized for data-parallel tasks. We examine three widely-used and important matrix factorizations: NMF (for physical plausability), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods to TB-sized problems in particle physics, climate modeling and bioimaging. The data matrices are tall-and-skinny which enable the algorithms to map conveniently into Spark's data-parallel model. We perform scaling experiments on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and provide tuning guidance to obtain high performance

    Flexible Global Software Development (GSD): Antecedents of Success in Requirements Analysis

    Get PDF
    Globalization of software development has resulted in a rapid shift away from the traditional collocated, on-site development model, to the offshoring model. Emerging trends indicate an increasing interest in offshoring even in early phases like requirements analysis. Additionally, the flexibility offered by the agile development approach makes it attractive for adaptation in globally distributed software work. A question of significance then is what impacts the success of offshoring earlier phases, like requirements analysis, in a flexible and globally distributed environment? This article incorporates the stance of control theory to posit a research model that examines antecedent factors such as requirements change, facilitation by vendor and client site-coordinators, control, and computer-mediated communication. The impact of these factors on success of requirements analysis projects in a “flexible” global setting is tested using two quasi-experiments involving students from Management Development Institute, India and Marquette University, USA. Results indicate that formal modes of control significantly influence project success during requirements analysis. Further, facilitation by both client and vendor site coordinators positively impacts requirements analysis success

    Decentralized collaborative transport of fabrics using micro-UAVs

    Full text link
    Small unmanned aerial vehicles (UAVs) have generally little capacity to carry payloads. Through collaboration, the UAVs can increase their joint payload capacity and carry more significant loads. For maximum flexibility to dynamic and unstructured environments and task demands, we propose a fully decentralized control infrastructure based on a swarm-specific scripting language, Buzz. In this paper, we describe the control infrastructure and use it to compare two algorithms for collaborative transport: field potentials and spring-damper. We test the performance of our approach with a fleet of micro-UAVs, demonstrating the potential of decentralized control for collaborative transport.Comment: Submitted to 2019 International Conference on Robotics and Automation (ICRA). 6 page

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science
    • 

    corecore