42 research outputs found

    Overview of Network Analysis in Systems Medicine

    Get PDF
    Systems Medicine (SM) is an interdisciplinary research paradigm, that heavily relieson complex systems theory, and emphasizes on the studies the human body in termsof systems and the interactions among them, incorporating biochemical,physiological, and environment interactions. The article presents developments in SMresearch, focusing specifically on the network analysis approaches. Network analysisis fundamental for the study of interactions among systems at different levels withinthe human body. The background knowledge is established: the basic concepts ofnodes and edges, and network metrics as well as existing computational tools aredescribed. Different applications in health research are discussed, includingdescriptive and predictive approaches. The use of network analysis in temporal dataand data coming from digital health technologies is further highlighted. Finally, thecurrent challenges are discussed and the foreseen development

    Semantic recovery of traceability links between system artifacts

    Get PDF
    This paper introduces a mechanism to recover traceability links between the requirements and logical models in the context of critical systems development. Currently, lifecycle processes are covered by a good number of tools that are used to generate different types of artifacts. One of the cornerstone capabilities in the development of critical systems lies in the possibility of automatically recovery traceability links between system artifacts generated in different lifecycle stages. To do so, it is necessary to establish to what extent two or more of these work products are similar, dependent or should be explicitly linked together. However, the different types of artifacts and their internal representation depict a major challenge to unify how system artifacts are represented and, then, linked together. That is why, in this work, a concept-based representation is introduced to provide a semantic and unified description of any system artifact. Furthermore, a traceability function is defined and implemented to exploit this new semantic representation and to support the recovery of traceability links between different types of system artifacts. In order to evaluate the traceability function, a case study in the railway domain is conducted to compare the precision and recall of recovery traceability links between text-based requirements and logical model elements. As the main outcome of this work, the use of a concept-based paradigm to represent that system artifacts are demonstrated as a building block to automatically recover traceability links within the development lifecycle of critical systems.The research leading to these results has received funding from the H2020 ECSEL Joint Undertaking (JU) under Grant Agreement No. 826452 \Arrowhead Tools for Engineering of Digitalisation Solutions" and from speci¯c national programs and/or funding authorities

    Integrating prior knowledge into factorization approaches for relational learning

    Get PDF
    An efficient way to represent the domain knowledge is relational data, where information is recorded in form of relationships between entities. Relational data is becoming ubiquitous over the years for knowledge representation due to the fact that many real-word data is inherently interlinked. Some well-known examples of relational data are: the World Wide Web (WWW), a system of interlinked hypertext documents; the Linked Open Data (LOD) cloud of the Semantic Web, a collection of published data and their interlinks; and finally the Internet of Things (IoT), a network of physical objects with internal states and communications ability. Relational data has been addressed by many different machine learning approaches, the most promising ones are in the area of relational learning, which is the focus of this thesis. While conventional machine learning algorithms consider entities as being independent instances randomly sampled from some statistical distribution and being represented as data points in a vector space, relational learning takes into account the overall network environment when predicting the label of an entity, an attribute value of an entity or the existence of a relationship between entities. An important feature is that relational learning can exploit contextual information that is more distant in the relational network. As the volume and structural complexity of the relational data increase constantly in the era of Big Data, scalability and the modeling power become crucial for relational learning algorithms. Previous relational learning algorithms either provide an intuitive representation of the model, such as Inductive Logic Programming (ILP) and Markov Logic Networks (MLNs), or assume a set of latent variables to explain the observed data, such as the Infinite Hidden Relational Model (IHRM), the Infinite Relational Model (IRM) and factorization approaches. Models with intuitive representations often involve some form of structure learning which leads to scalability problems due to a typically large search space. Factorizations are among the best-performing approaches for large-scale relational learning since the algebraic computations can easily be parallelized and since they can exploit data sparsity. Previous factorization approaches exploit only patterns in the relational data itself and the focus of the thesis is to investigate how additional prior information (comprehensive information), either in form of unstructured data (e.g., texts) or structured patterns (e.g., in form of rules) can be considered in the factorization approaches. The goal is to enhance the predictive power of factorization approaches by involving prior knowledge for the learning, and on the other hand to reduce the model complexity for efficient learning. This thesis contains two main contributions: The first contribution presents a general and novel framework for predicting relationships in multirelational data using a set of matrices describing the various instantiated relations in the network. The instantiated relations, derived or learnt from prior knowledge, are integrated as entities' attributes or entity-pairs' attributes into different adjacency matrices for the learning. All the information available is then combined in an additive way. Efficient learning is achieved using an alternating least squares approach exploiting sparse matrix algebra and low-rank approximation. As an illustration, several algorithms are proposed to include information extraction, deductive reasoning and contextual information in matrix factorizations for the Semantic Web scenario and for recommendation systems. Experiments on various data sets are conducted for each proposed algorithm to show the improvement in predictive power by combining matrix factorizations with prior knowledge in a modular way. In contrast to a matrix, a 3-way tensor si a more natural representation for the multirelational data where entities are connected by different types of relations. A 3-way tensor is a three dimensional array which represents the multirelational data by using the first two dimensions for entities and using the third dimension for different types of relations. In the thesis, an analysis on the computational complexity of tensor models shows that the decomposition rank is key for the success of an efficient tensor decomposition algorithm, and that the factorization rank can be reduced by including observable patterns. Based on these theoretical considerations, a second contribution of this thesis develops a novel tensor decomposition approach - an Additive Relational Effects (ARE) model - which combines the strengths of factorization approaches and prior knowledge in an additive way to discover different relational effects from the relational data. As a result, ARE consists of a decomposition part which derives the strong relational leaning effects from a highly scalable tensor decomposition approach RESCAL and a Tucker 1 tensor which integrates the prior knowledge as instantiated relations. An efficient least squares approach is proposed to compute the combined model ARE. The additive model contains weights that reflect the degree of reliability of the prior knowledge, as evaluated by the data. Experiments on several benchmark data sets show that the inclusion of prior knowledge can lead to better performing models at a low tensor rank, with significant benefits for run-time and storage requirements. In particular, the results show that ARE outperforms state-of-the-art relational learning algorithms including intuitive models such as MRC, which is an approach based on Markov Logic with structure learning, factorization approaches such as Tucker, CP, Bayesian Clustered Tensor Factorization (BCTF), the Latent Factor Model (LFM), RESCAL, and other latent models such as the IRM. A final experiment on a Cora data set for paper topic classification shows the improvement of ARE over RESCAL in both predictive power and runtime performance, since ARE requires a significantly lower rank

    The State of the Art in Multilayer Network Visualization

    Get PDF
    Modelling relationships between entities in real-world systems with a simple graph is a standard approach. However, reality is better embraced as several interdependent subsystems (or layers). Recently the concept of a multilayer network model has emerged from the field of complex systems. This model can be applied to a wide range of real-world datasets. Examples of multilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domain of graph visualization there are many systems which visualize datasets having many characteristics of multilayer graphs. This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only for researchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as well as those developing systems across application domains. We have explored the visualization literature to survey visualization techniques suitable for multilayer graph visualization, as well as tools, tasks, and analytic techniques from within application domains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future research directions for addressing them

    The State of the Art in Multilayer Network Visualization

    Get PDF
    Modelling relationship between entities in real-world systems with a simple graph is a standard approach. However, realityis better embraced as several interdependent subsystems (or layers). Recently, the concept of a multilayer network model hasemerged from the field of complex systems. This model can be applied to a wide range of real-world data sets. Examples ofmultilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domainof graph visualization, there are many systems which visualize data sets having many characteristics of multilayer graphs.This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only forresearchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as wellas those developing systems across application domains. We have explored the visualization literature to survey visualizationtechniques suitable for multilayer graph visualization, as well as tools, tasks and analytic techniques from within applicationdomains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future researchdirections for addressing them

    Computational Social Science: A Thematic Review

    Get PDF
    The explosion of social digital data and the concomitant increases in computational capabilities along the data analytics pipeline (data acquisition, storage and analysis) impact upon the possibilities and choices for conducting social research. This report examines the emerging research field called computational social science (CSS). The aim of this review is to offer insight into the shape of CSS, its questions and methodologies, and how these relate to and interact with different social science disciplines. Two searches and hand sorting identified 41 of the most highly cited publications. The papers were initially categorised into two main groups of papers: substantive-technical contributions and critical-review contributions. The groups were thematically analysed. As a validation and refinement exercise, a further search identified thirty of the most recent CSS papers, which were also categorised and analysed. The review focuses on the first 41 articles as well as several other relevant articles are discussed that were identified through citations, additional ad hoc searches, and personal conversations. The substantive-technical literature and critical-review literature can each be sub-divided into three groups, and findings from these six groups are described. In the discussion, we draw out points related to interdisciplinarity and potential implications of the findings for engagement research communities

    Integrating prior knowledge into factorization approaches for relational learning

    Get PDF
    An efficient way to represent the domain knowledge is relational data, where information is recorded in form of relationships between entities. Relational data is becoming ubiquitous over the years for knowledge representation due to the fact that many real-word data is inherently interlinked. Some well-known examples of relational data are: the World Wide Web (WWW), a system of interlinked hypertext documents; the Linked Open Data (LOD) cloud of the Semantic Web, a collection of published data and their interlinks; and finally the Internet of Things (IoT), a network of physical objects with internal states and communications ability. Relational data has been addressed by many different machine learning approaches, the most promising ones are in the area of relational learning, which is the focus of this thesis. While conventional machine learning algorithms consider entities as being independent instances randomly sampled from some statistical distribution and being represented as data points in a vector space, relational learning takes into account the overall network environment when predicting the label of an entity, an attribute value of an entity or the existence of a relationship between entities. An important feature is that relational learning can exploit contextual information that is more distant in the relational network. As the volume and structural complexity of the relational data increase constantly in the era of Big Data, scalability and the modeling power become crucial for relational learning algorithms. Previous relational learning algorithms either provide an intuitive representation of the model, such as Inductive Logic Programming (ILP) and Markov Logic Networks (MLNs), or assume a set of latent variables to explain the observed data, such as the Infinite Hidden Relational Model (IHRM), the Infinite Relational Model (IRM) and factorization approaches. Models with intuitive representations often involve some form of structure learning which leads to scalability problems due to a typically large search space. Factorizations are among the best-performing approaches for large-scale relational learning since the algebraic computations can easily be parallelized and since they can exploit data sparsity. Previous factorization approaches exploit only patterns in the relational data itself and the focus of the thesis is to investigate how additional prior information (comprehensive information), either in form of unstructured data (e.g., texts) or structured patterns (e.g., in form of rules) can be considered in the factorization approaches. The goal is to enhance the predictive power of factorization approaches by involving prior knowledge for the learning, and on the other hand to reduce the model complexity for efficient learning. This thesis contains two main contributions: The first contribution presents a general and novel framework for predicting relationships in multirelational data using a set of matrices describing the various instantiated relations in the network. The instantiated relations, derived or learnt from prior knowledge, are integrated as entities' attributes or entity-pairs' attributes into different adjacency matrices for the learning. All the information available is then combined in an additive way. Efficient learning is achieved using an alternating least squares approach exploiting sparse matrix algebra and low-rank approximation. As an illustration, several algorithms are proposed to include information extraction, deductive reasoning and contextual information in matrix factorizations for the Semantic Web scenario and for recommendation systems. Experiments on various data sets are conducted for each proposed algorithm to show the improvement in predictive power by combining matrix factorizations with prior knowledge in a modular way. In contrast to a matrix, a 3-way tensor si a more natural representation for the multirelational data where entities are connected by different types of relations. A 3-way tensor is a three dimensional array which represents the multirelational data by using the first two dimensions for entities and using the third dimension for different types of relations. In the thesis, an analysis on the computational complexity of tensor models shows that the decomposition rank is key for the success of an efficient tensor decomposition algorithm, and that the factorization rank can be reduced by including observable patterns. Based on these theoretical considerations, a second contribution of this thesis develops a novel tensor decomposition approach - an Additive Relational Effects (ARE) model - which combines the strengths of factorization approaches and prior knowledge in an additive way to discover different relational effects from the relational data. As a result, ARE consists of a decomposition part which derives the strong relational leaning effects from a highly scalable tensor decomposition approach RESCAL and a Tucker 1 tensor which integrates the prior knowledge as instantiated relations. An efficient least squares approach is proposed to compute the combined model ARE. The additive model contains weights that reflect the degree of reliability of the prior knowledge, as evaluated by the data. Experiments on several benchmark data sets show that the inclusion of prior knowledge can lead to better performing models at a low tensor rank, with significant benefits for run-time and storage requirements. In particular, the results show that ARE outperforms state-of-the-art relational learning algorithms including intuitive models such as MRC, which is an approach based on Markov Logic with structure learning, factorization approaches such as Tucker, CP, Bayesian Clustered Tensor Factorization (BCTF), the Latent Factor Model (LFM), RESCAL, and other latent models such as the IRM. A final experiment on a Cora data set for paper topic classification shows the improvement of ARE over RESCAL in both predictive power and runtime performance, since ARE requires a significantly lower rank
    corecore