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This paper introduces a mechanism to recover traceability links between the requirements and
logical models in the context of critical systems development. Currently, lifecycle processes are

covered by a good number of tools that are used to generate di®erent types of artifacts. One of the

cornerstone capabilities in the development of critical systems lies in the possibility of auto-

matically recovery traceability links between system artifacts generated in di®erent lifecycle
stages. To do so, it is necessary to establish to what extent two or more of these work products are

similar, dependent or should be explicitly linked together. However, the di®erent types of arti-

facts and their internal representation depict a major challenge to unify how system artifacts are
represented and, then, linked together. That is why, in this work, a concept-based representation

is introduced to provide a semantic and uni¯ed description of any system artifact. Furthermore, a

traceability function is de¯ned and implemented to exploit this new semantic representation and

to support the recovery of traceability links between di®erent types of system artifacts. In order
to evaluate the traceability function, a case study in the railway domain is conducted to compare

the precision and recall of recovery traceability links between text-based requirements and

logical model elements. As themain outcome of this work, the use of a concept-based paradigm to

represent that system artifacts are demonstrated as a building block to automatically recover
traceability links within the development lifecycle of critical systems.

Keywords: Software traceability; software system artifact representation; software reuse.

1. Introduction

Critical software systems are those featured by the concept of safety [1] and whose

failure could imply loss of life or environmental damage. These systems face
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(1) Data and information of every system artifact should be easily shared between

all stakeholders and people involved in the development process and,

(2) Since system artifacts are designed and developed by human beings, there is an

intrinsic necessity of natural language processing (NLP) to support some tasks

such as naming or searching. People use natural language to express their

needs, to write requirements, to design models and to communicate ideas, so it

real complexity management issues [2] within their development lifecycle. 
More speci¯cally, in many cases, thousands of software based work products are 
delivered in di®erent stages, following the classical \decomposition integration" Vee 
model lifecycle.

In this context, Model Driven Engineering (MDE) methods [3] through the Model

Driven Architecture (MDA) [4], Model Driven Development (MDD) [5] or Model

Based Systems Engineering (MBSE) [6], Requirements Driven Engineering (RDE) or 
Model Driven Requirements Engineering (MDRE) are some of the main approaches 
designed for easing and automating the development lifecycle of complex systems. All 
these methods look for elevating the meaning of information resources with the aim of 
easing the mapping, communication and exchange of data and information between 
the di®erent development stages. They use as a ¯rst class member a type of system 
artifact models, that are the main information exchange unit while other types of 
system artifacts such as requirements are arti¯cially wrapped within a model but 
without a real exploitation of the information contained in their content.

Furthermore, a development lifecycle also comprises a plethora of people, tools 
and engineering methods with di®erent objectives, experience, background and 
budget implying that a huge amount of time is usually spent trying to coordinate the 
whole development process. Therefore, the major objective of conceiving the system 
as a collection of inter connected modules, entities or system artifacts that are 
generated in di®erent stages, activities or processes applying di®erent engineering 
methods is becoming a major challenge [7].

Accordingly, one of the most relevant problems lies in the recovery of traceability 
[7] links between this vast amount of work products (system traceability). Trace
ability allows engineers to track inter /intra dependencies in each subsystem or 
component. Regardless the type of development methodology [8], system traceability 
[7, 9] is a key enabler to verify and validate the system. The automatic creation of 
mappings between di®erent system artifacts can help to detect and anticipate po
tential risks or to perform change impact analysis processes. Besides, traceability is 
also required in critical systems for certi¯cation purposes [10].

As a naïve example, a requirement speci¯cation can contain a set of requirements 
(hundreds or even thousands); every requirement is linked to a set of models 
(functional blocks in descriptive models) that can be developed through simulations 
or pieces of source code (analytical models). Afterward, a process is carried out to 
check that every requirement is veri¯ed through a set of test cases. Although this is a 
very simple example of a development process, two major issues can be found:
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is obvious that natural language is the ¯rst class member in the development

lifecycle.

In order to address the ¯rst issue, initiatives like the ISO STEP 10303 or the Open

Services for Lifecycle Collaboration (OSLC) were de¯ned to tackle some of the

existing needs regarding interoperability and integration in the Software and Sys

tems Engineering discipline. Both initiatives o®er a family of speci¯cations (leaded

by industry vendors) to model shared resources between applications reusing

web based standards and delivering robust products through the collaboration of

development and operational tools [11]. For instance, the OSLC Requirements Man

agement (RM) speci¯cation de¯nes some properties such as oslc rm:elaboratedBy,

oslc rm:speci¯edBy, oslc rm:a®ectedBy, oslc rm:trackedBy or oslc rm:imple

mentedBy that are expected to be used by development tools to link requirements to

other system artifacts such as models or test cases. Although it includes properties

to link di®erent system artifacts, there are no speci¯c services, just a speci¯cation [12],

to implement entity reconciliation processes [13] (\identify elements that represent

the same entity or identify elements that are similar but does not correspond to the

same entity") and, thus, to link together di®erent work products.

Second, if natural language is assumed as a ¯rst class member of any methodology

or development process, common problems dealing with natural language such as

misspelling errors, use of acronyms, ambiguities or inconsistencies will be found.

Moreover, if it is assumed that the ¯rst system artifact is usually a stakeholder

speci¯cation that will be exploited generating a system requirements speci¯cation

creating also a set of functional and nonfunctional requirements (top down ap

proach), the need of dealing with natural language is even more relevant.

In a similar way, veri¯cation processes usually follow a bottom up approach

checking functional, nonfunctional, system and stakeholder requirements. Although

some techniques have emerged to support the implementation of this double process

of creating and verifying/validating requirements speci¯cations, the use of a trace

ability matrix [14, 15] is a widely accepted practice to map and trace system artifacts

at di®erent levels of abstraction. However, the automatic creation of a traceability

matrix is not an easy task. In the speci¯c case of requirements, it also implies the need

of processing domain speci¯c natural language descriptions. This situation leads us

to simplify the problem of requirements traceability to a process of mapping two

di®erent textual descriptions. Furthermore, and considering that software critical

systems are developed in a human oriented environment, traceability can also be

generalized as a process of mapping two descriptions (requirement–requirement,

requirement model, requirement test, requirement any system artifact) through

techniques such as pattern matching, search or recommendation. However, to enable

the possibility of linking di®erent types of system artifacts, it is also necessary to

provide a common representation model.

In this context, the main contribution of this paper lies in the promotion of system

artifacts such as requirements, from an informal (text based) to a formal
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The remainder of this paper is structured as follows. Section 3 de¯nes the role of

ontologies to represent concept based system artifacts and a traceability function is

de¯ned as a scenario of an entity reconciliation process. Afterward, Sec. 4 presents a

case study in the railway domain comparing the text based and concept based

techniques for system traceability including an analysis of robustness. Section 5

discusses the results and limitations of the experimentation. Section 6 reviews the

state of the art in the context of systems traceability covering the main methods and

techniques in the ¯eld of entity reconciliation and matching. Finally, Sec. 7 draws the

main conclusions and future work.

2. Concept-Based Representations of System Artifacts

In this section, a review of the concept of ontology is introduced to situate the notion

of a concept based representation of a system artifact. Afterward, the application of

ontologies is presented as a technique to author system artifacts.

Pattern p1 The hStakeholderi shall be able to hDeceleration Capabilityi.
Attributes hStakeholderi: driver

hDeceleration capabilityi: brake
Requirement r1 The driver shall be able to brake.

Pattern: p2 Whenever the hsystem j subsystem j componenti htriggeri, the hsystem j subsystem
j componenti shall hDeceleration Capabilityi
in hquantitative valuei hunit of measurementi.

Attributes hsystem j subsystem j componenti: pedal of the brake, car, etc.
htriggeri: be pressed

hquantitative valuei: a number

hunit of measurementi: ms

Requirement r2 Whenever the pedal of the brake is pressed, the car shall decelerate in 500ms.

representation (concept based) bridging the gap between natural language and a 
domain speci¯c vocabulary (concepts) through the use a knowledge based layer [16] 
identifying terms and entities [17]. This multi layered and concept driven approach 
is presented to also support the design and creation of pattern based artifacts (a set 
of interlinked concepts) and to enable the automatic recovery of traceability links 
between system artifacts.

As a motivating example, see Table 1, two types of requirements and patterns are 
outlined: (1) a stakeholder pattern p1 (user need) and (2) a speci¯c system pattern p2 

(system requirement). These patterns build a traceability model that is used to align 
requirements at a particular level of detail to other requirements at a di®erent level of 
detail through a natural language pattern matching process that automatically 
generates traceability links, see Fig. 5. Once a requirement is linked to a pattern, the 
traceability discovering process becomes straight forward and a traceability matrix 
between two types or requirements can be easily generated.

Table 1. Naïve examples of pattern-based requirements.
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2.1. Background definitions 

Ontologies are commonly used to model domain knowledge under a concrete syntax 
and logic formalism. Some of the classical definitions [18, 19] describe a formal on 
tology as a specification of a conceptualization; that is, as a set of concepts (classes), 
attributes and relationships aiming to share and reuse knowledge. 

In the context of system artifacts management, the use of an ontology can help to 
restrict the concepts that can be used to describe and represent a system artifact 
from all, lexical, syntax and semantic/ category levels. In this paper, an application of 
the classical concept of ontology is interpreted as a layered knowledge framework, see 
Fig. 1. 

( Inference Layer ) 
( Formalzadon Lay« ) 
( Patterns Layer 

( ----------~) 
Domain 11 .......... 

(c lrwalldPOSelementi ) controlledVocabula,y ( POSetem•nts ) ) 

Fig. 1. Layers of an ontology-driven approach to guide requirements writing. 

• Con trolled vocabulary layer contains all the terms with a specific meaning in a 
domain. 

o Part-of-Speech (POS) elem en ts layer includes all those terms that are part 
of the speech and are used to build a domain based terminology such as pre 
positions, conjunctions, articles, etc. 

o Invalid POS e lem e nts is the set of terms that should be avoided in system 
artifact descriptions to reach a high quality representation. 

• Domain t hesaurus layer is comprised of those concepts and terms that are 
relevant for a domain but including semantic relationships such as hierarchical 
relationships (e.g. broader/narrower) or composition (e.g. part of/whole part) . 

• Pattern layer defines the grammar, structure, to create concept based system 
artifact representations. It makes use of the existing definitions (concepts) by 
exploiting semantic relationships (e.g. synonymy or part of) . 

• Form alizatio n layer is the layer in charge of managing semantic relationships 
and exploiting the underlying knowledge [20, 21] that has been formalized through 
concepts and relationships. 

• Inference layer represents the rules that can be used to validate or classify the 
existing knowledge or to infer new knowledge items according to the underlying 
data model ( e.g. a semantic graph) and a certain type of logics. In some context 
such as expert systems, this layer corresponds to the use of a semantic based 
reasoner or a rule based engine. 



a. Identify the concepts used to create a system artifact, e.g. a requirement text, a

class name, etc.

b. Model and automatic processing of the structure (grammar) of a system arti

fact to help in the transformation and reuse of system artifacts. For instance, to

automatically derive test cases or generate documentation.

c. Formalize, as a semantic graph, any system artifact content to perform pro

cesses for quality checking.

. For continuous quality assessment of individual system artifacts:

a. Knowledge for calculating correctness metrics (system artifact level).

b. Knowledge for calculating consistency metrics (system level).

c. Knowledge for calculating completeness (system artifact and system levels).

. For traceability purposes, recovery of traceability links by exploiting the under

lying semantics (concepts and relationships) used to describe system artifacts. In

this case, the process is usually based on matching similar underlying graphs (since

every piece of knowledge is intrinsically modeled as a semantic graph).

As a main conclusion, the reuse of a knowledge base, such as a domain ontology,

created by domain experts under a speci¯c context can boost some processes such as

authoring, quality assessment, traceability, etc. since any activity is driven by do

main knowledge overcoming the intrinsic issues when dealing with natural language

and elevating the meaning of information resources from pure lexical descriptions to

concept based representations.

2.2. Application of ontologies to create concept-based representations

of system artifacts

Building on the previous section, it may be possible to create a set of patterns or

concept based structures [23] representing the internal content of every type of

system artifact such as a requirement or a model. Assuming patterns are built on top

of a knowledge base such as a domain ontology, the author of a system artifact may

be able to select a type of system artifact and its corresponding pattern avoiding

lexical errors or misleading or wrong structures from both perspectives syntax and

semantics.

Furthermore, patterns as a kind of a restricted concept based structure are

comprised of di®erent potential concepts to drive the selection of terms based on the

exploitation of the lexical and semantic relationships established in the knowledge

The main application of this notion of ontology in the context of Systems Engi
neering and system artifact management [22] may provide some advantages in dif
ferent lifecycle stages:

. For the following system artifact authoring:
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base. Depending on the type of authoring, two main techniques can be identi¯ed: (1)

¯ll the gap and (2) free writing systems.

(1) Fill the gap systems. It is supported by tools that show two di®erent types of

items on the screen: (1) labels for the ¯xed parts of the statement and (2)

textboxes for the rest of the elements. Thus, engineers are only able to ¯ll the gap

in the proper slots with restricted information according to the need of every

item.

(2) Free writing system. In this kind of tools, engineers face a complete blank screen

with no pre written information. Then, the engineer can select the most suitable

pattern for a system artifact and a template is prompted with the following

information:

a. All the items (slots) of the selected pattern. This can be seen as a kind of

grammar or syntax of the selected pattern.

b. An example of use based on the selected pattern/grammar.

c. According to the semantics of the current item, the authoring tool can fetch

from the ontology a list of the most suitable concepts and terms. Further

more, feedback is always given to the engineer since a continuous analysis

process is being made to know if the current text is matching to the selected

pattern.

The main consequence of the type of system artifact authoring technique is that

although ¯ll the gap systems constraint part of the domain of discourse avoiding

some of the issues that arise when dealing with natural language, the reality is that

those ¯xed slots are far from the typical human authoring technique and it prevents

a proper interactivity between the end user and an application.

On the other hand, those systems based on free writing but ontology driven keep

the same advantages of ¯ll the gap systems but including a more user friendly and

interactive way of writing. Moreover, other advantages can be outlined: (1) con

tinuous user feedback through warning messages that shows whether the current

system artifact is accomplishing with the structure of the selected pattern; (2) au

tomatic suggestion of concepts and terms through the exploitation of semantic

relationships in the knowledge base and (3) continuous quality assessment for every

system artifact and speci¯cation.

A pattern, a concept based representation, encapsulates then the rules for writing

and validating both a natural language statements and any other kind of structured

data.

A set of patterns for a type of system artifact provides a way to run a system

traceability process and to analyze the quality of the system under development by

comparing the internal structure of shared concepts and relationships.

The main bene¯ts of using a concept based representation like a pattern have

their origin in [23] and can be enumerated as follows: (1) an aid in articulation; (2)

uniformity of grammar; (3) uniformity of vocabulary; (4) ensuring essential
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of the current system artifact. The syntax tags come from the classi¯cation layer of

the ontology, namely Verbs, Nouns, etc.

. Semantic restriction. A speci¯c semantic category must be found at a speci¯c

position of the current system artifact. The semantic types come also from the

classi¯cation layer of the ontology.

. Syntax þ Semantic restriction. A combination of both classi¯cation dimensions

must be found at a speci¯c position of the current system artifact.

. Sub pattern restriction. A combination of terms, matching a sub pattern must be

found at a speci¯c position of the current system artifact. Most of the times, a

pattern is made up of a combination of di®erent sub patterns. This approach

allows us to represent whatever sub structure providing support for any combi

nation of sub patterns at any level. Therefore, a sub pattern may also include

sub sub pattern slots. This way of organizing structure allows us de¯ning system

artifact patterns at a high level of abstraction. Figure 2 depicts a pattern com

prised of three di®erent sub patterns (the sub pattern slots in this example are not

recursively represented as sub sub patterns, but it could be so if needed).

Fig. 2. Example of a pattern and sub-patterns restrictions for writing a requirement.

characteristics; (5) easier identi¯cation of repeated and con°icting requirements; (6) 
one stop control over expression and (7) protection of classi¯ed information.

Therefore, a pattern is simply a restricted structure: a sequential list of restric
tions (a.k.a. slots) at the syntactic and/or semantic level that will be used to match 
any input against any other type of system artifact. Restrictions can be of several 
types, and have di®erent properties (optional, compulsory, OR restrictions, etc.):

. Term restriction. A term must be found at a speci¯c position of the system artifact.
Those terms are coming from the controlled vocabulary layer, either compound 
words or simple words.

. Syntax restriction. A speci¯c syntax category must be found at a speci¯c position

8



Building on the previous de¯nitions and applications on the use of patterns, an

example of creating system artifacts using patterns, requirements from Table 1,

as presented in Figs. 3 and 4. More speci¯cally, Fig. 4 depicts a requirement con

taining syntax restrictions and a semantic restriction in the concept \Pedal". These

pattern based requirements have been designed and implemented using the

Fig. 4. Partial view of an example of a pattern-based system requirement.

Fig. 3. Example of a pattern-based stakeholder requirement.
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T : r ik � Rj � C ! fðr ik; rjk; cÞg=r ik 2 Ri ^ rjk 2 Rj ^ c 2 R: ð1Þ

This de¯nition can be generalized and applied to an entity reconciliation process

between two di®erent sets of resources, Ri and Rj as the following equation also

shows:

T : Ri � Rj � C ! fðrik; rjk; cÞg=rik 2 Ri ^ rjk 2 Rj ^ c 2 R: ð2Þ

Given the two previous de¯nitions, a system traceability process is an extension of

this mapping process in which two system artifacts, Ri and Rj, are used as source and

target sets of resources. P is the set of patterns that have been designed to seman

tically represent such system artifacts using a set of domain vocabularies O, com

monly one ontology will be enough to represent domain knowledge.

The output of this function will be again a set of mappings fðr ik; rjk; pi; pj; cÞg
where r ik represents an element in the source system artifact represented through the

pattern pi, r
j
k represents an element in the target system artifact represented through

the pattern pi and c is a value of con¯dence.

Trequirements : Ri �Rj � P �O� C ! fðr ik; rjk; pi; pj; cÞg=rik 2 Ri

^ rjk 2 Rj ^ fpi; pjg 2 P ^ c 2 R: ð3Þ

Thus, it is possible to recover traceability links and to create an implicit trace

ability matrix by means of mapping patterns, see Fig. 5. In this example, a trace

ability process between di®erent types of requirements is presented to motivate the

use of ontologies as a technique to overcome the common issues when dealing with

natural language.

Although this de¯nition of a system traceability process enables us the possibility

of elevating the meaning of text based requirements, models or any other system

artifact to a semantic based representation, the main and common drawback of this

KnowledgeMANAGER tool, \an ontology management system allowing to de¯ne 
and manage the main semantics of system engineering artifacts. . .".

3. A Semantic Traceability Model for System Artifacts

Since ontologies can help engineers to drive the authoring and management of system 
artifacts and to intrinsically support system traceability, natural language descrip
tions and any other type of information such as a model, must be elevated to a 
concept based representation. In this light, a system traceability function can be 
understood as an entity reconciliation process. It then be de¯ned as a function T that
for a given resource r ik, a target set of resources Rj and a context C (containing 
information about NLP such as stop words, acronyms, etc.) will generate a set of
mappings fðr ik; r jk; cÞg where the input resource and other resource r jk will be linked 
together under a certain value of con¯dence c as the following equation shows:
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approach lies in the necessity of human validation to ensure that the mapping is

100% correct.

However, the possibility of suggesting links between system artifacts by exploiting

the semantic relationships in a domain ontology can dramatically boost the trace

ability of system artifacts. For instance, both the ISO STEP and OSLC family of

speci¯cations include properties that link resources, so, in order to boost the use of

both and take the most of a Linked Data environment, system traceability and entity

reconciliation are the cornerstone processes for delivering a real collaborative engi

neering environment.

3.1. Implementation: Technology and tools

Regarding the implementation of the presented approach, Fig. 6 shows the main

functional blocks and tools used to implement the traceability function. More spe

ci¯cally, the approach has been implemented on top of the CAKE (\Computer Aided

Knowledge Environment") API and it has been integrated as part of the commercial

tool Traceability Studio. New tool adapters to process di®erent types of system

artifacts have been implemented to interpret logical models in SysML coming from

IBM Rhapsody and to extract text from PDF ¯les. To create a domain ontology

following the principles established in previous sections, the KnowledgeManager tool

has been used to de¯ne the terminology, taxonomy and patterns required to repre

sent knowledge in the domain of the case study.

Fig. 5. Example of mapping between text-based requirements and patterns to automatically generate a
traceability matrix.
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4. Experimentation: A Case Study to Recover Traceability Links

between a System Requirement Speci¯cation and Logical Models

To illustrate the approach for system traceability presented in this paper, a case

study based on the comparison of precision and recall measures of the two approa

ches to create traceability links (text based and concept based) in the railway do

main is provided.

4.1. Research design

A traceability link discovery process can be seen as a search system in which given a

query (a source element of a system artifact, e.g. a requirement) and a set of resources

(a target set of elements of a system artifact, e.g. elements in a SysML model), it is

necessary to establish which is the best set of mappings for the source system artifact

in the target set of resources.

In this experiment, we have selected some public sources of requirements and

SysML models. More speci¯cally, The European Integrate Railway Radio Enhanced

Network (EIRENE) System Requirements Speci¯cation (version 15.4.0), has been

selected as primary source of requirements. This document includes a set of

requirements for interoperability aspects of the rail system within the European

Fig. 6. Functional blocks and tools used to implement the traceability function.
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Community. Furthermore, it contains functional and nonfunctional requirements for

railroad radio systems.

On the other hand, as target resources, some SysML models created with the IBM

Rhapsody tool have been created to represent the break down structure provided by

the IRIS 5 level product scopes. These models are a logical representation of the

documentation developed by International Railway Industry Standard and provides

a break down structure used as guidance for product auditing process of vehicles that

move on a railway for example locomotives, railroad cars, coaches and wagons.

Given this context, the following steps to de¯ne the elements of the requirements

traceability function Tsystem traceability, have been carried out:

(1) Design a domain based vocabulary, O, to represent the concepts and relation

ships that will be used to represent system artifacts in the railway domain.

(2) Create set of patterns PR and PSRR=PR \ PSRR ¼ ;, for representing both the

system requirements speci¯cation where R represents the set of system

requirements and SRR is the set of model elements for the speci¯cation R. Due to

the fact that patterns for a particular product or project in the Systems Engi

neering domain are usually private, a public set of 18 patterns developed within

the CESAR project [24, 25] has been selected, adapted and extended to the this

case study, see Table 2.

(3) Create a set of system requirements based on the previous patterns,

R ¼ fR1;R2; . . . ;Rk; . . . ;Rmg, where #Rk represents the number of system

Table 2. General patterns to write requirements de¯ned in the

frame of the European research project CESAR.

List of patterns for writing requirements

hsystemi may hactioni
hsystemi may hactioni hentityi
hsystemi may be hstatei
hsystemi shall hactioni
hsystemi shall hactioni hentityi
hsystemi shall allow hentityi to be hstatei
hsystemi shall be hentityi
hsystemi shall have hentityi
hsystemi shall have hquality factori or at least hquantityi huniti
hsystemi shall have hquality factori or at the most hquantityi huniti
hsystemi shall not hactioni
hsystemi shall not hactioni hentityi
hsystemi shall not allow hactioni
hsystemi shall not allow hactioni hentityi
hsystemi shall not allow hentityi hactioni
huseri shall be able to hactioni
hsystemi shall be hstatei
hsystemi shall be hstatei hquantityi huniti

13



requirements in the speci¯cation Rk. In this case, there is only one requirement

speci¯cation presented in Table A.1 (Appendix A).

(4) For every system requirement speci¯cation, Rk, de¯nes a set of model elements

based on the previous patterns, SRRk
, where #SRRk

represents the number of

model elements in the speci¯cation #SRRk
. In this case, the set of model ele

ments is presented in Table B.1 (Appendix B).

(5) Run the traceability function implemented on top of the CAKE API to discover

links between the model elements in SRRk
and the requirements in Rk. For every

requirement in RkSRRk
, search which is the best set of mappings in SRRk

Rk. To

do so, two matching methods have been used: (1) text based and (2) concept

based (semantic patterns).

(6) Extract measures of precision (P Þ, recall (RÞ and the F1 score (the harmonic

mean of precision and recall) making a comparison of the expected and gener

ated results.

Being P ¼ tp=tpþ fp, R ¼ tp=tpþ fn and F1 ¼ 2P �R=P þ R, where given

a requirement within a speci¯cation, Rk, it is used as a query, and the model

elements in SRRk
, are then used as target resources. The interpretation of the

metrics is as follows: tp (true positive) is \the number of model elements in

SRRk
Rk that have been retrieved and represent correct mappings", fp (false

positive) is \the number of model elements in SRRk
Rk that have been retrieved

and represent incorrect mappings", tn (true negative) is \the number of model

elements in SRRk
Rk that have not been retrieved and represent incorrect

mappings" and fn (false negative) is \the number of model elements in SRRk
Rk

that have not been retrieved and represent correct mappings".

(7) Check the robustness of the comparison by performing statistical hypothesis

testing.

4.2. Results

Table 3 shows the metrics of precision, recall and the F1 measure of the two di®erent

approaches. The ¯rst two column corresponds to the test identi¯er; the next three

columns contain the metric values when the text based approach is executed to

discover traceability links. After that, the second set of columns shows the metric

values when a concept based approach is executed using an ontology as underlying

knowledge for representing all system artifacts.

According to the results, the concept based approach is in general better than the

text based in both precision and recall, as Fig. 7 depicts. The main reason of this

behavior is since concept based approaches can take advantage of exploiting se

mantic relationships and concepts while the text based approach can only perform

string comparisons. However, the precision values are still low and higher values

would be expected. This is because the context of the experiment (stop words,

acronyms, etc.) is quite generic and a more personalized version of the ontology for

the railway domain could imply better results in terms of precision.
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On the other hand, a statistical hypothesis testing has been carried out to dem

onstrate if results will vary depending on the type of method used to discover

traceability links. To do so, a comparison of the precision values of both methods

(text based and concept based) has been formulated through the next hypotheses:

Table 3. Individual precision, recall and F1 metrics for each test case and method to recovery trace-

ability links between elements of the two selected system artifacts: Requirements and SysML models.

Text-based traceability recovery process Concept-based traceability recovery process

Test case P R F1 P R F1

t1 0.00 0.00 0.00 0.20 0.33 0.25

t2 0.00 0.00 0.00 0.50 0.40 0.44
t3 0.00 0.00 0.00 0.03 1.00 0.06

t4 1.00 0.50 0.67 0.03 1.00 0.06

t5 0.00 0.00 0.00 1.00 1.00 1.00
t6 0.00 0.00 0.00 1.00 1.00 1.00

t7 0.29 1.00 0.44 0.25 1.00 0.40

t8 0.00 0.00 0.00 0.00 0.00 0.00

t9 0.00 0.00 0.00 1.00 0.33 0.50
t10 0.08 1.00 0.15 0.07 1.00 0.14

t11 0.00 0.00 0.00 0.00 0.00 0.00

t12 0.00 0.00 0.00 0.00 0.00 0.00

t13 0.00 0.00 0.00 0.00 0.00 0.00
t14 1.00 0.67 0.80 0.67 0.67 0.67

t15 0.50 1.00 0.67 0.33 1.00 0.50

t16 1.00 0.50 0.67 1.00 1.00 1.00
t17 0.50 0.67 0.57 0.60 1.00 0.75

t18 0.09 1.00 0.17 0.08 1.00 0.14

t19 1.00 0.50 0.67 1.00 1.00 1.00

t20 1.00 1.00 1.00 0.67 1.00 0.80
t21 0.33 0.50 0.40 0.50 1.00 0.67

t22 0.00 0.00 0.00 1.00 1.00 1.00

t23 0.67 1.00 0.80 0.50 1.00 0.67

t24 1.00 0.50 0.67 1.00 1.00 1.00
t25 1.00 1.00 1.00 0.67 1.00 0.80

t26 0.54 1.00 0.70 0.50 1.00 0.67

t27 0.15 0.67 0.25 0.21 1.00 0.35
t28 0.08 0.50 0.13 0.14 1.00 0.25

t29 0.00 0.00 0.00 0.50 1.00 0.67

t30 0.40 1.00 0.57 0.36 1.00 0.53

t31 0.75 0.75 0.75 0.80 1.00 0.89
t32 1.00 1.00 1.00 1.00 1.00 1.00

t33 1.00 1.00 1.00 0.50 1.00 0.67

t34 0.50 1.00 0.67 0.33 1.00 0.50

t35 0.86 1.00 0.92 0.75 1.00 0.86
t36 0.86 1.00 0.92 0.75 1.00 0.86

t37 0.08 1.00 0.15 0.07 1.00 0.14

t38 1.00 0.67 0.80 0.67 0.67 0.67

t39 0.67 1.00 0.80 0.50 1.00 0.67
t40 0.20 1.00 0.33 0.18 1.00 0.31

t41 0.95 1.00 0.97 0.90 1.00 0.95

Tavg 0.45 0.60 0.45 0.49 0.84 0.56
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H0: There is no change in the calculation of precision when applying a text based or

a concept based approach.

H1: There is change in the calculation of precision when applying a text based or a

concept based approach.

In order to run the statistical hypothesis testing, the F Test with alpha 0.05 has

been used to ensure that variances are unequal (there is statistical signi¯cance). After

that, the t Test of two sample assuming unequal variances has been performed with

alpha 0.05 to assert whether Ho is rejected or not. According to Table 4, Ho can be

rejected, since the t Stat is less than \�t Critical (two tail)". In conclusion, the

concept based method exploiting semantic relationships can improve in terms of

precision the problem of discovering links between two types of system artifacts.

Table 4. Statistical hypothesis testing, the t-Test of two-sample assuming
unequal variances to compare test-based versus concept-based traceability

link discovery processes for precision metric.

Concept-based traceability
recovery process

Text-based traceability
recovery process

Mean 0.4945 0.4509

Variance 0.1255 0.1742
Observations 41 41

Hypothesized 0

Df 78
t Stat 0.5094

PðT < tÞ one tail 0.3060

t Critical (one tail) 1.6646

PðT < tÞ two tail 0.6119
t Critical (two tail) 1.9908

Fig. 7. Precision metrics for each test case and method to recovery traceability links between elements of

the two selected system artifacts: Requirements and SysML models.

16



5. Discussion and Research Limitations

Some key limitations of the presented work must be outlined. The ¯rst one relies on

the sample size; our research study has been conducted in a closed world and more

speci¯cally, requirements have been extracted from an existing speci¯cation in the

railway domain. That is why, results in a broad or di®erent scope could change, in

terms of robustness, since more complex relationships in the domain ontology and

patterns could be designed for the same purpose. However, the research methodol

ogy, the design of experiments and the creation of a kind of benchmark for testing

system traceability processes have been demonstrated to be representative and

creditable.

Building on the previous comment, we cannot either ¯gure out the internal

budget, methodologies, domain vocabularies, experience and background of speci¯c

domain experts to create and trace requirements. We merely observe and re use

existing public and on line knowledge sources to provide an accurate traceability link

discovery process for system artifacts traceability. Finally, we have also identi¯ed the

possibility of adding a new variable to the experiment regarding the quality of a

requirements speci¯cation. Thus, it should be possible to state that the higher

quality a requirements speci¯cation is, the easier and more accurate the traceability

process is.

6. Related Work

The traceability of system artifacts within the Software and Systems Engineering

process is not a new topic (mainly focusing on requirements traceability) and it has

been addressed following di®erent approaches [8] but mainly focusing on text based

artifacts such as requirements. The CESAR project [24, 25], an ARTEMIS European

research project, tackled this problem by de¯ning statement based requirements

comprising di®erent concepts modeled in an ontology, using DODT as a tool for

ontology management. They de¯ned several concept based templates for those

requirements in which they were interested in, easing and restricting the writing of

requirements. Thus, the traceability process was based on comparing the use of the

di®erent concepts in each statement.

The International Council of Systems Engineering (INCOSE) also keeps a track of

the most used requirements traceability management tools.a However, this list is not

up to date, it is focusing on requirements traceability and some of the links are

broken. Besides, it mainly contains commercial tools in which the strategy to trace

system artifacts is not completely described. For instance, as an example, Reqtify is a

commercial traceability tool based on regular expressions [26], mainly working for

natural language resources.

In the Software and Systems Engineering discipline, it is also possible to ¯nd

solutions based on the use of logics [27] or methodologies such as [28] focusing on a

ahttp://www.incose.org/productspubs/products/setools/tooltax/reqtrace tools.html.
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particular type of system (embedded systems) using models [29, 30] as basic unit for 
traceability.

On the other hand and addressing the underlying problem of traceability (NLP 
and entity matching), a good number of works can be found in the databases area to 
automatically create linkage rules [31] between entities, to perform entity matching 
processes [32, 33] or to ¯nd duplicate records [34] and relationships [35].

In the Semantic Web area and due to the emerging use of Linked Data, some 
works [36] have followed a similar approach to the ones already developed in the 
databases domain but discovering mappings between two RDF based resources 
under a certain threshold of con¯dence. Here, it is necessary to distinguish two types 
of mappings: (1) T Box mapping (between classes within an ontology) and (2) A Box 
mapping (between instances). In the ¯rst case, the PROMPT algorithm [37] can 
suggest potential mappings and alignment of two classes by comparing text 
descriptions (names, labels and descriptions), tags or keywords (based on a con
trolled vocabulary) or the internal structure of the classes (number and type of the 
properties, common super classes/subclasses), this last approach was also used in the 
Feature based entity matching model [38].

In this sense, a language for creating mappings [39, 40] between semantic web 
services was designed to automatically create choreographies and orchestrations of 
web services but it was also based on discovering and selecting potential services 
using keywords. The problem of entity reconciliation in ontologies has also attracted 
a lot of research works and the Ontology Alignment Evaluation Initiative (OAEI)

[32] was launched to aggregate all works in this area and providing an one stop site 
for researchers and practitioners looking for new techniques and benchmarks to test 
their algorithms. For instance, the RiMOM (Dynamic Multistrategy Ontology 
Alignment Framework) framework [41], an approach to quantitatively estimate the 
similarity characteristics for ontology alignment based on string matching and 
structural properties or the CODI (Combinatorial Optimization for Data Integra
tion) framework [42], a probabilistic logical alignment system, are two other re
markable works in this area of ontology alignment.

In the second case, the LIMES (LInk discovery framework for MEtric Spaces) 
framework [43] and the Silk Server [44] also o®er an entity reconciliation system 
based on comparing textual descriptions and assuming that two similar resources will 
share a similar description. In both cases, given an RDF resource that must be 
aligned to a dataset, the tools generate a set of potential mappings under a certain 
threshold of con¯dence de¯ned by the user (human validation is required to ensure a 
100% of con¯dence). The SERIMI (Resource Description Similarity), framework [45] 
is other implementation of entity reconciliation based on string comparison and 
search on top of the Apache Lucene search engine. URI comparison [46], that is 
actually string comparison, is other approach that was used to discover links between 
similar RDF resources. Moreover, some Linked Data based domains such as e
Government, e Health or e Procurement have published works to solve speci¯c 
mapping problems such as product classi¯cations linking [47, 48], the Bioportal, etc.
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In conclusion, last times have seen the application of entity reconciliation tech

niques in the Semantic Web area to enable users to develop new services such as

faceted browsing, semantic search systems (entity recommendation) [49, 50] or

recommending systems [51–53] by applying existing techniques coming from the

databases domain and based on NLP techniques. Finally, some tools such as Apache

Stanbol or Open Re¯ne also o®er a suite of NLP based techniques to perform entity

reconciliation processes.

Since NLP based techniques and computational linguistics techniques are the

cornerstone to enable the mapping of entities in the aforementioned disciplines, a

very good number of works can be found dealing with natural language issues such as

misspelling errors [54] or name/acronym mismatches [55, 56]. These approaches can

be applied to solve general problems and usually follow a traditional approach of text

normalization, lexical analysis, POS tagging word according to a grammar and se

mantic analysis to ¯lter or provide some kind of service such as information/

knowledge extraction, reporting, sentiment analysis or opinion mining. Well estab

lished APIs such as NLTK [57] for Python, Lingpipe [58, p. 6], OpenNLP [59] or Gate

[60] for Java, WEKA [61], the Apache Lucene and Solr [62] search engines provide

the proper building blocks to build natural language based applications. In this light,

the analysis of social networks such as Twitter [63], the extraction of clinical terms

[64] for electronic health records, the creation of bibliometrics [65–67] or the iden

ti¯cation of gene names [68] to name a few have tackled the problem of entity

recognition [69], extraction and matching [70, 71] from raw sources [17]. Finally and

regarding pattern matching problems, some areas such as Biology [72], string based

pattern matching [73, 74] and studies about plagiarism [75] have designed algorithms

based on NLP and machine learning [76].

In conclusion, Table 5 outlines the main approaches for traceability in the Sys

tems Engineering discipline identifying that existing approaches are based on per

forming some entity matching algorithm. On the other hand, a very good body work

can be found in areas such as databases, Semantic Web and Linked Data as the basis

to provide advanced services of searching, recommendations, gene sequencing, etc.

Table 5. Summary of the main approaches for entity reconciliation and NLP techniques in di®erent
domains.

Discipline/Area/Domain Description (based on) References

Systems Engineering Regular Expressions [26]

Logics [27]

Models† [28 30]

Databases Linkage rules generation [31]
Entity matching [32, 33]

Find duplication records [34, 35]

Semantic Web and

Linked Data

Free text [32, 37, 41, 43 45, 47, 48]

Keywords [32, 37, 39, 43 45, 47, 48]

Structural Analysis [32, 37, 38, 40, 41, 45, 47, 48]
URI comparison [32, 37, 46]
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re using and extending existing NLP techniques. Obviously, system traceability can

be reached taking advantage of these existing approaches applying pattern matching

techniques to link system artifacts. Thus, the challenge of creating an integrated,

interoperable and collaborative environment for complex systems development will

become real. However, the automatic mapping between two system artifacts requires

human validation to become 100% correct, it is necessary to discover and suggest

potential mappings under a certain threshold of con¯dence to ease users the imple

mentation of traceability processes.

7. Conclusions and Future Work

This paper has introduced a semantic driven approach to represent system artifacts

by promoting textual descriptions or structured data to a semantic (concept based)

representation. More speci¯cally, the use of ontologies to guide the activity of

authoring requirements and logical models has been outlined as a cornerstone to

design concept based system artifacts. Furthermore, a system traceability function

has been de¯ned, implemented and integrated on top of the existing CAKE API.

Table 5. (Continued )

Discipline/Area/Domain Description (based on) References

String comparison and machine
learning

[76]

Statistics and Probability [42]

NLP and Computation

Linguistics

Some examples of NLP foundations

and existing techniques

[54 56]

NLP for pattern-matching String-based Pattern-matching Biology [68, 72], String matching
[73, 74], Plagiarism detection

[75]

Tools Some examples of tools based of

NLP techniques for entity rec-

onciliation

Survey of tools [36], Apache Lucene

and Solr [62], Apache Stanbol

[77], Open Re¯ne, NLTK [57],
Lingpipe [58, p. 6], OpenNLP

[59], Gate [60], WEKA [61]

Applications Some services that are taking ad-

vantage of the NLP techniques

Search systems (information ex-

traction and retrieval, web links

discovery, concept-based
search, etc.) [49, 50], Recom-

mendation-based systems

[51 53], Entity recognition [69]

and matching [17, 70, 71]

Domains Some application domains that are
taking advantage of the NLP

techniques

e-Procurement [47, 48], e-Health
[64], Bibliometrics [65 67], So-

cial Network Analysis [63], etc.

Notes: †http://www.asa.transport.nsw.gov.au/sites/default/¯les/asa/railcorp-legacy/disciplines/

allstandards/epd-0005.pdf.
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On the other hand, experiments have demonstrated that the creation of concept

based system artifacts containing concepts and semantic relationships is useful to

discover links between di®erent types of system artifacts at a di®erent level of ab

straction (system requirements and logical models).

Regarding the applicability of the results in the current context of Software and

Systems Engineering, traceability is considered a key process to boost collaborative

engineering easing the task of discovering and mapping similar artifacts, in this case

requirements, and to support the emerging set of ISO STEP and OSLC based spe

ci¯cations. Thus, the link discovery process can also be applied to link di®erent

resources if their textual descriptions or content are represented using a pattern

based approach. Although some methodologies have outlined the possibility of using

models as ¯rst class members to communicate ideas, etc., existing development

environments are human oriented being natural language the main type of com

munication. That is why, an approach based on exploiting domain knowledge can

ease tasks that go from system artifact authoring to write any kind of name, speci

¯cation, etc. overcoming the common issues when dealing with natural language

descriptions. In this light, the development lifecycle of a critical system can take

advantage of domain knowledge by elevating the meaning of textual descriptions

easing communications in a human oriented environment.

Therefore, collaboration or reduction of costs and time among others are side

e®ects of exploiting and re using domain knowledge in di®erent very time consuming

tasks such as traceability. On the other hand and regarding system artifact trace

ability, the aforementioned research limitations should be tackled to get better

results in terms of accuracy including new parameters such as quality with the aim of

delivering a real Linked Data environment in which the creation of links between

artifacts can be done e®ortless and with a high degree of con¯dence. Finally, we are

also contributing to the communities working on pattern and entity matching in the

area of Software and System Engineering by making publicly available the ontology

and the system artifacts used in the experimentation.

Acknowledgments

The research leading to these results has received funding from the H2020 ECSEL

Joint Undertaking (JU) under Grant Agreement No. 826452 \Arrowhead Tools for

Engineering of Digitalisation Solutions" and from speci¯c national programs and/or

funding authorities.

21



Appendix A.

Table A.1. Requirements used in the experiment as source resources.

Id Requirement

R1 A railway GSM network is also likely to have external interfaces to: (I) private railway ¯xed

networks; public operator networks; controller equipment; specialized railway systems

(e.g. train control systems).
R2 Enhanced multi-level precedence and pre-emption: This GSM speci¯cation is to be implemented in

order to achieve the high performance requirements necessary for emergency group calls. It is

also necessary to meet di®erent grades of service requirements for di®erent types of commu-

nications tra±c on the system (e.g. safety (train control system), operational and administrative
communications). (I)

R3 Location-dependent addressing: Train drivers need to be able to contact controllers and other sta®

at the push of a single button. As the train moves through di®erent areas, controllers are liable
to change. As a consequence it is necessary to provide a means of addressing calls from a train to

certain functions based on the location of the train. (I)

R4 Many trains employ multiple active traction vehicles. Where these vehicles are not connected by on-

train wiring, it shall be possible for a permanent radio connection to be established between each
of the active cabs. (I)

R5 Many trains employ multiple active traction vehicles. Where these vehicles are not connected by on-

train wiring, it shall be possible for a permanent radio connection to be established between each

of the active cabs. (I)
R6 The call will be established from the active cab of the lead traction vehicle. Each of the other cabs

on the train will be contacted using its functional number (registered by the other drivers prior

to the establishment of the call). The procedure for setting up a multi-party call is outlined in

Fig. 5. The multi-party call shall have \Railway operation" priority (see Sec. 10.2) and while
on-going a \multi-drivers" indication shall be displayed permanently at all Cab radios.

R7 On activation of the \call other drivers on the same train" function, the MMI shall provide addi-

tional guidance to the user in the establishment and management of a Multi-Party call.
R8 An emergency power supply should be provided for Cab radios which will enable the driver's radio

to continue to operate for a period of 6 h in the event of failure of the train's main power supply,

based on the following cycle (see Sec. 4.5.21): point-to-point calls 20%; group calls 5%; standby

75%.
R9 The driver and other in-cab equipment shall be protected against all electrical hazards arising from

EIRENE mobile equipment as de¯ned in [EN 50153].

R10 The following list catalogs the interfaces that should be provided by the Cab Radio to the on-train

systems: Train borne recorder; ERTMS/ETCS interface; Public Address; UIC Intercom; Dri-
ver's Safety Device; Other interfaces.

R11 The Operational radio user shall be protected against all electrical hazards arising from the mobile

equipment as de¯ned in [EN 50153].
R12 The User Identi¯er Number (UIN) shall be one of the following numbers (as identi¯ed by the CT):

Train Number (TN): a number given to a train by operational sta® for a particular journey.

This number shall be unique for the duration of the journey. Note. For certain TNs (e.g. 1234

and 123), a risk exists when dialing a number by keying in individual digits e.g. by the dis-
patcher.

R13 If a more accurate way of location determination is used, then position information shall be pro-

vided to the radio system which shall be used to associate the short code with the correct called

party subscriber number.
R14 A Railway emergency call is a high priority call for informing drivers, controllers and other con-

cerned personnel of a level of danger requiring all Railway movements in a pre-de¯ned area to

stop. Two types of Railway emergency calls are de¯ned: (I) Train emergency calls (for Railway
emergencies while not involved in Shunting operations); Shunting emergency calls (for Railway

emergencies while involved in Shunting operations).
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Appendix B.

Table A.1. (Continued )

Id Requirement

R15 The maximum power consumption of the Rolling Stock Components shall be 2500 kw
R16 The maximum power consumption of the Auxiliary systems shall be 40 kw

R17 The maximum power consumption of the Braking systems shall be 30 kw

R18 The maximum power consumption of the Heating, ventilating and air conditioning shall be 300 kw
R19 The maximum power consumption of the interiors shall be 23 kw

R20 The maximum power consumption of the passenger information system shall be 500w

R21 The Rolling stock component shall have one auxiliary system

R22 The Rolling stock component shall have one braking system
R23 The Rolling stock component shall have one cabinet

R24 The Rolling stock component shall have one cabling

R25 The Rolling stock component shall have one car body

R26 The Rolling stock component shall have one car body ¯tting
R27 The Rolling stock component shall have one communication system

R28 The Rolling stock component shall have one coupler

R29 The Rolling stock component shall have 20 doors
R30 The Rolling stock component shall have one Heating, ventilating and air conditioning system

R31 The Rolling stock component shall have one interior

R32 The Rolling stock component shall have one lighting system

R33 The Rolling stock component shall have one on board vehicle
R34 The Rolling stock component shall have one passenger information system

R35 The Rolling stock component shall have one power system

R36 The Rolling stock component shall have one propulsion system

R37 The Rolling stock component shall have one tilt system
R38 The propulsion shall have one gear box

R39 The propulsion shall have one mechanical transmission

R40 The propulsion shall have one power converter
R41 The propulsion shall have one traction control unit

Table B.1. Logical model elements used in the
experimentation as target resources.

Id Rhapsody model component

C1 Air supply system

C2 Auxiliary electric system

C3 Hydraulic system

C4 Auxiliary systems
C5 Magnetic track brake equipment

C6 Eddy current brake equipment

C7 Brake control system
C8 Emergency brake equipment

C9 Friction brake equipment

C10 Braking System

C11 Interior equipment
C12 Interior architecture

C13 Toilet system

C14 Interiors

C15 Electronic rear mirror
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