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Abstract 

Systems Medicine (SM) is an interdisciplinary research paradigm, that heavily relies 

on complex systems theory, and emphasizes on the studies the human body in terms 

of systems and the interactions among them, incorporating biochemical, 

physiological, and environment interactions. The article presents developments in SM 

research, focusing specifically on the network analysis approaches. Network analysis 

is fundamental for the study of interactions among systems at different levels within 

the human body. The background knowledge is established: the basic concepts of 

nodes and edges, and network metrics as well as existing computational tools are 

described. Different applications in health research are discussed, including 

descriptive and predictive approaches. The use of network analysis in temporal data 

and data coming from digital health technologies is further highlighted. Finally, the 

current challenges are discussed and the foreseen developments. 
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Introduction 

Systems medicine (SM) is an 

interdisciplinary field that considers 

the human organism as a system, 

composed of subsystems and their 

complex interactions, and also 

integrated and interacting with an 

external environment (Kamada;1992). 

It requires the synergy of medicine, 

systems biology, statistics, modelling 

and simulation, and data science. The 

SM is regarded as an approach 

complementary to the reductionist 

approach in medicine ( Federoff and 

Gostin; 2009), as it embraces the 

complexity of human organism and the 

complex relationships on multiple 

levels, from genomics to behavior and 

environment, towards identification of 

critical systemic elements in patient’s 

medical condition and achievement of 

tangible benefits for the patients. The 

diagnostic and therapeutic targets are 

not defined towards single molecules, 

but rather perturbed networks. The 

classic symptom-based disease 

definitions are consequently revisited 

(Berlin et al; 2018). Computational 

models that describe disease 

progression and the effect of 

therapeutic interventions are highly 

relevant (Tang and Aittokallio; 2014 ). 

On the background of systems 

medicine, one could recognise the 

Complex systems theory, describing 

systems composed of a large number 

of elements, interacting in a non-linear 

way between them (Kaplan et al;1991). 

The interactions are central to 

understanding the behaviour of these 

systems. The complex systems often 

have nonlinear behaviour, which 

makes prediction quite challenging 

(Yan et al;2019). Emergent behaviors 

may unexpectedly emerge, leading to 

order or disorder, not to be explained 

by the system’s units.  Complex 

systems have often been analysed via 

networks, mathematical objects 

composed by entities (nodes), pairwise 

connected by links (edges), directed or 

undirected. This simple network 

formalism can be applied to represent 

for instance, people and their social 

connections (Grunspan et al; 2014),  or 

o genes and their co-regulation. In all 

cases, the network structures can easily 

be mathematically studied and 

visualised, which offers an adequate 

level of abstraction for qualitative and 

quantitative analysis,  

Network medicine (NM) is a 

complementary concept aiming to 

apply the complex networks theory to 

medicine, and hence to the 

identification, prevention and 

treatment of diseases. It is based on the 

idea of interdependence of elements 

constituting our bodies at all scales 

(e.g. from genes, to cells and organs), 

as a central concept in understanding 

one disease. A recent survey by  

(Sonawane et al, 2019) explores ways 

in which the NM approach can be 

applied, with a focus on biologically 

driven paradigms, like gene 

expression-based networks. In another 

case, network physiology is examined 

in sleep, considering sleep as a multi-

organ phenomenon and examining the 

interactions within the brain and 

between brain and eye, chin, leg, heart 

and respiratory system (Bartsch et al; 

2015) (Bashan et al; 2012). 

Understanding the level of 

interdisciplinarity that a systems 

medicine and network medicine 

approach may require, this paper aims 

to provide an overview of network 

analysis in the systems medicine 

domain, along with example 

applications within this wide area. 

Technological methods are presented, 

and challenges are discussed towards 

the future of SM. 

 

Background Concepts on systems 

networks 

A network is defined as a set of nodes 

(entities, or actors) and the relations 
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between them (represented by edges). 

Both nodes and edges can have 

attributes (Hevey;2018). Graphs, or 

networks provide a level of abstraction 

in concepts and relationships. These 

concepts and relations can be 

quantified and mathematically 

characterized, while in parallel, they 

can be intuitively visualized. A series 

of examples of intuitive and successful 

Network Analysis can be found in the 

social sciences. Network analysis 

offers computational efficiency as a 

data analysis method, and can also set 

the basis for neural network 

frameworks (Scarselli et al; 2008). 

Within a domain, typically networks 

are constructed by mapping directly 

the domain elements to nodes (e.g. 

each symptom is a node), and by 

expressing their relationships as edges 

between pairs of nodes. In the example 

of symptoms, an edge would express 

the co-occurrence of symptoms. In a 

biological example, a gene co-

regulation network, each gene would 

be represented by a node, and an edge 

between a pair of them would be 

present if one of them regulates the 

other. In this sense, the edges can be 

directed, to express a direction of 

relationship, indicating influence or 

causality, as in the case of partial 

correlations. Edges can also be 

undirected, expressing correlation, co-

occurrence, or similarity.  

The edges can have a weight and a 

sign, expressing a strong or weak, 

positive or negative relationship, 

respectively. Also, the nodes can have 

a binary value, e.g. 0 or 1 for the 

absence or presence of a symptom, or a 

continuous value corresponding to 

some other physiological 

measurement. Nodes are not 

necessarily connected by a single type 

of relationships, as in multi-layer or 

multi-level networks. 

The network edges may be distributed 

in a non-uniform but rather selective 

manner. In this case, the network may 

comprise communities, i.e. node 

clusters that are highly interconnected, 

and rather isolated from nodes outside 

their cluster. 

Network structures are often 

formulated from cross-sectional 

studies, corresponding to a snapshot. It 

has to be noted that in a real setup, 

links are not necessarily constant 

through time, and network dynamics 

are needed to study how the 

relationships between concepts/ nodes 

change across time. In order to 

describe time-evolving phenomena, 

temporal networks have been 

proposed, including the 

multivariate vector autoregression 

model (MLVAR) as described in 

(Epskamp et al;2017) and (Epskamp et 

al;2018), the temporal exponential 

random graph models (TERGMs) by 

(Leifeld et al;2017), or r stochastic 

actor-oriented models (SAOMs) 

(Snijders et al, 2010) and (Ruth et al, 

2018). In the case of temporal 

sequences, granger causality between 

nodes can be investigated, and driver 

factors can be identified (Mainali et 

al;2019).  

As series of metrics have been defined 

to mathematically characterise the 

network structure, in specific nodes 

and as a whole, enabling also the 

comparison among networks. Some 

known measures are described below. 

Network-wise, one may consider: 

● Average Path Length. The 

average of the shortest path 

lengths for all possible node pairs. 

Gives a measure of ‘tightness’ of 

the Graph and can be used to 

understand how quickly/easily 

something flows in this Network. 

● Network Density. A measure of 

how many edges a Graph has. A 

complete undirected Graph has 

Density=1, and an empty Graph 

has Density=0. 
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Regarding the nodes, the main 

characteristics are: 

● Degree: the number of 

connections incident to the node of 

interest. 

● Node strength: the sum of the 

weighted number and strength of 

all connections of a specific node 

relative to all other nodes, 

expressing the importance of that 

node. Note that a node with many 

weak connections may have a high 

degree, but is not as central to the 

network as one with fewer but 

stronger connections.  

● Closeness: quantifies the node’s 

relationship to all other nodes in 

the network. A high closeness 

index indicates a short average 

distance of a specific node to all 

other nodes. This means the 

node’s change can affect the 

network and can be affected by 

changes in any part of the network. 

● Betweenness: this index provides 

information on how important a 

node is in the average pathway 

between other pairs of nodes, for 

example, it is important to know if 

a node belongs to the shortest path 

between two other nodes. 

● Clustering: The local clustering 

coefficient C is the proportion of 

edges that exist between the 

neighbours of a particular node 

relative to the total number of 

possible edges between 

neighbours, estimating the extent 

to which a node is part of a cluster 

of nodes.  An overall global 

clustering coefficient for the entire 

network can be estimated.  

 

Existing Tools and Approaches 

A series of open R packages have 

been developed for network analysis. 

The most essential are mentioned 

below.  

 IsingFit (https://cran.r-

project.org/web/packages/Isin

gFit/index.html) is used for 

generation of binary networks 

 ppcor (https://cran.r-

project.org/web/packages/ppc

or/index.html) performs 

partial correlation analysis, 

used for the network 

adjacency matrix 

 qgraph (https://cran.r-

project.org/web/packages/qgr

aph/index.html) is used for 

network visualization and 

analysis, as well as Gaussian 

graphical model computation. 

 bootnet (https://cran.r-

project.org/web/packages/boo

tnet/index.html) is used to 

assess accuracy and stability 

of estimated network 

structures and centrality 

indices. 

 pcalg (https://cran.r-

project.org/web/packages/pcal

g/index.html) provides 

methods for causal structure 

learning and causal inference 

using graphical models. 

 The packages graphicalvar 

(https://cran.r-

project.org/web/packages/gra

phicalVAR/index.html), 

mlvar (https://cran.r-

project.org/web/packages/ml

VAR/index.html), GIMME 

(https://cran.r-

project.org/web/packages/gim

me/index.html), RSiena 

(https://cran.r-

project.org/web/packages/RSi

ena/index.html) and btergm 

(https://cran.r-

project.org/web/packages/bter

gm/index.html) provide 

different approaches for 

temporal network analysis. 

In python, it is worth mentioning the 

general network analysis tools 

 igraph 

(https://igraph.org/python/) 

https://cran.r-project.org/web/packages/IsingFit/index.html
https://cran.r-project.org/web/packages/IsingFit/index.html
https://cran.r-project.org/web/packages/IsingFit/index.html
https://cran.r-project.org/web/packages/ppcor/index.html
https://cran.r-project.org/web/packages/ppcor/index.html
https://cran.r-project.org/web/packages/ppcor/index.html
https://cran.r-project.org/web/packages/qgraph/index.html
https://cran.r-project.org/web/packages/qgraph/index.html
https://cran.r-project.org/web/packages/qgraph/index.html
https://cran.r-project.org/web/packages/bootnet/index.html
https://cran.r-project.org/web/packages/bootnet/index.html
https://cran.r-project.org/web/packages/bootnet/index.html
https://cran.r-project.org/web/packages/pcalg/index.html
https://cran.r-project.org/web/packages/pcalg/index.html
https://cran.r-project.org/web/packages/pcalg/index.html
https://cran.r-project.org/web/packages/graphicalVAR/index.html
https://cran.r-project.org/web/packages/graphicalVAR/index.html
https://cran.r-project.org/web/packages/graphicalVAR/index.html
https://cran.r-project.org/web/packages/mlVAR/index.html
https://cran.r-project.org/web/packages/mlVAR/index.html
https://cran.r-project.org/web/packages/mlVAR/index.html
https://cran.r-project.org/web/packages/gimme/index.html
https://cran.r-project.org/web/packages/gimme/index.html
https://cran.r-project.org/web/packages/gimme/index.html
https://cran.r-project.org/web/packages/RSiena/index.html
https://cran.r-project.org/web/packages/RSiena/index.html
https://cran.r-project.org/web/packages/RSiena/index.html
https://cran.r-project.org/web/packages/btergm/index.html
https://cran.r-project.org/web/packages/btergm/index.html
https://cran.r-project.org/web/packages/btergm/index.html
https://igraph.org/python/
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for the creation and 

manipulation of graphs 

 Networkx 

(https://networkx.github.io/) 

for the study of complex 

networks 

 Pyunicorn 

(https://github.com/pik-

copan/pyunicorn) 

Unified Complex Network 

and RecurreNce analysis 

toolbox), for functional 

network and nonlinear time 

series analysis 

 

Several free applications targeting 

network analysis are available to the 

scientific community: 

 Cytoscape  

(https://cytoscape.org/) is a 

bioinformatics platform for 

visualizing biological 

interaction networks, 

including gene expression 

profiles and other relevant 

data. 

 Gephi is an interactive 

visualization and exploration 

platform for all kinds of 

networks and complex 

systems, dynamic and 

hierarchical graphs. 

https://github.com/gephi/geph

i/wiki 

  Pajek enables analyses of large 

networks  

http://mrvar.fdv.uni-

lj.si/pajek/ 

 Visone (https://visone.info/) is 

a software for the analysis & 

visualization of social 

networks 

 graphml 

http://graphml.graphdrawing.

org/ 

 MuxViz is a framework for the 

multilayer analysis and 

visualization of networks. 

http://muxviz.net 

 Radatools is a software for 

communities detection in 

complex networks 

http://deim.urv.cat/~sergio.go

mez/radatools.php 

 KNIME modules 

https://www.knime.com 

https://www.knime.com/book/

network-

examples/socialNetworkAnal

ysis 

 

Applications in the Health and 

Systems Medicine Domain 

A series of representative examples 

are presented below, that follow the 

network medicine principles, in a 

descriptive manner leading to a better 

understanding of diseases, and in a for 

enabling predictions and decisions.   

 

Descriptive Approaches 

Network approach to 

psychopathology: the mental 

symptoms network  

The network theory of mental 

disorders, as proposed by Cramer 

(2016) and Borsboom (2017), is based 

on the network medicine principle, 

complexity and interaction between 

components, as well as causal 

relations. This approach states that 

‘mental disorders arise from direct 

interactions between symptoms. 

Symptoms of psychopathology are 

causally connected through myriads of 

biological, psychological and societal 

mechanisms. If these causal relations 

are sufficiently strong, symptoms can 

generate a level of feedback that 

renders them self sustaining’.  This 

suggests a network, in which 

symptoms are represented as nodes 

and relations, or causal interactions 

between symptoms are the edges 

between nodes.  

In the same vein, in (Boschloo et al , 

2015) a broad symptom network is 

suggested, where symptoms within the 

same diagnosis show differential 

https://networkx.github.io/
https://github.com/pik-copan/pyunicorn
https://github.com/pik-copan/pyunicorn
https://cytoscape.org/
https://github.com/gephi/gephi/wiki
https://github.com/gephi/gephi/wiki
http://mrvar.fdv.uni-lj.si/pajek/
http://mrvar.fdv.uni-lj.si/pajek/
https://visone.info/
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
http://muxviz.net/
http://deim.urv.cat/~sergio.gomez/radatools.php
http://deim.urv.cat/~sergio.gomez/radatools.php
https://www.knime.com/
https://www.knime.com/book/network-examples/socialNetworkAnalysis
https://www.knime.com/book/network-examples/socialNetworkAnalysis
https://www.knime.com/book/network-examples/socialNetworkAnalysis
https://www.knime.com/book/network-examples/socialNetworkAnalysis
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associations, rendering rather 

insufficient the strategy of simple 

summing symptoms, as in current 

classification systems. Furthermore, 

some symptoms show strong 

connections with symptoms of other 

diagnoses, potentially explaining the 

comorbidity across diagnoses. 

One interesting implication of this 

symptom network conceptualisation is 

the idea of resilience and vulnerability 

formed with the network structure and 

dynamics. Strong symptom 

connectivity and thus the possibility of 

positive propagation induces 

vulnerability, which, when coupled 

with a strong external stressor, leads to 

disorder. 

While fundamentally descriptive, this 

approach opens decision making 

perspectives. Specifically, it can 

suggest, a) symptom interventions, 

targeting symptoms that have outward 

influence in the network towards 

changing the state of one or more 

symptoms, rather than symptoms that 

have many incoming connections, and 

b) network interventions, which 

change the network structure itself by 

modifying (desensitizing) symptom-

symptom connections. 

 

Cancer symptoms network 

In the work of (Papachristou et 

al;2019) a standard symptom 

assessment scale was used to evaluate 

the occurrence, severity, and distress 

of more than 38 symptoms commonly 

associated with cancer and its 

treatment, generating a 

multidimensional experience of 

symptoms. Patients were asked to 

indicate whether or not they had 

experienced each symptom in the past 

week (i.e., symptom occurrence). If 

they had experienced the symptom, 

they were asked to rate its severity and 

distress. The symptoms were used to 

generate networks, and clusters were 

recognised. A psychological symptom 

cluster across all three dimensions, 

confirming its s that this is important 

in oncology patients, while hormonal, 

respiratory, nutrition, and medication-

related clusters were also identified 

across all three symptom dimensions.  

 

Network analysis in aging data 

In (Valenzuela et al;2017), network 

analysis was performed on the 

Singapore Longitudinal Aging Study 

dataset (Niti et al;2008). Clusters of 

variables were obtained, which were 

mixed-domain, corresponding to a 

broad-scope structuring of the data. 

The clusters could be generally 

classified as central and non-central 

clusters, according to their 

betweenness centrality. In a cluster 

network where the nodes denote 

clusters, edges denote the presence of 

association between clusters, and the 

edge weights denote the “distance” 

(inversely-proportional to the strength 

of association) between connected 

clusters. Central clusters included 

Lipid Metabolism, Nutrition, Cardio-

Renal and Cardio-Pulmonary 

Dysfunction, Frailty and Exhaustion, 

Physical Strength, and Cognitive 

Impairment.  

This network analysis suggested that 

the phenotype of health and disease in 

old age can be regarded as a 

hierarchical network, a backbone of 

central nodes, and relations with other 

peripheral nodes, which includes inter-

relationships between physiological 

and psychological functions, disease, 

disability, quality of life, and lifestyle 

and behavioural risk factors.  This 

large scale analysis proposes an 

integrated view of human health, with 

interconnected diseases. 

In the work of (Zierer et al; 2016)  

wider scope was adopted, including 

omics markers and phenotypes, and 

assessing conditional dependencies 

between them, by use of MGM 

networks (Haslbeck et al;2015). The 
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produced model consists of seven 

modules that represent distinct aspects 

of aging. The modules are connected 

by hubs that potentially trigger 

comorbidities of age-related diseases, 

for example, body composition 

variables are associated with 

inflammatory IgG markers, mediated 

by the expression of the hormone 

oxytocin. This network modelling 

approach demonstrates the 

interconnectivity of age-related 

diseases and points at potential drivers 

of comorbidities. 

 

Network neuroscience and 

functional networks 

A comprehensive overview of 

network neuroscience is presented in 

the work of (Bassett and Sporns 

;2017), conceived as a conceptual and 

practical framework. The review of 

(Farahani et al;2019) presents studies 

utilizing graph-based methods to 

analyze connectivity patterns in the 

human brain network using fMRI 

data, and discusses the topological 

architecture of human brain networks, 

such as small-worldness, modular 

organization, and presence of hubs. 

Bartsch et al (2015) explore the 

coupling between systems in terms of 

presence of constant time delay (TDS) 

between activations of two systems. 

They construct physiologic networks 

based on the percentage of the time 

with TDS among physiological signals 

representing the function of different 

organs or systems. They use sleep data 

to demonstrate this principle of 

functional connectivity.  

In (Chang and Yu;2019) the 

pathologic alterations of functional 

connectivity are under investigation. 

Specifically, alterations of resting-

state effective connectivity 

(information flows) from and to 

hippocampal subregions after an acute 

social stressor, finding alterations in 

the thalamus-hippocampus-

insula/midbrain circuit, that predicted 

the stress or control conditions. These 

connectivity alterations may be 

associated with the encoding of 

threatening stimuli under stress.  

 

Predictive Approaches 

The network analysis of symptoms 

with longitudinal data can lead to 

predictive models.  

In the work of (Hoffart et al;2018) the 

temporal dynamics of symptom 

networks were explored, along with 

the predictive value of specific 

symptoms. Patients completed a 

measure of DSM-IV PTSD symptoms 

weekly. The multilevel vector 

autoregressive (mlVAR) model was 

used to analyse the data, producing a 

temporal (dynamic), 

contemporaneous, and between-person 

network. This approach illustrated 

how certain symptoms predicted the 

future appearance of other symptoms, 

for example, hypervigilance one week 

predicted external avoidance the 

subsequent week. 

With respect to predictability, the 

work of (Haslbeck and Waldorp;2018) 

focuses on how well the structure of 

network models may predict 

observations. After recognizing the 

methodological gap, they introduce 

nodewise predictability, which 

quantifies how well a given node can 

be predicted by all other nodes it is 

connected to in the network, and 

provide examples with cross-sectional 

and temporal data.  

 

Disease onset and epidemics 

outburst 

The change of state from stable to 

disease onset was predicted via a new 

concept of dynamical network 

biomarker, the temporal differential 

networks, at the molecular network 

level (Chen et al;2017). The 

computational approach was based on 

an unsupervised hidden Markov 
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model (HMM) that represented the 

network change, to automatically 

identify the critical point during 

disease progression. A similar 

approach was proposed by the same 

authors (Chen et al;2017) using 

clinical data for the prediction of 

influenza outbreak. In the work of 

Masuda and Holme (2013) an 

overview of network epidemiology 

models is presented, giving insights on 

the prediction and prevention 

opportunities offered by temporal 

networks, also sharing concepts with 

social network analysis. This is a 

direction that can be leveraged in the 

big data and large network 

technologies. An overview 

demonstrating the value of network 

analysis in epidemiology is provided 

in the work of (Silk et al; 2017). 

 

Networks in Bioinformatics 

In (Bhuva et al;2019), differential co-

expression analysis is explored, i.e., an 

approach that attempts to identify how 

network structure, in this case, gene-

gene associations, changes across 

conditions, with application 

specifically in cancer diagnosis.  

When gene expressions, genetic 

polymorphisms, and DNA 

methylation are taken into account, 

multilevel approaches are required. In 

(Pineda et al;2015) an effort is paid to 

identify three-way trans-association 

'hotspots'. Such integrative approaches 

would greatly benefit from multilevel 

network models. 

An overview of integrated omics 

network analysis across multiple 

omics layers, and exploration of the 

flow of information that underlies 

disease, is presented in the work of 

(Hasin et al; 2017). Furthermore, 

temporal microbiome networks and 

Granger Causality are explored in 

(Mainali et al, 2019). 

 

Personalised and temporal networks 

in Digital Health 

Moving beyond population-based 

models, the idea of personalized 

temporal network modeling is 

discussed in (Epskamp et al;2018). 

Two networks are computed here: a 

temporal network, in which nodes 

predict one another over time, and a 

contemporaneous network, in which 

one investigates if nodes predict one 

another in the same window of 

measurement. 

In the work of (Liu et al;2018) 

temporal data of social network and 

Fitbit-based activity are considered, in 

order to explore changes in time, their 

co-evolution and eventually to 

recognise traits. Networks were 

analysed at different time snapshots, 

and the change of network 

characteristics over time allowed to 

distinguish different profiles among 

them, which could be useful in the 

future to predict and to guide 

individuals’ health-related behaviors. 

In (Zhao et al;2016) four subnetworks 

are constructed, representing different 

aspects of social behavior. Different 

topological, ‘centrality measures’ are 

employed to cluster subjects, and the 

predictive value of clustering in 

smoking cessation is examined.  

These examples are of great interest 

towards a synthesis of systems 

medicine and connected health 

approaches, that allow not only the 

understanding of health and disease, 

or health-related behaviors, but also 

support in better decisions and 

interventions. 

 

Discussion: Technical and 

Methodological Challenges 

Having already two decades of SM 

research, it is essential to recognize the 

methodological frameworks already 

made available and discuss the 

opportunities to leverage SM 

interdisciplinary research, towards 
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participatory, personalized, predictive, 

and preventive (P4) systems medicine, 

as envisioned by Charles Auffray 

(2018). 

In order to scale up the use of systems 

networks, it is crucial to provide 

mature methods and pipelines that are 

usable with personal longitudinal data, 

and have descriptive and predictive 

value.   

In the work by (Forbes et al;2017) very 

important concerns have been raised 

regarding the replicability of network 

methods. It is suggested to improve the 

credibility of network medicine 

approaches in different directions.  

As conditional independence networks 

are unstable and lack replicability, 

likely due at least in part to the 

predominance of measurement error at 

the node level, it is important to 

improve the data measurement error 

before analysis. More abstract analysis, 

in terms of clusters rather than nodes, 

can also improve robustness. Statistical 

methods to test network stability are of 

value. 

In addition, it has to be noted that 

networks are typically generated with 

population data, and networks derived 

from between-subjects variation do not 

necessarily represent individuals. 

Recently discussed ‘ideographic’ 

approaches (Beltz et a;2016) propose 

the generation of personal networks.  

Causal networks are of great 

importance; however one should 

interpret with cautiousness directed 

networks based on cross-sectional 

observational symptom-level data. 

Multiple measurements and 

longitudinal data are more appropriate 

for making causal inferences. Methods 

for analysis of temporal networks are 

advancing in the last decade. For 

example, in (Büttner et al, 2016), a 

new method is proposed for temporal 

correlation coefficient for directed 

networks, which examines metrics 

quantifying the possibility for an edge 

to persist between two consecutive 

snapshots, extended in directed graphs, 

with outgoing and incoming 

connections/temporal correlations. It is 

important to proceed with a mature 

temporal network analysis framework, 

that incorporates such measures and 

encompasses for mixed data 

(continuous and categorical), and for 

different time resolutions with respect 

to the scale of events under 

examination. Such an approach should 

be designed, in view of personalized 

predictions. 

Finally, incorporating clustering 

approaches, in system networks 

(including longitudinal and multilevel 

networks) need to be further 

elaborated, towards network structure 

segmentation, such as spectral 

clustering (Emmons et al;2016), as 

well as clustering of subjects. 

 

Conclusion  

Patient data, both clinical and daily 

life, belong to categories. For example, 

in lifestyle, data may belong to 

nutrition, sleep, activity, mood and 

cognition, medical intervention, while 

groups of symptoms characterize 

disease diagnosis to a large extent. 

Assumptions of independence facilitate 

more straightforward representations, 

and analysis, as well as decision 

making. A simple summation of the 

number of present symptoms may be a 

simple index characterizing diagnosis 

or progression. However, sometimes 

these data may be intertwined, which is 

especially true for symptoms and 

lifestyle features. Within the big-data 

era, extended data availability allows 

questioning these independence 

assumptions towards more data-

intensive approaches. This would 

allow us to move beyond the 

reductionist approach of ‘divide and 

conquer’, embracing systems 

complexity. The variety and 

heterogeneity of diseases and 
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comorbidities can be tackled by 

network analysis, showing different 

paths expressed in different patients.   

The systems networks can be built 

with population data, or personal data, 

and explore causal relations, multiscale 

and time-evolving phenomena. 

Networks can start from existing 

knowledge, as in the case of the 

ontology built from existing literature 

(Livitckaia et al;2019) and evolve 

towards edge weights and directions 

via further data acquisition. 

Finally, it has to be noted that, the 

systems networks approaches can 

significantly benefit from the evolution 

of new data-driven mehods, like the 

graph neural networks (Scarselli et al; 

2009), and graph convolutional 

networks (Kipf and Welling;2017). 
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