129 research outputs found

    Specifying timing requirements in domain specific languages for modeling

    Get PDF
    Complex Real-Time Embedded Systems (RTESs) can be developed using model-based engineering. The problem is choosing a modeling language that has capabilities to model the most important characteristic of RTESs: timing. This paper shows an analysis of the most popular modeling languages and their capabilities to model timing constraints in RTESs. It includes UML, SysML, AADL, MARTE and EAST-ADL. A brief comparison between MARTE and EAST-ADL, based on the case study from the automotive industry, is also included

    Supporting ISO 26262 with SysML, Benefits and Limits

    Get PDF
    International audienceThis article deals with the issue of deploying efficiently the ISO 26262: the new standard in automotive systems development. The directives enclosed in this norm demands the establishment of a product lifecycle fully integrating the safety assessment activities. To tackle this subject, this paper explores the way of setting up Model-Based Design methodology to express and organize the concepts manipulated during the ISO 26262 process. This attempt is founded on the use of SysML and on the creation of a profile dedicated to ISO 26262 development context. We provide an introduction to Model-Based Design paradigm and its appli-cation in a safety relevant context. An overview of ISO 26262 is given, followed by the description of an on-going project on the subject. Modeling propositions are formulated and the use of diverse SysML diagrams are mapped on the automotive safety lifecycle process

    Multi-View Power Modeling based on UML MARTE and SysML

    Get PDF
    The development of SoC involves different activities, usually driven by specialists. These specialists use specific languages and tools to manipulate their specific concepts. The problem is that the multiple views of the system are split into different tools with redundant information. It makes it difficult to ensure consistency as well as to change from one tool to another. We propose a multi-view model where each view represents the specialist concepts in a tool-agnostic manner. The model can be kept consistent by using explicit associations instead of redundancy and tool transformation can be performed to analysis-specific tools. The approach is based on UML and two of its extensions: MARTE and SysML. It is illustrated by adding specific views to specify power management techniques. The resulting model is then transformed into a tool-specific model; \ie a model for Docea Aceplorer, a power analysis tool

    AMADEOS SysML Profile for SoS Conceptual Modeling

    Get PDF
    International audienc

    MADES: A SysML/MARTE high level methodology for real-time and embedded systems

    Get PDF
    International audienceRapid evolution of real-time and embedded systems (RTES) is continuing at an increasing rate, and new method-ologies and design tools are needed to reduce design complexity while decreasing development costs and integrating aspects such as verification and validation. Model-Driven Engineering offers an interesting solution to the above mentioned challenges and is being widely used in various industrial and academic research projects. This paper presents the EU funded MADES project which aims to develop novel model-driven techniques to improve existing practices in development of RTES for avionics and surveillance embedded systems industries. MADES proposes a subset of existing UML profiles for embedded systems modeling: namely MARTE and SysML, and is developing new tools and technologies that support design, validation, simulation and eventual automatic code generation, while integrating aspects such as component re-use. In this paper, we first introduce the MADES language, which enables rapid system design and specification that can be then taken by underlying MADES tools for goals such as simulation or code generation. Finally, we illustrate the various concepts present in the MADES language by means of a car collision avoidance system case study

    Analysis as first-class citizens – an application to Architecture Description Languages

    Get PDF
    Architecture Description Languages (ADLs) support modeling and analysis of systems through models transformation and exploration. Various contributions made proposals to bring verification capabilities to designers through model-based frame- works and illustrated benefits to the overall system quality. Model-level analyses are usually performed as an exogenous, unidirectional and semantically weak transformation towards a third-party model. We claim such process can be incomplete and/or inefficient because gathered results lead to evolution of the primary model. This is particularly problematic for the design of Distributed Real-Time Embedded (DRE) systems that has to tackle many concerns like time, security or safety. In this paper, we argue why analysis should no longer be considered as a side step in the design process but, rather, should be embedded as a first-class citizen in the model itself. We review several standardized architecture description languages, which consider analysis as a goal. As an element of solution, we introduce current work on the definition of a language dedicated to the analysis of models within the scope of one particular ADL, namely the Architecture Analysis and Design Language (AADL)

    Using UML for learning how to design and model cyber-physical systems

    Get PDF
    In this paper a methodology for teaching and learn-ing the modeling of embedded systems and, in a more genericvision cyber-physical systems (CPS) is presented. To this end, asubset of tools from UML is used in an intuitive and orderedway starting with an informal description of the system untilimplementation details are obtained. However, the codificationof the system is left out as the programming language dependson the hardware platform to be used. The method has beenused in grade courses for several years now with an importantaccumulated experience that shows how students are able toadopt it and learn to elicit the different types of requirements,actors and functions.Fil: Ordinez, Leonardo Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Eggly, Gabriel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Micheletto, Matías Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentin

    MARTE: A Profile for RT/E Systems Modeling, Analysis (and Simulation?)

    Get PDF
    The original publication is available from ACM Digital Library (http://portal.acm.org/citation.cfm?id=1416222.1416271)International audienceAs its name promises, the Unified Modeling Language (UML) provides a collection of diagrammatic modeling styles. To the early class/objects and use-case diagrams were almost immediately added state-, activity-, collaboration-, and component diagrams. All these modeling views, required for structural and behavioral representations of systems, were then progressed to further detailed expressivity. Provision for domain- specific specializations was made under the form of profiles. Somehow this goal of being rather universal and extendible discarded the possibility of UML to adopt too strict and precise a semantics; as users were generally to define and refine it in their stereotyped profiles anyway. As a result, even the little execution semantics there is in the standard is often not considered in such specializations. We tackled the general issue of defining a broadly expressive Time Model as a sub-profile of the upcoming OMG Profile for Modeling and Analysis of Real-Time Embedded systems (MARTE), currently undergoing finalization at OMG. The goal is to provide a generic timed interpretation, on which timed models of computation and timed simulation semantics could be built inside the UML definition scope, instead of as part of the many external proprietary profiles. The MARTE time library can be used as the basis for the definition of a UML real-time simulator

    Uml-based modeling of non-functional requirements in telecommunication systems. In:

    Get PDF
    Abstract-Successful design of real-time embedded systems relies heavily on the successful satisfaction of their non-functional requirements. Model-driven engineering is a promising approach for coping with the design complexity of embedded systems. However, when it comes to modeling non-functional requirements and covering specific aspects of different domains and types of embedded systems, general modeling languages for real-time embedded systems may not be able to cover all of these aspects. One solution is to use a combination of modeling languages for modeling different non-functional requirements as is done in the definition of EAST-ADL modeling language for automotive domain. In this paper, we propose a UML-based solution, consisting of different modeling languages, to model non-functional requirements in telecommunication domain, and discuss different challenges and issues in the design of telecommunication systems that are related to these requirements

    Timing Analysis using the MARTE Profile in the Design of Rail Automation Systems

    Get PDF
    International audienceFor dependable systems as in the railway domain the timing behaviour is considered part of the functional correctness. Thus timing requirements have to be traced and refined through the system and software development phases and validation and verification efforts have to address the timing as well as the pure input/output behaviour. We show how timing can be handled in a UML or SysML based approach to the development of software-intensive railway systems by using the new MARTE profile. Thereby timing becomes fully integrated in the chain of system and software models and may benefit from tool support. Moreover, automated timing analysis may be employed via model transformations which enables the exploration of timing-related issues in various design phases
    • …
    corecore