
50 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 1, FEBRUARY 2020

Using UML for Learning How to Design and
Model Cyber-Physical Systems

Leo Ordinez, Gabriel Eggly, Matías Micheletto, and Rodrigo Santos

Abstract— In this paper a methodology for teaching and
learning the modeling of embedded systems and, in a more
generic vision cyber-physical systems (CPS) is presented. To this
end, a subset of tools from UML is used in an intuitive and
ordered way starting with an informal description of the system
until implementation details are obtained. However, the codifi-
cation of the system is left out as the programming language
depends on the hardware platform to be used. The method
has been used in grade courses for several years now with
an important accumulated experience that shows how students
are able to adopt it and learn to elicit the different types of
requirements, actors and functions.

Index Terms— Cyberphysical systems, educations, require-
ments.

I. INTRODUCTION

AT THE beginning of the 21st Century, micro-controllers
generalization and the development of the open hard-

ware and software paradigms together with the increase in
the wireless communication capabilities of the devices have
created a new concept for the design and implementation of
embedded systems that transformed them into CPS [1]–[3].
CPS definition is indeed an evolution of the embedded systems
one. In fact, the most accepted definition for CPS is the
integration of computing, communication and control systems
with physical process. It is important to remark that the
analysis, modeling, and implementation of this kind of systems
is done considering all the aspects involved such as the signals
to be sampled, the actuators, the information processing and
obviously the physical process with which the system interacts.
For this reason, the development includes different areas like
software engineering, automatic control and communications.

CPS systems are important in different engineering areas
and have impact in people’s daily lives, even in certain
situations where people are not aware of their presence. In fact,
they are closely related to different domains such as Internet
of Things (IoT), ambient intelligence (smart cities, smart

Manuscript received July 23, 2019; revised October 8, 2019 and
November 4, 2019; accepted November 20, 2019. Date of publication
March 4, 2020; date of current version April 6, 2020. (Spanish version
received December 18, 2018; revised February 13, 2019; accepted May 21,
2019.) (Corresponding author: Leo Ordinez.)

Leo Ordinez is with the Laboratorio de Investigación en Informática
(LINVI), Departamento de Informática, Universidad Nacional de la Patag-
onia San Juan Bosco (UNPSJB), Puerto Madryn 9120, Argentina (e-mail:
leo.ordinez@gmail.com).

Gabriel Eggly, Matías Micheletto, and Rodrigo Santos are with the
Departamento de Ingeniería Eléctrica y Computadoras, Instituto de Cien-
cias e Ingeniería de Computación, CONICET, Universidad Nacional del
Sur (UNS), Bahia Blanca 8000, Argentina (e-mail: gmeggly@uns.edu.ar;
matias.micheletto@uns.edu.ar; ierms@criba.edu.ar).

There exists a Spanish version of this article available at
http://rita.det.uvigo.es/VAEPRITA/V8N1/A7.pdf

Digital Object Identifier 10.1109/RITA.2020.2978416

transport, etc), collaborative systems and space and military
applications [4].

In the curricula for Electronic Engineering and Computer
Engineering careers, teachers still have problems to transmit
the knowledge in an integral way. In general, professors feel
more comfortable by splitting the reality in sealed compart-
ments, thus facilitating the knowledge transfer in specific
areas without considering the interactions with other aspects.
Sometimes, during a lab project, a teacher may consider
the interactions with different elements but these are not
further deepened. While delivering a class on microprocessors
architectures the main concerns are the assembly languages,
registers sizes, buses, the interactions between registers and
memory and the programming model. During a lab practice,
the students may interface the microprocessor with some
external device using a I/O device. The explanation will
probably be restricted to the way in which the device is
programmed and not on the physical aspects related to it.
In the software engineering courses, different methodologies
for solving problems using modeling techniques are taught
to achieve dynamic programming skills. Both approaches,
the microprocessor architecture course or the software engi-
neering one, lack a global vision of the problem in such a
way that all the actors involved, either software or hardware
modules interacting with the environment or users can be
analyzed together.

The open hardware and software platforms like Arduino or
Raspberry Pi have simplified the implementation of CPS in
the labs of undergraduate courses. However, as [5] explains,
what may be considered an advantage is also a disadvantage
as students work with an extremely simply platform that
will not be available later for complex designs. For this
reason, it is important to incorporate simple and effective
modeling techniques that provide students with a good
perspective of the system’s design methodologies. This is
important for the teaching-learning experience and contributes
to their confidence at the moment of taking decisions for the
implementation.

In this paper, a methodology for the teaching of modeling
and design techniques for CPS, using a reduced set of tools
of the Unified Modeling Language (UML) [6], is presented.
The proposed methodology is used in courses of fourth and
fifth year of the Electronic Engineering career at National Uni-
versity of the South (Bahía Blanca, Argentina), in particular,
Digital Computers and Final Project courses. In both of them,
the students have to model, design and implement a system at
a prototype level that satisfies the requirements. The work is
guided by teachers.

1932-8540 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MINCYT. Downloaded on October 18,2021 at 15:02:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0382-477X

ORDINEZ et al.: USING UML FOR LEARNING HOW TO DESIGN AND MODEL CPS 51

Fig. 1. Examples of projects finished with this methodology. (a) Multipara-
metric sensor. (b) Android application for Diabetic Ketoacidosis.

As stated in [7], the non-functional characteristics of the
CPS are not considered in the curricula. The author remarks
in her study that even when it is clear that there are problems
with the skills or competencies of engineers working with
CPS, the actual courses barely focus on this subject. In the
same line, the studies of [8] show that a combination of
Model-Driven Engineering (MDE) and CPS can be taught in
an effective way in the courses based on projects [9]. With
respect to MDE the authors of [10] arrived to three main
conclusions: first, the teaching of MDE can not reuse previous
knowledge from code-centric approximations; second, there is
lack of efficient tools; third, there is still missing a good course
text-book. In this concern, in both courses (Digital Computers
and Final Project), the solving of real problems is used as
a pedagogical strategy for teaching. In this way, the students
should implement a system that performs a real job learning
with the technique of hands on. In particular, in this paper
the teaching experience in the period 2013-2018 is presented
in a systematic way for the Digital Computers course with
15 students in the average and for another 12 students in the
period 2012-2018 that finished their Final Project. In all cases,
the problems to be solved have a medium level complexity and
represent real world situations. The medium level complexity
expresses a sufficient level to be representative of the domain
of application of the CPS and, at the same time, should be
bounded, to meet the pedagogical objectives of the curricular
contents. For example, in Figure 1a it is shown a multi para-
metric sensor to sample water quality in rivers, lakes or even
the sea and in Figure 1b it is shown a screenshot of an Android
application that is used to compute the compensation for dehy-
dration in Diabetic Ketoacidosis, a condition that in pediatrics
can have severe consequences if not properly treated.

This paper proposes a method based on requirements to
develop small CPS. In it, the requirements are modeled in
the first place. This is done through an adaptation of the
use case diagrams of UML [6], in particular introducing new
stereotypes associated to the relations. After this, the method

performs the analysis, providing the CPS with a systematic
fashion of implementing the use cases through activity dia-
grams, class diagrams and deployment diagrams. The method
was thought to be simple, reinforcing the idea that it should
be easy to use and aligned to the principles of agile
programming [8].

The paper is oriented to systems with a low number of use
cases, no more than thirty, since over that number the modeling
of relationships among them is too complex. Although it is
difficult to classify a computing system based on its size,
we introduce an approximate classification. Since use cases are
one of the main components of the proposed method, a metric
based on them is used to determine the size of the system. The
Use Case Points (UCP) [11], [12] metric is chosen. It uses two
inputs that are the complexity of the actors measured according
to the communication interface between them and the use
cases and the complexity of the use cases measured in terms
of the transactions associated to each one. In [13], the authors
made a detailed description of how these transactions should
be identified. Using the mentioned two inputs, the UCP metric
establishes partial results from weighted sums of the inputs.
The weights are related to technical and ambient aspects. The
result of the sum is the Use Case Point (UCP), which is
then multiplied by a productivity factor (PF) and this is the
Estimated Time (ET) of the hours/man necessary to finish the
project. With this, the systems are classified as small, medium
or big. Using the UCP metric, a CPS is considered small or
medium according to these parameters:

• No more than twenty actors.
• Most of the actors have low or medium complexity and

only a few of them may have a high one.
• The number of use cases is limited to a few tens.
• The complexity of the use cases is low or medium with

only a few of them with high one.
• The project can be carried out with a reduced team of

developers of no more than four persons.
Contribution: A method based on UML is presented for

the modeling, design and implementation of CPS that uses a
reduced number of tools and allows a quick validation. With
this method, students learn to determine in a practical and
simple way the functional and non-functional requirements.
They also learn to specify the relations between the actors
and the mode in which they can be coded if it is software or
implemented in the case of hardware. From the pedagogical
point of view, the approach was proved to be suitable, since it
promotes a global perspective of the problem and consequently
accelerates the intellectual processes of students to understand
and overcome the situation.

II. PREVIOUS WORK

This paper presents a methodology for teaching the model-
ing, design and implementation of CPS used at National Uni-
versity of the South, Argentina. This method was developed as
part of the doctoral thesis of Dr. Ordinez and presented in [14]
and [15]. However, this paper extends the results presented
there and explains the teaching methodology.

The following papers present design methods or
requirements determination but are not oriented to the

Authorized licensed use limited to: MINCYT. Downloaded on October 18,2021 at 15:02:53 UTC from IEEE Xplore. Restrictions apply.

52 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 1, FEBRUARY 2020

teaching experience of them in the undergraduate courses.
In [16], different techniques for modeling and design are
discussed. The authors mention languages and tools and the
main problems associated to the semantic of the systems and
the communications. In [17], a bi-dimensional system for
the quality of service in service oriented architectures and a
real-time middleware are introduced. Although some points
are similar to what is presented here, the paper is not oriented
to teaching. In [18], the authors present a methodology for
the elicitation of requirements. Like in the previous cases,
it is not oriented to the learning experience. Brown [19]
presents a software modeling and design system based on
four aspects that respond to the four “C”: Context, Containers,
Components and Code. The method tries to simplify the usual
tools like UML and SySML because of their complexity.
However, this tool is not presented to be used in the teaching.

There are several papers about requirements determina-
tion in real-time embedded systems [20]–[22]. These papers
introduce different variations in the definition of actors
like the conceptualization of virtual actors and special use
cases. Like in the previous papers, the authors explain the
methodology or the tools proposed but are not oriented
to the learning process. In [23], the authors propose to
use UML for the co-design of hardware/software, this is
somewhat similar to the methodology introduced in this
paper.

The method here proposed is based on two of the main
UML diagrams, thus it is possible to incorporate the extensions
like the MARTE profile [24], [25] or even AADL [26], [27].
In [28], the authors proposed the use of contracts to reduce the
gap between the control and software engineering. Although
this looks similar to the methodology presented in this paper,
the authors indicate that the contracts are useful for the
implementation phase once the requirements and functions of
the system have been defined and not in the modeling and
design ones.

In SySML [29] there is a special diagram to depict require-
ments. However, it is limited to provide an artifact where the
designer can detail in textual form the different requirements
and link them with lines to functions. The method proposed
in this paper can be adapted to use the SySML tools and
vice versa, since the textual description proposed for the use
cases can be incorporated in the requirement diagrams of
SySML. In this way, the proposed methodology in relation to
the requirements elicitation is more expressive and simple to
visualize. Moreover, AADL, UML, SySML and MARTE have
certain limitations [30], that include the lack of abstractions
for certain components like the operating system in real-time
and the absence of behavior models (AADL); difficulties to
handle a large amount of diagrams (UML and MARTE);
the restriction to the utilization in the systems engineering
domain only (SySML) and the complex underlying meta-
model (MARTE). If necessary, the proposed methodology in
this paper can be complemented with any of the mentioned
modeling methodologies.

Finally, some papers related to the teaching of CPS are
mention that use different tools for modeling and design [7],
[8], [31]–[33].

III. USE CASES REVISITED

In the case of CPS there is a close relation among mechanic,
hardware and software elements that interact with the physical
environment. For this reason, it is necessary a global vision
that integrates all the aspects involved and their interactions.
The requirements can then be elicited from the purpose of
the system, that is what is expected to be done. Additionally,
requirements can be evaluated from the point of view of the
environment where the system will work, that is how should it
respond to certain situation. In a first approximation the input
and output variables or signals of the system that are needed
to achieve the desired functionality are determined. For this
first stage, use cases are a simple tool that help the student to
discriminate quickly how the system interacts with the physical
environment. use cases have two stages: graphic and textual.
The first one eases the visualization of the interactions among
the involved elements in the different situations. The second
one, allows a description of the interactions with details such
as the computational aspects and the interfaces between the
system and the real world.

A. Graphic Use Cases

In the UML standard [6], the use case diagrams have four
constructs: system, actors, use cases and the communications
links that express the associations among the constructors as
can be seen in Figure 2. In the case of CPS, the relation
among the physical environment and the computational world
is very close and should be considered in a special way when
modeling the requirements. In order to add this characteristic,
a new “element” is added. It is represented by a dotted line
that encloses the system. While in traditional use cases, only
the computational elements are considered, in this case all the
entities or elements that are part of the system are included.
This element has no semantic or syntactic interpretation,
it is only used to visualize the whole composition of the
system to be modeled. This provides the students a broader
understanding of the CPS by not discriminating the physical
world (actors) from the computational one (use cases). In a
similar way, the requirements are enclosed in another box
that limit its range, making explicit the limit for the software
operations. Some traditional UML elements are shown in the
context of CPS.

1) Actor: In this element, an extension to the generally
accepted concept of “actor” in the literature is introduced
to incorporate the input/output (I/O) elements, naming
all of them actors. An actor is an inner part of the
system. It can be a role played by the system, a sub-
system over which there is no direct control (operating
system, network controller, communication device), but
that provides functionality. It can also be a part of
the physical process that the system is supervising or
controlling. When looking at the actors from outside the
system it should be impossible to determine whether
they are within the computational or physical space.
This vision is useful for the students to understand the
problem with a black box approach [34].

Authorized licensed use limited to: MINCYT. Downloaded on October 18,2021 at 15:02:53 UTC from IEEE Xplore. Restrictions apply.

ORDINEZ et al.: USING UML FOR LEARNING HOW TO DESIGN AND MODEL CPS 53

Fig. 2. Use case elements.

2) Use case: The functionalities of the system are defined
by different use cases that represent each one a flow of
actions or specific activities. Each use case represents a
complex but identifiable activity in the system that can
interact with others. At the same time, this activity can
exchange information with the physical world. It should
be noted that the use cases represent the purpose of the
system and in this way the set of all them constitutes
the complete computational description of the system.
It is important to remark the differences among the use
cases Use Case 1 (or Use Case 2) with the Use
Case 3. While the first ones are functionalities that
can be implemented in software, the third represents a
physical process. This visual distinction facilitates the
students the identification of the processes involved and
the way they are solved.

3) Requirements: This artifact is used to enclose the
computational requirements of the CPS. All the char-
acteristics that are inside are related to the embedded
system: software, interfaces, etc.

4) CPS: Since CPS integrate the computational and phys-
ical processes, it is better to analyze both aspects
simultaneously. Within this constructor all the related
elements are included, the roles, devices and interfaces.
This constructor defines the scope of the system.

5) Association: An association between an actor and a use
case indicates that the first one provides or requires
a functionality expressed in the use case. When the
association is between use cases, it shows that some
functionalities require others to be implemented, in this
case it is a direct association. Another special type of
association is generalization. This one has semantics
similar to the inheritance concept in the object oriented
programming. Besides, the associations can be qualified
by a stereotype that describes the kind of relationship
among the elements.

6) Stereotype: This is a mechanism that extends UML
and can be used to adapt the model to the particular
application domain [35]. The following stereotypes are
special for the associations among use cases. In general,
they determine the type of relation between two use

cases through the purpose of it. That is, they capture
the spirit or need behind the relation. It is important
to notice that the stereotype is an association that is
directed from one use case to another one.

• �modeling� It represents the physical or natural
laws around the system. In a generic way, this
stereotype can be applied to all the relations that
are not a computational or mechanical part of the
system.

• �communication� It indicates that the asso-
ciation is related to a communication aspect, for
example a network service or the access to a serial
port.

• �call� Indicates the call to an auxiliary use case
that performs a specific task.

• �syscall� It is used to indicate the call to a
service provided by a software of a higher hierarchy
like an operating system or monitor.

• �sync-syscall� It is used when the call to
the operating system involves synchronization like
in the case of access to shared memory, semaphores
or mailboxes.

The next stereotypes are referred to associations between
use cases and actors. Although they identify the purpose
of the association, they are not directed like the previous
ones.

• �requirer� The actor requires a functionality
expressed in the use case. It describes the relation
through a use case between two actors, one is the
provider and the other the requirer. This is similar
to the client/server or request/response concepts.

• �provider� Like the previous one but on the
other side of the relation.

These two stereotypes are important because they help
to define the client/server architecture by identifying the
required services and the eventual providers.

• �h-mi� This stereotype indicates that the use
case associated represents an human-machine inter-
action functionality. It is common to any interface
like keyboards, sounds, displays or touch screens
among others.

• �sensing� This stereotype expresses that the
destination use case involves a sensing action to
achieve its objective. This is one of the stereotypes
used to represent the interaction between the phys-
ical and computational worlds.

• �actuating� This stereotype indicates that the
use case pointed involves the execution of an action
through an actuator. It is used to represent the
interaction with the physical world.

• �analysis� This stereotype is used to represent
data analysis and information processing within the
computational world, there is no interaction with the
environment.

B. Textual Use Cases

Graphical use cases allow a quick identification of the actors
and the relations and functionalities of each element in the

Authorized licensed use limited to: MINCYT. Downloaded on October 18,2021 at 15:02:53 UTC from IEEE Xplore. Restrictions apply.

54 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 1, FEBRUARY 2020

TABLE I

USE CASE GENERAL TEMPLATE

TABLE II

SYSTEM TEMPLATE

system, but they do not provide the necessary details to do a
requirements analysis. The textual use cases are introduced to
complement the description by incorporating the possibility
of expressing different aspects like the execution flow and
the steps involved in it, along with the size of the required
memory, temporal restrictions, the precision of the sensors
or energy demand among others. In [36]–[38] this is further
discussed.

Table I shows a generic use case model adopted in the
Digital Computers course at National University of the South.
The fact of writing a text, although small and limited, pro-
motes positive aspects in students such as the organization of
information, the clarification of concepts, the synthesis and the
need to use a precise and comprehensive vocabulary.

IV. REQUIREMENTS MODELING

In this section the different steps for the modeling are
developed. It is a guide that allows the students to build the
system model with all the requirements in an organized and
simple fashion.

1) Define the system: The first step consists of a suitable
definition of the system to be built. Usually, the descrip-
tions are plenty of ambiguities that should be solved. For
this it is necessary to write the purpose of the system
clearly answering two basic questions: what the system
does and how the system should do that. Table II shows
a template for this.

2) Identify the actors: In this paper, actors are defined
as external systems, external and internal entities with
which actions and data are exchange. In this way,
the physical environment is incorporated in the system

TABLE III

ACTOR TEMPLATE

definition as it is an actor with which there are direct
and indirect interactions. Table III shows a template that
the students can fill once they have identified the actors.

3) Identify the use cases: The functionalities of the sys-
tem, that is the actions it performs either internally or
externally, are represented by the use cases. In this way,
for each functionality a specific use case is associated.
The process to identify all the use cases is iterative
and depends on the (stakeholders) of the system that
are who in the end define the requirements. In the case
of the students, this process is made interacting with
the professors and assistant professors that help them
to bound the complexity of the project. The names of
the use cases should reflect the actors involved and the
functionality they perform. In [22] a set of rules for
the naming is presented and it is adapted here in the
following way:
For a use case associated with an Actor under the
stereotype �requirer�:
“The <system’ s name> is required by <actor’s
name> for <use case’s name>.”
For a use case associated with an Actor under the
stereotype �provider�:
“The <actor’s name> provides to <system’s
name> a functionality for <use case’s name>.”
For use cases that do not have a direct association with
actors there are no explicit rules for their naming.

4) Determine inputs (monitored variables) and outputs
(controlled variables) for each use case: In general,

Authorized licensed use limited to: MINCYT. Downloaded on October 18,2021 at 15:02:53 UTC from IEEE Xplore. Restrictions apply.

ORDINEZ et al.: USING UML FOR LEARNING HOW TO DESIGN AND MODEL CPS 55

the monitored variables are associated to sensors or
external information provided to the use case. The
controlled variables are usually associated to actuators
or internal information that is shared with other use
cases. In some cases, a variable can be monitored and
controlled at the same time, for example the position
of a motor’s rotor. At this point, it is not necessary
to completely describe the variables, it is enough to
enumerate them. Later, in the textual description of the
use cases all the details should be included.

5) Solve the superposition of use cases: Many times, two
or more actors may require the same use case or several
use cases may have overlapped functionalities. In both
situations, the refactoring of use cases [39]–[41] is a
suitable strategy promoted from different areas in Soft-
ware Engineering. From a pedagogical point of view,
the refactoring of the use cases eases the understanding
of the problem by the students. They are forced to
rethink the problem again, discuss and propose a new
vision over the requirements.

6) Write the textual use cases: UML use cases are an agile
method to describe the system requirements. However,
they can not capture some important aspects that are
necessary and should be included to complete them [42].
With the textual description proposed in section III, all
those things that can not be represented in graphics can
be incorporated. This involves non-functional require-
ments such as timing constraints, energy consumption
and memory footprint.

The method is iterative until a satisfactory description is
achieved.

V. REQUIREMENTS-BASED SOFTWARE DESIGN

Once the objectives are identified and the requirements are
modeled, the next step is to describe the functionalities in a
precise way. For this, the UML activity diagrams are used.

A. Activity Diagram: Basic Approach

The Activity Diagram is composed of several constructors
and describes a basic logic unit of work [6]. It can be divided
in actions. An action is the smallest or atomic work unit, which
cannot be further divided. The sequence of actions is linked
by the edges that represent the process flow or the successive
events. Signals to make system calls can be transmitted or
received. When there are auxiliary processes, it is proposed
the use of sub-activities state.

B. Design Method

The process of describing use cases is divided in two
parts. In the first one, a mapping between the situations that
arise in the use case diagrams in relation to those in the
activity diagrams is made. This is done by showing how
the relations in the stereotypes are reflected in the activity
diagrams. In the second part, a method to map the use cases
into activity diagrams is presented. The result of this method
is the description of how the use case achieves its objective.

Fig. 3. Representation of the stereotype �communication� in an
activity diagram.

Fig. 4. The stereotype �call� represented in an activity diagram.

The Activity Diagram can be derived in a direct way from
the textual description of the use case. In particular, the normal
execution flow and the exception one represent the set of
actions performed by the use case to achieve its purpose.
As an intermediate step, between the use case and the activity
diagrams, the sequence diagrams can be used [43]. They
represent the interactions between the entities (actors, classes,
etc), by passing messages. This strategy is recommended if
the students have problems to translate the text into activities
in a natural way. In this case, the intermediate step facilitates
the understanding of the concepts involved. In what follows
the stereotypes mentioned are described.

Figure 3 shows how the stereotype �communication�
is mapped in an activity diagrams. As can be seen, a “flow”
object is included as a path through which data is moved.

A common situation is a procedure or function call. Figure 4
shows a scheme to map the stereotype �call�. It can be
seen that there is a connection between two activity nodes.

The stereotypes �syscall� and �sync-syscall�
are similar to the previous one, but the sub-activity is made by
a different entity, thus it is executed in a different swim lane.

In this paper, the classification proposed in [22] is extended
in relation to the use cases. In that paper, the author used
the concept of objects but here it is extended to tasks that
is more inclusive in the context of CPS. The control tasks
are related to the use case with stereotypes �syscall�,
�sync-syscall�, and those that provide functionalities
to other use cases in sub-activities. The interface tasks are
related to use cases that provide hardware services and com-
munications with other use cases. Finally, the entity tasks
group the use cases that perform the rest of the functionalities.

The textual use cases are revised and corrected, they
are improved continuously until a plain ordered description
without ambiguities of what is expected from the system
is achieved. Based on the method proposed by Kimour and
Meslati [44] the following steps are followed:

1) Activity diagrams: Each textual use case is transformed
into an Activity Diagram. It is important to implement
both the normal flow and the exception one. In this
step it is necessary to verify if there are synchroniza-
tion points and to establish in such a case the guard
conditions.

• If there are difficulties to do the transformation,
deployment diagrams are useful as intermediate
steps.

Authorized licensed use limited to: MINCYT. Downloaded on October 18,2021 at 15:02:53 UTC from IEEE Xplore. Restrictions apply.

56 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 1, FEBRUARY 2020

Fig. 5. Package and class diagrams.

Fig. 6. Deployment diagram.

2) Actions: In this step the actions to be done are spec-
ified. It is necessary to consider both input and output
variables involved and the conditions that enable them.

3) Consistency: In this step the consistency between the
actions and their flow in the Activity Diagram is checked
to guarantee that the Activity Diagram is feasible.

VI. ARCHITECTURAL ORGANIZATION

Class and package diagrams from UML are used for
describing the software architecture. They are used to showing
functions and data associated to each software module. These
aspects are common in the software engineering practice so no
further comments are given here. Figure 5 presents a generic
example.

The physical distribution of the software components in the
hardware nodes is described through deployment diagrams
that show how the stereotypes �communication�,
�h-mi�, �sensing�, �actuating� and
�analysis� are actually implemented. In Figure 6,
shows where the software components are placed in the
physical nodes, along with the communication protocols,
the sensors, the actuators and the human-machine interface.

VII. EXAMPLE: FLOW-BATCH SYSTEM

In the analytic chemistry it is common to see analyzers
based on the Flow-Batch (FB) methodology [45], [46] for the
determination of some components in different compounds.
These are automatic systems that allow an improvement in
the performance of the analytic process, allowing a higher
frequency, precision and confidence in the studies. Moreover,
they allow the manipulation of unstable, toxic, explosive or
even radioactive substances, in a more secure way, as they

TABLE IV

FLOW-BATCH SYSTEM DESCRIPTION

reduce the volume of the compounds under analysis and the
interaction that these may have with persons handling them
in the process. In a FB system, the sample and the reactive
are introduced in a mixing chamber in a sequential way or
simultaneously by commanding a set of valves and peristaltic
pumps that guarantee the repeatably of the experiment.

There are different elements in a FB system. The propulsion
unit (peristaltic pump with multiple pipes) is in charged of
keeping constant the flow of solutions or reactives, and most
important, to be able to repeat in exactly the same way the
action. A multi switching system implemented with solenoid
valves with three paths for a complete control of the fluids
that should get into the mixing chamber. These fluids are
injected into the mixing chamber by controlling the time and
the rotation of the pump and in this way the volume injected is
precisely determined. The system is controlled by an embed-
ded system that through a human-machine interface (HMI)
(keyboard and display) can be configured by the user. Table IV
shows the template for the proposed system.

Once the system is defined, three actors are identified: the
user, the embedded system in the role of the HMI, and the
embedded system in the controller role. Figure 7 presents a
simplify use case diagram.

In Tables V and VI two representative use cases are detailed.
In Figure 8 a Deployment Diagram to show the HMI and its
main functions is presented and Figure 9 shows the activ-
ity diagram for the procedure that executes the Flow-Batch
process.

In Figure 10 a Class Diagram is presented for the valve
controllers and the peristaltic pump. As they share both
attributes, an Strategy Pattern is implemented to improve the
design.

VIII. EXPERIMENTAL EVALUATION

The proposed methodology was implemented in two under-
graduate courses of the Electronic Engineering career at
National University of the South in Argentina, and has been
used for more than a hundred students. In the first of these
courses, Digital Computers, the students get in touch for the
first time with the basic microprocessor and microcontroller
architectures. During the course, the students have to develop
a system that is proposed by the teachers or by them sponta-
neously. These systems must have certain characteristics in
order to guarantee that the students acquire the necessary
skills to work with these devices, the hardware and software
interfaces and the information processing associated to them.

Authorized licensed use limited to: MINCYT. Downloaded on October 18,2021 at 15:02:53 UTC from IEEE Xplore. Restrictions apply.

ORDINEZ et al.: USING UML FOR LEARNING HOW TO DESIGN AND MODEL CPS 57

Fig. 7. Simplified use case diagram.

TABLE V

TEXTUAL USE CASE FOR THE INPUT COMMANDS

TABLE VI

TEXTUAL FLOW-BATCH USE CASE FOR THE EXECUTION OF THE PROCEDURE

Fig. 8. Deployment diagram for the HMI.

The second course in which the method is applied is Final
Project. In this case the students have to elaborate a thesis
at the end of the career in which they show the knowledge
acquired along the career. Any professor of the career can
supervise this work, thus there are multiple areas to work.
In the case of the Final Projects directed in the area of the

Digital Systems Laboratory, they are oriented to the devel-
opment of CPS or embedded systems for instrumentation or
automation. Like in the other course, it is necessary to guide
the students through the process of modeling as to elicit both
functional and non-functional requirements in a systematic
way until a satisfactory model is obtained. Some systems that
have been modeled, designed and implemented through the
years are: a portable multi parametric sensor to measure flow,
pH, temperature, conductivity and turbidity for rivers, lakes or
sea; a flow-batch controller for the automatizing of chemical
experiments using the principles of the green chemistry; a
spectral analyzer, temperature controllers for ceramic ovens,
among others.

Before 2013, when the method was not taught to the
students, the project in the Digital Computers course used
to take about three out of fourth months. The students made
the job in an intuitive way requiring several iterations until
the objectives were achieved. As the teachers incorporated

Authorized licensed use limited to: MINCYT. Downloaded on October 18,2021 at 15:02:53 UTC from IEEE Xplore. Restrictions apply.

58 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 1, FEBRUARY 2020

Fig. 9. Activity diagram for the procedure that executes the Flow-Batch
process.

Fig. 10. Class diagram for the controller.

the proposed methodology the design adopted a systematic
approach, the complexity of the system was increased and
the time demanded to finish the project was reduced in one
month. Nowadays, the students begin the project in the last
days of April and present the operating prototype at the
end of June. As the students have a methodology to follow,
the number of iterations has been reduced significantly. Before
the introduction of the method, about 20% of the students
was not able to finish on time the project according to the
requirements of the system. At the end of the course they
just presented different operating parts but not integrated in
a full system. For example, they showed that they were able
to read an analog/digital converter, or change the state of an
output variable but these functionalities were not linked into
a system. This fact showed that the students were lacking the
global vision of the system needed to modify the output value
of a variable according to the reading of an input one. After the
implementation of the methodology, only 5% of the students
fails to present a working system. It is important to remark
that the number of students that take the course (15) and the
way in which they are divided in groups to do the projects
(between two and four students) have not changed in the last
six years.

The other course in which the method is implemented,
Final Project, the students should define, model, design and
implement a working system, and they should write and defend
a report of their work to achieve the Electronic Engineering

degree. Although it is a four months course, before the
introduction of this methodology, the students used to take an
average of nine months, that is more than the double of time
assigned to the course. With the introduction of the method,
the students finished it in most of the cases within the expected
time of four months.

The method is taught without formally introducing the steps
to be followed. In this way, it is expected that the students can
internalize it naturally. The method is not presented as an algo-
rithm to follow that students repeat over different problems to
be finally evaluated. On the contrary, the method is presented
as a set of ordered tools that they should use as needed while
they advance in the definition of the system, the requirements
elicitation and the implementation strategies. The identification
and definition of the actors and the specification of the use
cases are the steps that require more time because they oblige
the students to conceptualize the system and its requirements.
However, these steps are made using natural language avoiding
the technicalities, consequently facilitating a more precise
requirements elicitation. The deployment, activities and classes
diagrams seem simple to the students, since they have proce-
dural characteristics and bring them closer to coding, which
is the last stage that we do not describe in this work.

IX. CONCLUSION

Electronic and Computer Engineering teaching is contin-
uously under revision and update as there are advances in
the associated technology every day turning mandatory the
curricula actualization to keep the courses in line. In this paper,
a methodology based on UML concepts to provide a simple,
secure and agile mechanism for the modeling and design of
CPS and embedded system was presented.

The curricula divides the learning into separated areas losing
the global vision of problems. The processor architecture,
their interfaces, programming models, control laws and com-
munication protocols are taught as independent parts. The
methodology here proposed presents a complete real problem
to be solved starting with a description in natural language
of the actors, their relations, requirements and functionalities
until the implementation details with activity diagrams.

The proposed methodology was introduced in 2013 in dif-
ferent undergraduate courses with excellent results specially in
reducing the time needed to define the system, its requirements
and design avoiding unnecessary iterations and subsequent
adjustments that were common. With the implementation, not
only the performance of the students was improved but what
is more important, the global interpretation of the problem.

In the next courses, tools from SySML will be incorporated
to the methodology in order to evaluate if there are improve-
ments in the learning process by using other type of diagrams.

REFERENCES

[1] K. H. Kim, “Challenges and future directions of cyber-physical system
software,” in Proc. IEEE 34th Annu. Comput. Softw. Appl. Conf.,
Jul. 2010, pp. 10–13.

[2] M. Broy and T. Stauner, “Requirements engineering for embedded
systems,” Inf. Technol., vol. 41, no. 2, pp. 7–11, 1999.

Authorized licensed use limited to: MINCYT. Downloaded on October 18,2021 at 15:02:53 UTC from IEEE Xplore. Restrictions apply.

ORDINEZ et al.: USING UML FOR LEARNING HOW TO DESIGN AND MODEL CPS 59

[3] E. A. Lee, “Cyber physical systems: Design challenges,” in Proc. 11th
IEEE Symp. Object Oriented Real-Time Distrib. Comput. Washington,
DC, USA: IEEE Computer Society, May 2008, pp. 363–369.

[4] J. A. Stankovic, I. Lee, A. Mok, and R. Rajkumar, “Opportunities and
obligations for physical computing systems,” Computer, vol. 38, no. 11,
pp. 23–31, Nov. 2005.

[5] J. C. Martinez-Santos, O. Acevedo-Patino, and S. H. Contreras-Ortiz,
“Influence of arduino on the development of advanced microcon-
trollers courses,” IEEE Revista Iberoamericana Tecnologias Aprendizaje,
vol. 12, no. 4, pp. 208–217, Nov. 2017.

[6] (Oct. 20, 2014). Unified Modeling Language. [Online]. Available:
http://www.uml.org

[7] E. Makio-Marusik, “Current trends in teaching cyber physical systems
engineering: A literature review,” in Proc. IEEE 15th Int. Conf. Ind.
Informat. (INDIN), Jul. 2017, pp. 518–525.

[8] J. O. Ringert, B. Rumpe, C. Schulze, and A. Wortmann, “Teaching
agile model-driven engineering for cyber-physical systems,” in Proc.
IEEE/ACM 39th Int. Conf. Softw. Eng., Softw. Eng. Edu. Training
Track (ICSE-SEET), Piscataway, NJ, USA, May 2017, pp. 127–136,
doi: 10.1109/ICSE-SEET.2017.16.

[9] L. Ordinez and O. Alimenti, “A constructivist approach for teach-
ing embedded systems,” IEEE Latin Amer. Trans., vol. 11, no. 1,
pp. 572–578, Feb. 2013.

[10] A. Hamou-Lhadj, A. Gherbi, and J. Nandigam, “The impact of the
model-driven approach to software engineering on software engineering
education,” in Proc. 6th Int. Conf. Inf. Technol., New Generat. (ITNG)
Washington, DC, USA: IEEE Computer Society, 2009, pp. 719–724,
doi: 10.1109/ITNG.2009.160.

[11] S. Diev, “Use cases modeling and software estimation: Applying use
case points,” ACM SIGSOFT Softw. Eng. Notes, vol. 31, no. 6, pp. 1–4,
Nov. 2006, doi: 10.1145/1218776.1218780.

[12] G. Karner, “Use case points: Resource estimation for objectory projects
Objective Systems SF AB,” Ph.D. dissertation, Rational Softw., San Jose,
CA, USA, 1993.

[13] R. Collaris and E. Dekker, “Software cost estimation using use case
points: Getting use case transactions straight,” IBM, Rational Edge,
2009.

[14] L. Ordinez, D. Donari, R. M. Santos, and J. Orozco, “From user require-
ments to tasks descriptions in real-time systems,” in Proc. Workshop
Engenharia Requisitos (WER), 2010.

[15] L. Ordinez, O. Alimenti, and L. Calles, “Eliciting requirements in small
cyber-physical systems,” in Proc. CLEI 37th Conferencia Latinoameri-
cana Inf., 2011.

[16] P. Derler, E. Lee, and A.-S. Vincentelli, “Modeling cyber physical
systems,” Proc. IEEE, vol. 100, no. 1, pp. 13–28, Jan. 2012.

[17] M. García-Valls, P. Basanta-Val, M. Marcos, and E. Estévez, “A bi-
dimensional QoS model for SOA and real-time middleware,” Int.
J. Comput. Syst. Sci. Eng., vol. 267, p. 6192, 2013.

[18] A. D. Toro and B. B. Jiménez, “Metodología para la elicitación de requi-
sitos de sistemas software,” Univ. Sevilla, Seville, Spain, Tech. Rep. LSI-
2000-10, 2000.

[19] The C4 Model for Software Architecture. Accessed: Mar. 23, 2020.
[Online]. Available: https://c4model.com/

[20] S. J. Goldsack and A. C. W. Finkelstein, “Requirements engineering for
real-time systems,” Softw. Eng. J., vol. 6, no. 3, pp. 101–115, May 1991.

[21] M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and B. E. Melhart,
“Software requirements analysis for real-time process-control systems,”
IEEE Trans. Softw. Eng., vol. 17, no. 3, pp. 241–258, Mar. 1991.

[22] D. D. Zhang, “Use case modeling for real-time application,” in Proc. 4th
Int. Workshop Object-Oriented Real-Time Dependable Syst. (WORDS).
Washington, DC, USA: IEEE Computer Society, 1999, pp. 56–64.

[23] N. Bolloju and S. X. Y. Sun, “Benefits of supplementing use case
narratives with activity diagrams—An exploratory study,” J. Syst.
Softw., vol. 85, no. 9, pp. 2182–2191, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016412121200129X

[24] (Oct. 20, 2014). Modeling and Analysis of Real-Time and Embedded
Systems. [Online]. Available: http://www.omgmarte.org/

[25] L. Ordinez, D. Donari, R. Santos, and J. Orozco, “Time is not enough:
Dealing with behavior in real-time systems,” J. UCS, vol. 17, no. 11,
pp. 1572–1604, Jul. 2011.

[26] F. Mallet, C. André, and J. DeAntoni, “Executing AADL models with
UML/MARTE,” in Proc. 14th IEEE Int. Conf. Eng. Complex Comput.
Syst. (ICECCS). Washington, DC, USA: IEEE Computer Society, 2009,
pp. 371–376, doi: 10.1109/ICECCS.2009.10.

[27] S. Turki, E. Senn, and D. Blouin, “Mapping the MARTE UML profile to
AADL,” in Proc. MoDELS 2010 ACES-MB Workshop, 2010, pp. 11–20.

[28] P. Derler, E. A. Lee, S. Tripakis, and M. Törngren, “Cyber-physical
system design contracts,” in Proc. ACM/IEEE 4th Int. Conf. Cyber-Phys.
Syst. (ICCPS), New York, NY, USA, 2013, pp. 109–118, doi: 10.1145/
2502524.2502540.

[29] (Mar. 2019). OMG Systems Modeling Language. [Online]. Available:
http://www.omgsysml.org/

[30] K. Evensen and K. Weiss, “A comparison and evaluation of
real-time software systems modeling languages,” in Proc. AIAA
Infotech@Aerospace, Apr. 2010, p. 3504.

[31] J. Mäkiö, E. Mäkiö-Marusik, E. Yablochnikov, V. Arckhipov, and
K. Kipriianov, “Teaching cyber physical systems engineering,” in Proc.
43rd Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2017,
pp. 3530–3535.

[32] J. I. Sosa et al., “Industrial plant at academic level for teaching industrial
informatics in an electronic engineering undergraduate degree,” IEEE
Revista Iberoamericana Tecnologias Aprendizaje, vol. 12, no. 1, pp. 1–9,
Feb. 2017.

[33] H. Posadas and E. Villar, “Using professional resources for teaching
embedded SW development,” IEEE Revista Iberoamericana Tecnologias
Aprendizaje, vol. 11, no. 4, pp. 248–255, Nov. 2016.

[34] R. Santos, L. Ordinez, and G. Eggly, “El enfoque de Cajas Negra
y Blanca para la enseñanza de sistemas embebidos,” in Proc. IEEE
Biennial Congr. Argentina (ARGENCON), Jun. 2016, pp. 1–7.

[35] D. Riesco, P. Martellotto, and G. Montejano, “Extension to UML
using stereotypes,” in UML and the Unified Process, L. Favre, Ed.
Hershey, PA, USA: IGI Global, 2003, pp. 273–293. [Online]. Available:
http://dl.acm.org/citation.cfm?id=953192.953207

[36] Usecases.org. Matthew Tippett’s Blog, Musings on Software Engineer-
ing, Management & Other Stuff. Accessed: Mar. 23, 2020. [Online].
Available: https://use-cases.org/

[37] A. Cockburn, “Structuring use cases with goals,” J. Object-Oriented
Program., vol. 10, no. 5, pp. 56–62, Sep./Dec. 1997.

[38] I. Jacobson and P.-W. Ng, Aspect-Oriented Software Development With
Use Cases. Reading, MA, USA: Addison-Wesley, 2004.

[39] K. Rui and G. Butler, “Refactoring use case models: The metamodel,” in
Proc. 26th Australas. Comput. Sci. Conf. (ACSC), vol. 16. Darlinghurst,
NSW, Australia: Australian Computer Society, Inc., 2003, pp. 301–308.
[Online]. Available: http://dl.acm.org/citation.cfm?id=783106.783140

[40] J. Xu, W. Yu, K. Rui, and G. Butler, “Use case refactoring: A tool and
a case study,” in Proc. 11th Asia–Pacific Softw. Eng. Conf., Nov. 2004,
pp. 484–491.

[41] C. Marcos, A. Rago, and J. A. Diaz Pace, “Improving use case spec-
ifications by means of refactoring,” IEEE Latin Amer. Trans., vol. 13,
no. 4, pp. 1135–1140, Apr. 2015.

[42] M. A. Teruel, E. Navarro, V. López-Jaquero, F. Montero, and P. Gonza-
lez, “An empirical evaluation of requirement engineering techniques for
collaborative systems,” Univ. Castilla-La Mancha, Ciudad Real, Spain,
Tech. Rep. DIAB-11-01-1, 2011.

[43] J. M. Almendros-Jimenez and L. Iribarne, “Describing use-case relation-
ships with sequence diagrams,” Comput. J., vol. 50, no. 1, pp. 116–128,
Oct. 2007, doi: 10.1093/comjnl/bxl053.

[44] M. T. Kimour and D. Meslati, “Deriving objects from use cases in
real-time embedded systems,” Inf. Softw. Technol., vol. 47, no. 8,
pp. 533–541, Jun. 2005.

[45] G. M. Eggly, M. Blackhall, A. de Araújo Gomes, R. Santos,
M. C. U. de Araújo, and M. F. Pistonesi, “Emitter/receiver piezoelec-
tric films coupled to flow-batch analyzer for acoustic determination
of free glycerol in biodiesel without chemicals/external pretreatment,”
Microchem. J., vol. 138, pp. 296–302, May 2018.

[46] G. M. Eggly, M. Nabaes, M. S. Di Nezio, M. E. Centurión, R. Santos,
and M. F. Pistonesi, “Embedded flow-batch system with electrochem-
ical detection for the determination of lead in propolis samples,” Int.
J. Environ. Anal. Chem., vol. 97, no. 10, pp. 922–934, Aug. 2017.

Leo Ordinez received the degree in computer engi-
neering and the Ph.D. degree in engineering from
the Universidad Nacional del Sur. He is currently
a Professor with the Universidad Nacional de la
Patagonia San Juan Bosco. His research interests are
oriented to the incorporation of technology for the
improvement of life in cities, which could be named
as smart cities. His work is focused on interdiscipli-
nary projects covering areas such as software engi-
neering, requirements engineering, urban planning,
local development, and the Internet of Things.

Authorized licensed use limited to: MINCYT. Downloaded on October 18,2021 at 15:02:53 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/ICSE-SEET.2017.16
http://dx.doi.org/10.1109/ITNG.2009.160
http://dx.doi.org/10.1145/1218776.1218780
http://dx.doi.org/10.1109/ICECCS.2009.10
http://dx.doi.org/10.1093/comjnl/bxl053
http://dx.doi.org/10.1145/2502524.2502540
http://dx.doi.org/10.1145/2502524.2502540

60 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 1, FEBRUARY 2020

Gabriel Eggly received the degree in electronic
engineering and the Ph.D. degree from the Univer-
sidad Nacional del Sur, where he currently holds a
Postdoctoral scholarship with CONICET. He is an
Adjunct Professor with the Universidad Nacional del
Sur. His research interests are in embedded systems
and instrumentation oriented to metrology applied to
the study and analysis of analytical chemistry and
environmental variables.

Matías Micheletto received the degree in electronic
engineering from the Universidad Nacional del Sur,
where he currently holds a Ph.D. Scholarship with
CONICET. His research interests are in the fields
of embedded systems and scheduling optimization
applied to precision farming, among others.

Rodrigo Santos is an Adjunct Professor with the
Universidad Nacional del Sur and an Independent
Researcher with CONICET, Argentina. He has been
the President of the Center of Latin–American Stud-
ies in Informatics and the Vice-Chair of the IFIP WG
6.9 Communications for Developing Countries. His
research interests are in the fields of real-time sys-
tems, embedded systems, and collaborative systems.

Authorized licensed use limited to: MINCYT. Downloaded on October 18,2021 at 15:02:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

