3,691 research outputs found

    Natural Virtual Reality User Interface to Define Assembly Sequences for Digital Human Models

    Get PDF
    Digital human models (DHMs) are virtual representations of human beings. They are used to conduct, among other things, ergonomic assessments in factory layout planning. DHM software tools are challenging in their use and thus require a high amount of training for engineers. In this paper, we present a virtual reality (VR) application that enables engineers to work with DHMs easily. Since VR systems with head-mounted displays (HMDs) are less expensive than CAVE systems, HMDs can be integrated more extensively into the product development process. Our application provides a reality-based interface and allows users to conduct an assembly task in VR and thus to manipulate the virtual scene with their real hands. These manipulations are used as input for the DHM to simulate, on that basis, human ergonomics. Therefore, we introduce a software and hardware architecture, the VATS (virtual action tracking system). This paper furthermore presents the results of a user study in which the VATS was compared to the existing WIMP (Windows, Icons, Menus and Pointer) interface. The results show that the VATS system enables users to conduct tasks in a significantly faster way

    A multi-projector CAVE system with commodity hardware and gesture-based interaction

    Get PDF
    Spatially-immersive systems such as CAVEs provide users with surrounding worlds by projecting 3D models on multiple screens around the viewer. Compared to alternative immersive systems such as HMDs, CAVE systems are a powerful tool for collaborative inspection of virtual environments due to better use of peripheral vision, less sensitivity to tracking errors, and higher communication possibilities among users. Unfortunately, traditional CAVE setups require sophisticated equipment including stereo-ready projectors and tracking systems with high acquisition and maintenance costs. In this paper we present the design and construction of a passive-stereo, four-wall CAVE system based on commodity hardware. Our system works with any mix of a wide range of projector models that can be replaced independently at any time, and achieves high resolution and brightness at a minimum cost. The key ingredients of our CAVE are a self-calibration approach that guarantees continuity across the screen, as well as a gesture-based interaction approach based on a clever combination of skeletal data from multiple Kinect sensors.Preprin

    Role-Playing Game and Learning for Young People About Sustainable Development Stakes: An Experiment in Transferring and Adapting Interdisciplinary Scientific Knowledge

    Get PDF
    The study refers to the interactions between socio-economic and natural dynamics in an island biosphere reserve by using companion modelling. This approach provides scientific results and involves interdisciplinarity. In the second phase of the study, we transferred knowledge by adapting the main research output, a role-playing game, to young people. Our goal was to introduce interactions between social and ecological systems, coastal dynamics and integrated management. Adapting the game required close collaboration between the scientists and educators in order to transform both its substance and form and to run it with an easy-to-handle ergonomic platform.Children Education, Multi-Agent Environment, Role-Playing Game

    A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom

    Get PDF
    Purpose: Benefits of minimally invasive neurosurgery mandate the development of ergonomic paradigms for neuronavigation. Augmented Reality (AR) systems can overcome the shortcomings of commercial neuronavigators. The aim of this work is to apply a novel AR system, based on a head-mounted stereoscopic video see-through display, as an aid in complex neurological lesion targeting. Effectiveness was investigated on a newly designed patient-specific head mannequin featuring an anatomically realistic brain phantom with embedded synthetically created tumors and eloquent areas. Materials and methods: A two-phase evaluation process was adopted in a simulated small tumor resection adjacent to Brocaâ\u80\u99s area. Phase I involved nine subjects without neurosurgical training in performing spatial judgment tasks. In Phase II, three surgeons were involved in assessing the effectiveness of the AR-neuronavigator in performing brain tumor targeting on a patient-specific head phantom. Results: Phase I revealed the ability of the AR scene to evoke depth perception under different visualization modalities. Phase II confirmed the potentialities of the AR-neuronavigator in aiding the determination of the optimal surgical access to the surgical target. Conclusions: The AR-neuronavigator is intuitive, easy-to-use, and provides three-dimensional augmented information in a perceptually-correct way. The system proved to be effective in guiding skin incision, craniotomy, and lesion targeting. The preliminary results encourage a structured study to prove clinical effectiveness. Moreover, our testing platform might be used to facilitate training in brain tumour resection procedures

    The Maritime Domain Awareness Center– A Human-Centered Design Approach

    Get PDF
    This paper contends that Maritime Domain Awareness Center (MDAC) design should be a holistic approach integrating established knowledge about human factors, decision making, cognitive tasks, complexity science, and human information interaction. The design effort should not be primarily a technology effort that focuses on computer screens, information feeds, display technologies, or user interfaces. The existence of a room with access to vast amounts of information and wall-to-wall video screens of ships, aircraft, weather data, and other regional information does not necessarily correlate to possessing situation awareness. Fundamental principles of human-centered information design should guide MDAC design and technology selection, and it is imperative that they be addressed early in system development. The design approach should address the reason and purpose for a given MDAC. Subsequent design efforts should address ergonomic interaction with information – the relationship of the brain to the information ecosystem provided by the MDAC, and the cognitive science of situation awareness and decision making. This understanding will guide technology functionality. The system user and decision maker should be the focus of the information design specifications, and this user population must participate and influence the information design. Accordingly, this paper provides a “design gestalt” by which to approach the design and development of an MDAC

    a mixed reality digital set up to support design for serviceability

    Get PDF
    Abstract Design for serviceability begins with understanding the customer needs related to availability, reliability, accessibility and visibility, and aims at designing optimized systems where maintenance operations are easy and intuitive in order to reduce the time to repair and service costs. However, service actions are difficult to predict in front of a traditional CAD model. In this context, digital manufacturing tools and virtual simulation technologies can be validly used to create mixed digital environments where service tasks can be simulated in advance to support product design and improve maintenance actions. Furthermore, the use of human monitoring sensors can be used to detect the stressful conditions and to optimize the human tasks. The paper proposes a mixed reality (MR) set-up where operators are digitalized and monitored to analyse both physical and cognitive ergonomics. It is useful to predict design criticalities and improve the global system design. An industrial case study has been developed in collaboration with CNH Industrial to demonstrate how the proposed set-up is used for design for serviceability, on the basis of experimental evidence
    corecore