397 research outputs found

    A gradient-type algorithm for the numerical solution of two-player zero-sum differential game problems

    Get PDF

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Single- and multiobjective reinforcement learning in dynamic adversarial games

    Get PDF
    This thesis uses reinforcement learning (RL) to address dynamic adversarial games in the context of air combat manoeuvring simulation. A sequential decision problem commonly encountered in the field of operations research, air combat manoeuvring simulation conventionally relied on agent programming methods that required significant domain knowledge to be manually encoded into the simulation environment. These methods are appropriate for determining the effectiveness of existing tactics in different simulated scenarios. However, in order to maximise the advantages provided by new technologies (such as autonomous aircraft), new tactics will need to be discovered. A proven technique for solving sequential decision problems, RL has the potential to discover these new tactics. This thesis explores four RL approaches—tabular, deep, discrete-to-deep and multiobjective— as mechanisms for discovering new behaviours in simulations of air combat manoeuvring. Itimplements and tests several methods for each approach and compares those methods in terms of the learning time, baseline and comparative performances, and implementation complexity. In addition to evaluating the utility of existing approaches to the specific task of air combat manoeuvring, this thesis proposes and investigates two novel methods, discrete-to-deep supervised policy learning (D2D-SPL) and discrete-to-deep supervised Q-value learning (D2D-SQL), which can be applied more generally. D2D-SPL and D2D-SQL offer the generalisability of deep RL at a cost closer to the tabular approach.Doctor of Philosoph

    Air Force Institute of Technology Research Report 2020

    Get PDF
    This Research Report presents the FY20 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    A new solution for Markov Decision Processes and its aerospace applications

    Get PDF
    Markov Decision Processes (MDPs) are a powerful technique for modelling sequential decisionmaking problems which have been used over many decades to solve problems including robotics,finance, and aerospace domains. However, MDPs are also known to be difficult to solve due toexplosion in the size of the state space which makes finding their solution intractable for manypractical problems. The traditional approaches such as value iteration required that each state inthe state space is represented as an element in an array, which eventually will exhaust the availablememory of any computer. It is not unusual to find practical problems in which the number ofstates is so large that it will never conceivably be tractable on any computer (e.g., the numberof states is of the order of the number of atoms in the universe.) Historically, this issue has beenmitigated by various means, but primarily by approximation (under the umbrella of ApproximateDynamic Programmming) where the solution of the MDP (the value function) is modelled via anapproximation function. Many linear function approximation methods have been proposed sinceMarkov Decision Processes were proposed nearly 70 years ago. More recently non-linear (e.g. deepneural net) function approximation methods have also been proposed to obtain a higher qualityestimate of the value function. While these methods help, they come with disadvantages includingloss of accuracy caused by the approximation, and a training or fitting phase which may take a longtime to converge This thesis makes two main contributions in the area of Markov Decision Processes: (1) a novelalternative theoretical understanding of the nature of Markov Decision Processes and their solutions,and (2) a new series of algorithms that can solve a subset of MDPs extremely quickly compared tothe historical methods described above. We provide both an intuitive and mathematical descriptionof the method. We describe a progression of algorithms that demonstrate the utility of the approachin aerospace applications including guidance to goals, collision avoidance, and pursuit evasion. We start in 2D environments with simple aircraft models and end with 3D team-based pursuit evasionwhere the aircraft perform rolls and loops in a highly dynamic environment. We close by providingdiscussion and describing future researc

    On inverse reinforcement learning and dynamic discrete choice for predicting path choices

    Full text link
    La modélisation du choix d'itinéraire est un sujet de recherche bien étudié avec des implications, par exemple, pour la planification urbaine et l'analyse des flux d'équilibre du trafic. En raison de l'ampleur des effets que ces problèmes peuvent avoir sur les communautés, il n'est pas surprenant que plusieurs domaines de recherche aient tenté de résoudre le même problème. Les défis viennent cependant de la taille des réseaux eux-mêmes, car les grandes villes peuvent avoir des dizaines de milliers de segments de routes reliés par des dizaines de milliers d'intersections. Ainsi, les approches discutées dans cette thèse se concentreront sur la comparaison des performances entre des modèles de deux domaines différents, l'économétrie et l'apprentissage par renforcement inverse (IRL). Tout d'abord, nous fournissons des informations sur le sujet pour que des chercheurs d'un domaine puissent se familiariser avec l'autre domaine. Dans un deuxième temps, nous décrivons les algorithmes utilisés avec une notation commune, ce qui facilite la compréhension entre les domaines. Enfin, nous comparons les performances des modèles sur des ensembles de données du monde réel, à savoir un ensemble de données couvrant des choix d’itinéraire de cyclistes collectés dans un réseau avec 42 000 liens. Nous rapportons nos résultats pour les deux modèles de l'économétrie que nous discutons, mais nous n'avons pas pu générer les mêmes résultats pour les deux modèles IRL. Cela était principalement dû aux instabilités numériques que nous avons rencontrées avec le code que nous avions modifié pour fonctionner avec nos données. Nous proposons une discussion de ces difficultés parallèlement à la communication de nos résultats.Route choice modeling is a well-studied topic of research with implications, for example, for city planning and traffic equilibrium flow analysis. Due to the scale of effects these problems can have on communities, it is no surprise that diverse fields have attempted solutions to the same problem. The challenges, however, come with the size of networks themselves, as large cities may have tens of thousands of road segments connected by tens of thousands of intersections. Thus, the approaches discussed in this thesis will be focusing on the performance comparison between models from two different fields, econometrics and inverse reinforcement learning (IRL). First, we provide background on the topic to introduce researchers from one field to become acquainted with the other. Secondly, we describe the algorithms used with a common notation to facilitate this building of understanding between the fields. Lastly, we aim to compare the performance of the models on real-world datasets, namely covering bike route choices collected in a network of 42,000 links. We report our results for the two models from econometrics that we discuss, but were unable to generate the same results for the two IRL models. This was primarily due to numerical instabilities we encountered with the code we had modified to work with our data. We provide a discussion of these difficulties alongside the reporting of our results

    Air Force Institute of Technology Research Report 2018

    Get PDF
    This Research Report presents the FY18 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    Wide-Area Surveillance System using a UAV Helicopter Interceptor and Sensor Placement Planning Techniques

    Get PDF
    This project proposes and describes the implementation of a wide-area surveillance system comprised of a sensor/interceptor placement planning and an interceptor unmanned aerial vehicle (UAV) helicopter. Given the 2-D layout of an area, the planning system optimally places perimeter cameras based on maximum coverage and minimal cost. Part of this planning system includes the MATLAB implementation of Erdem and Sclaroff’s Radial Sweep algorithm for visibility polygon generation. Additionally, 2-D camera modeling is proposed for both fixed and PTZ cases. Finally, the interceptor is also placed to minimize shortest-path flight time to any point on the perimeter during a detection event. Secondly, a basic flight control system for the UAV helicopter is designed and implemented. The flight control system’s primary goal is to hover the helicopter in place when a human operator holds an automatic-flight switch. This system represents the first step in a complete waypoint-navigation flight control system. The flight control system is based on an inertial measurement unit (IMU) and a proportional-integral-derivative (PID) controller. This system is implemented using a general-purpose personal computer (GPPC) running Windows XP and other commercial off-the-shelf (COTS) hardware. This setup differs from other helicopter control systems which typically use custom embedded solutions or micro-controllers. Experiments demonstrate the sensor placement planning achieving \u3e90% coverage at optimized-cost for several typical areas given multiple camera types and parameters. Furthermore, the helicopter flight control system experiments achieve hovering success over short flight periods. However, the final conclusion is that the COTS IMU is insufficient for high-speed, high-frequency applications such as a helicopter control system
    • …
    corecore