720 research outputs found

    On the Adaptive Tracking Control of 3-D Overhead Crane Systems

    Get PDF

    Development of Motion Control Systems for Hydraulically Actuated Cranes with Hanging Loads

    Get PDF
    Automation has been used in industrial processes for several decades to increase efficiency and safety. Tasks that are either dull, dangerous, or dirty can often be performed by machines in a reliable manner. This may provide a reduced risk to human life, and will typically give a lower economic cost. Industrial robots are a prime example of this, and have seen extensive use in the automotive industry and manufacturing plants. While these machines have been employed in a wide variety of industries, heavy duty lifting and handling equipment such as hydraulic cranes have typically been manually operated. This provides an opportunity to investigate and develop control systems to push lifting equipment towards the same level of automation found in the aforementioned industries. The use of winches and hanging loads on cranes give a set of challenges not typically found on robots, which requires careful consideration of both the safety aspect and precision of the pendulum-like motion. Another difference from industrial robots is the type of actuation systems used. While robots use electric motors, the cranes discussed in this thesis use hydraulic cylinders. As such, the dynamics of the machines and the control system designmay differ significantly. In addition, hydraulic cranes may experience significant deflection when lifting heavy loads, arising from both structural flexibility and the compressibility of the hydraulic fluid. The work presented in this thesis focuses on motion control of hydraulically actuated cranes. Motion control is an important topic when developing automation systems, as moving from one position to another is a common requirement for automated lifting operations. A novel path controller operating in actuator space is developed, which takes advantage of the load-independent flow control valves typically found on hydraulically actuated cranes. By operating in actuator space the motion of each cylinder is inherently minimized. To counteract the pendulum-like motion of the hanging payload, a novel anti-swing controller is developed and experimentally verified. The anti-swing controller is able to suppress the motion from the hanging load to increase safety and precision. To tackle the challenges associated with the flexibility of the crane, a deflection compensator is developed and experimentally verified. The deflection compensator is able to counteract both the static deflection due to gravity and dynamic de ection due to motion. Further, the topic of adaptive feedforward control of pressure compensated cylinders has been investigated. A novel adaptive differential controller has been developed and experimentally verified, which adapts to system uncertainties in both directions of motion. Finally, the use of electro-hydrostatic actuators for motion control of cranes has been investigated using numerical time domain simulations. A novel concept is proposed and investigated using simulations.publishedVersio

    An improved neuroendocrine–proportional–integral–derivative controller with sigmoid-based secretion rate for nonlinear multi-input–multi-output crane systems

    Get PDF
    This paper proposes an improved neuroendocrine–proportional–integral–derivative controller for nonlinear multi-input–multi-output crane systems using a sigmoid-based secretion rate of the hormone regulation. The main advantage of the sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative is that the hormone secretion rate of neuroendocrine–proportional–integral–derivative can be varied according to the change of error. As a result, it can provide high accuracy control performance, especially in nonlinear multi-input–multi-output crane systems. In particular, the hormone secretion rate is designed to adapt with the changes of error using a sigmoid function, thus contributing to enhanced control accuracy. The parameters of the sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative controller are tuned using the safe experimentation dynamics algorithm. The performance of the proposed sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative controller-based safe experimentation dynamics algorithm is evaluated by tracking the error and the control input. In addition, the performances of proportional–integral–derivative and neuroendocrine–proportional–integral–derivative controllers are compared with the proposed sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative performance. From the simulation work, it is discovered that the sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative design provides better control performances in terms of the objective function, the total norm of error and the total norm of input compared to proportional–integral–derivative and neuroendocrine–proportional–integral–derivative controllers. In particular, it is shown the proposed sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative controller contributes 5.12% of control accuracy improvement by changing the fixed hormone secretion rate into a variable hormone secretion rate based on the change of error

    Modelling of spreader hoist systems in mobile gantry cranes

    Get PDF

    ADVANCED ANTI-SWAY CONTROL FOR OVERHEAD CRANES

    Get PDF
    This particular project focuses on a complex system whose dynamics are not very well understood and hence control designs are not straightforward. The project deals with the control of industrial overhead cranes. The project has the potential of bringing many rewards to industries, which are concerned with optimising lifting equipment performance. Such a system will allow these industries to save time and consequently costs as the volume of loaded and unloaded goods increases. Part of this project is to model the system surrounding the crane system and then design a suitable algorithm for load anti-sway purposes. The objective of this project is to design and implement an intelligent based controller that can be used to assist a crane operator in the difficult parts of the operation. The designed controller should give the appropriate control signal to the crane system such that the time taken to reach the target position is minimised with a zero sway angle at the destination. Earlier part of the project consisting of analysing and improving if required the existing 3-D mathematical linear and non-linear crane models. Two different models have been investigated: one with a constant cable length and the other with a variable cable length. The implementation of the controller is based on Fuzzy Logic Control (FLC). Two types of FLC have been used and compared the Fixed FLC and the FLC based on Adaptive Neuro Fuzzy Inference System (ANFIS). Heuristic approaches have been used for tuning the Fixed FLC. Data obtained from the Fixed FLC are then used for training ANFIS FLC. The results prove that it is possible to model an off-line expert fuzzy logic controller for an overhead crane. The controller achieved satisfactorily results for a constant and a variable rope length with minimal tuning than the fixed fuzzy method. Proposals for further work are also briefly discussed

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems

    Improved PID controller based on piecewise affine function in data driven control framework

    Get PDF
    In recent years, with the rapid developments of science and technology, practical applications in various fields such as chemical, machinery, electronics and electricity industries have caused the process to become more complex. This subsequently causes the modelling of the plant using first principles or system identification to become more difficult. In general, the PID controller has been successfully applied in various applications. However, the PID gains which are proportional

    Input shaping-based control schemes for a three dimensional gantry crane

    Get PDF
    The motion induced sway of oscillatory systems such as gantry cranes may decrease the efficiency of production lines. In this thesis, modelling and development of input shaping-based control schemes for a three dimensional (3D) lab-scaled gantry crane are proposed. Several input shaping schemes are investigated in open and closed-loop systems. The controller performances are investigated in terms of trolley position and sway responses of the 3D crane. Firstly, a new distributed Delay Zero Vibration (DZV) shaper is implemented and compared with Zero Vibration (ZV) shaper and Zero Vibration Derivative (ZVD) shaper. Simulation and experimental results show that all the shapers are able to reduce payload sway significantly while maintaining desired position response specifications. Robustness tests with ±20% error in natural frequency show that DZV shaper exhibits asymmetric robustness behaviour as compared to ZV and ZVD shapers. Secondly, as analytical technique could only provide good performance for linear systems, meta-heuristic based input shaper is proposed to reduce sway of a gantry crane which is a nonlinear system. The results show that designing meta-heuristic-based input shapers provides 30% to 50% improvement as compared to the analytical-based shapers. Subsequently, a particle swarm optimization based optimal performance control scheme is developed in closed-loop system. Simulation and experimental results demonstrate that the controller gives zero overshoot with 60% and 20% improvements in settling time and integrated absolute error value of position response respectively, as compared to a specific designed PID-PID anti swing controller for the lab-scaled gantry crane. It is found that crane control with changing cable length is still a problem to be solved. An adaptive input shaping control scheme that can adapt to variation of cable’s length is developed. Simulation with real crane dimensions and experimental results verify that the controller provides 50% reduction in payload sway for different operational commands with hoisting as compared to the average travel length approach

    Upgrading for overhead crane anti-sway method using variable frequency drive

    Get PDF
    The paper discusses about upgrading the overhead crane anti-sway method base on the induction motor torque control from rotor resistance starter to variable frequency drives (VFDs). The upgrading included two phases. The phase 1 is to identify the performance of the overhead crane operation on anti-sway method base on the induction motor torque control using rotor resistance starter (old existing motor starter). The phase 2 is to identify the performance of the overhead crane operation on anti-sway method base on the induction motor torque control that use a variable of frequency drive (new upgrading motor starter). The primary equations connecting tractive force and load sway angle, which the motor torque control law is based on is designed for 0% load wobble at the end of the journey. The words accelerating and braking have been written. Outcomes of modelling the behaviour of a trolley-load of two masses for the normal overhead crane load ratios, a system is described weight to the length of the rope, which supports the hypothesis concerning the feasibility of direct load anti-sway control ON and OFF for regulation of motor for overhead cranes
    corecore