5,918 research outputs found

    Reproducing formulas for generalized translation invariant systems on locally compact abelian groups

    Get PDF
    In this paper we connect the well established discrete frame theory of generalized shift invariant systems to a continuous frame theory. To do so, we let Γj\Gamma_j, j∈Jj \in J, be a countable family of closed, co-compact subgroups of a second countable locally compact abelian group GG and study systems of the form ∪j∈J{gj,p(⋅−γ)}γ∈Γj,p∈Pj\cup_{j \in J}\{g_{j,p}(\cdot - \gamma)\}_{\gamma \in \Gamma_j, p \in P_j} with generators gj,pg_{j,p} in L2(G)L^2(G) and with each PjP_j being a countable or an uncountable index set. We refer to systems of this form as generalized translation invariant (GTI) systems. Many of the familiar transforms, e.g., the wavelet, shearlet and Gabor transform, both their discrete and continuous variants, are GTI systems. Under a technical α\alpha local integrability condition (α\alpha-LIC) we characterize when GTI systems constitute tight and dual frames that yield reproducing formulas for L2(G)L^2(G). This generalizes results on generalized shift invariant systems, where each PjP_j is assumed to be countable and each Γj\Gamma_j is a uniform lattice in GG, to the case of uncountably many generators and (not necessarily discrete) closed, co-compact subgroups. Furthermore, even in the case of uniform lattices Γj\Gamma_j, our characterizations improve known results since the class of GTI systems satisfying the α\alpha-LIC is strictly larger than the class of GTI systems satisfying the previously used local integrability condition. As an application of our characterization results, we obtain new characterizations of translation invariant continuous frames and Gabor frames for L2(G)L^2(G). In addition, we will see that the admissibility conditions for the continuous and discrete wavelet and Gabor transform in L2(Rn)L^2(\mathbb{R}^n) are special cases of the same general characterizing equations.Comment: Minor changes (v2). To appear in Trans. Amer. Math. So

    Invertible Orientation Scores of 3D Images

    Full text link
    The enhancement and detection of elongated structures in noisy image data is relevant for many biomedical applications. To handle complex crossing structures in 2D images, 2D orientation scores were introduced, which already showed their use in a variety of applications. Here we extend this work to 3D orientation scores. First, we construct the orientation score from a given dataset, which is achieved by an invertible coherent state type of transform. For this transformation we introduce 3D versions of the 2D cake-wavelets, which are complex wavelets that can simultaneously detect oriented structures and oriented edges. For efficient implementation of the different steps in the wavelet creation we use a spherical harmonic transform. Finally, we show some first results of practical applications of 3D orientation scores.Comment: ssvm 2015 published version in LNCS contains a mistake (a switch notation spherical angles) that is corrected in this arxiv versio

    Interpolation in Wavelet Spaces and the HRT-Conjecture

    Full text link
    We investigate the wavelet spaces Wg(Hπ)⊂L2(G)\mathcal{W}_{g}(\mathcal{H}_{\pi})\subset L^{2}(G) arising from square integrable representations π:G→U(Hπ)\pi:G \to \mathcal{U}(\mathcal{H}_{\pi}) of a locally compact group GG. We show that the wavelet spaces are rigid in the sense that non-trivial intersection between them imposes strong conditions. Moreover, we use this to derive consequences for wavelet transforms related to convexity and functions of positive type. Motivated by the reproducing kernel Hilbert space structure of wavelet spaces we examine an interpolation problem. In the setting of time-frequency analysis, this problem turns out to be equivalent to the HRT-Conjecture. Finally, we consider the problem of whether all the wavelet spaces Wg(Hπ)\mathcal{W}_{g}(\mathcal{H}_{\pi}) of a locally compact group GG collectively exhaust the ambient space L2(G)L^{2}(G). We show that the answer is affirmative for compact groups, while negative for the reduced Heisenberg group.Comment: Added a relevant citation and made minor modifications to the expositio

    The wavelet transforms in Gelfand-Shilov spaces

    Get PDF
    We describe local and global properties of wavelet transforms of ultradifferentiable functions. The results are given in the form of continuity properties of the wavelet transform on Gelfand-Shilov type spaces and their duals. In particular, we introduce a new family of highly time-scale localized spaces on the upper half-space. We study the wavelet synthesis operator (the left-inverse of the wavelet transform) and obtain the resolution of identity (Calder\'{o}n reproducing formula) in the context of ultradistributions

    Coxeter Groups and Wavelet Sets

    Full text link
    A traditional wavelet is a special case of a vector in a separable Hilbert space that generates a basis under the action of a system of unitary operators defined in terms of translation and dilation operations. A Coxeter/fractal-surface wavelet is obtained by defining fractal surfaces on foldable figures, which tesselate the embedding space by reflections in their bounding hyperplanes instead of by translations along a lattice. Although both theories look different at their onset, there exist connections and communalities which are exhibited in this semi-expository paper. In particular, there is a natural notion of a dilation-reflection wavelet set. We prove that dilation-reflection wavelet sets exist for arbitrary expansive matrix dilations, paralleling the traditional dilation-translation wavelet theory. There are certain measurable sets which can serve simultaneously as dilation-translation wavelet sets and dilation-reflection wavelet sets, although the orthonormal structures generated in the two theories are considerably different
    • …
    corecore