146 research outputs found

    How to Couple from the Past Using a Read-Once Source of Randomness

    Full text link
    We give a new method for generating perfectly random samples from the stationary distribution of a Markov chain. The method is related to coupling from the past (CFTP), but only runs the Markov chain forwards in time, and never restarts it at previous times in the past. The method is also related to an idea known as PASTA (Poisson arrivals see time averages) in the operations research literature. Because the new algorithm can be run using a read-once stream of randomness, we call it read-once CFTP. The memory and time requirements of read-once CFTP are on par with the requirements of the usual form of CFTP, and for a variety of applications the requirements may be noticeably less. Some perfect sampling algorithms for point processes are based on an extension of CFTP known as coupling into and from the past; for completeness, we give a read-once version of coupling into and from the past, but it remains unpractical. For these point process applications, we give an alternative coupling method with which read-once CFTP may be efficiently used.Comment: 28 pages, 2 figure

    Stochastic average-cost control, with energy-related applications

    Get PDF
    In this thesis we present a new stochastic optimisation model arising from supplyside management of power networks. We provide the exact optimal solution under assumption that the environment is Markovian. For the semi-Markovian environment we establish existence of an optimal policy in an important subclass of policies. Finally, we solve the problem for a number of particular examples of environment

    Applying Mean-field Approximation to Continuous Time Markov Chains

    Get PDF
    The mean-field analysis technique is used to perform analysis of a systems with a large number of components to determine the emergent deterministic behaviour and how this behaviour modifies when its parameters are perturbed. The computer science performance modelling and analysis community has found the mean-field method useful for modelling large-scale computer and communication networks. Applying mean-field analysis from the computer science perspective requires the following major steps: (1) describing how the agents populations evolve by means of a system of differential equations, (2) finding the emergent deterministic behaviour of the system by solving such differential equations, and (3) analysing properties of this behaviour either by relying on simulation or by using logics. Depending on the system under analysis, performing these steps may become challenging. Often, modifications of the general idea are needed. In this tutorial we consider illustrating examples to discuss how the mean-field method is used in different application areas. Starting from the application of the classical technique, moving to cases where additional steps have to be used, such as systems with local communication. Finally we illustrate the application of the simulation and uid model checking analysis techniques

    Thermal conduction in classical low-dimensional lattices

    Full text link
    Deriving macroscopic phenomenological laws of irreversible thermodynamics from simple microscopic models is one of the tasks of non-equilibrium statistical mechanics. We consider stationary energy transport in crystals with reference to simple mathematical models consisting of coupled oscillators on a lattice. The role of lattice dimensionality on the breakdown of the Fourier's law is discussed and some universal quantitative aspects are emphasized: the divergence of the finite-size thermal conductivity is characterized by universal laws in one and two dimensions. Equilibrium and non-equilibrium molecular dynamics methods are presented along with a critical survey of previous numerical results. Analytical results for the non-equilibrium dynamics can be obtained in the harmonic chain where the role of disorder and localization can be also understood. The traditional kinetic approach, based on the Boltzmann-Peierls equation is also briefly sketched with reference to one-dimensional chains. Simple toy models can be defined in which the conductivity is finite. Anomalous transport in integrable nonlinear systems is briefly discussed. Finally, possible future research themes are outlined.Comment: 90 pages, revised versio

    A large deviation theory perspective on nanoscale transport phenomena

    Full text link
    Understanding transport processes in complex nanoscale systems, like ionic conductivities in nanofluidic devices or heat conduction in low dimensional solids, poses the problem of examining fluctuations of currents within nonequilibrium steady states and relating those fluctuations to nonlinear or anomalous responses. We have developed a systematic framework for computing distributions of time integrated currents in molecular models and relating cumulants of those distributions to nonlinear transport coefficients. The approach elaborated upon in this perspective follows from the theory of dynamical large deviations, benefits from substantial previous formal development, and has been illustrated in several applications. The framework provides a microscopic basis for going beyond traditional hydrodynamics in instances where local equilibrium assumptions break down, which are ubiquitous at the nanoscale.Comment: Small revisions for clarit
    • …
    corecore