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Abstract

In this thesis we present a new stochastic optimisation model arising from supply-

side management of power networks. We provide the exact optimal solution under

assumption that the environment is Markovian. For the semi-Markovian environ-

ment we establish existence of an optimal policy in an important subclass of policies.

Finally, we solve the problem for a number of particular examples of environment.
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Chapter 1

Introduction

Throughout the recent decades collaboration between the power industry and academia

deepened. Industry leaders have realised the importance of conducting rigorous re-

search prior to implementation of new policies or technologies, to optimise the perfor-

mance, minimise costs or prevent failures. Following this, a number of university based

projects were funded by industry companies. In particular, Heriot-Watt University

along with Durham and Cambridge Universities were involved in a joint programme

supported by grant EP/I017954/1 provided by National Grid.

Applied problems have inspired a number of complex mathematical problems,

which are of great scientific value on their own regardless of the applied setting. This

mutually fruitful collaboration has already delivered great results and will continue

to do so in the future.

The shift of energy supply strategies towards greener options brings complexity to

the supply management due to the volatility of renewable power. This provides a great

opportunity to apply probability and stochastic control theories to real life problems

and contribute to society by reducing energy costs and preserving the environment.

The most used renewable power sources nowadays are wind and solar power. Ac-

cording to National Grid’s Future Energy Scenarios yearly report of 2015, the target

contribution of renewable power sources to the UK’s electricity networks should hit

34% percent in 2020, with 18% input of wind power. Therefore, the questions of both

forecasting renewable generation and of scheduling the power supply according to the

prediction are highly important nowadays.

This thesis focuses on developing a stochastic optimisation framework for a par-

ticular power supply model with volatile net demand and also on establishing math-

ematical results within this framework.
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Chapter 1: Introduction

1.1 Applied mathematics and energy problems

The majority of the problems originating from the energy industry may be split into

the following classes:

1. supply-side management,

2. demand-side management,

3. storage management,

4. power grids management,

5. power arbitrage market,

6. forecasting.

This list is not exhaustive and represents only the major directions of research. Some

complex problems might involve sub-parts belonging to different categories.

The applied problem which motivated this thesis and which we discuss in Section

1.2 falls into supply-side optimisation category. Optimisation problems related to

power generation have been actively studied in recent times, for example see [19, 33,

41, 48].

The most famous problems falling into the supply-side management category are

the economic dispatch of thermal units and the unit commitment problem. The

economic dispatch problem (EDP) was first introduced and solved many years ago,

but its more complex modifications and more efficient iterative algorithms have been

widely studied since then. See [65] for the general overview of classical methods

applied to treat the problem. Suppose that one faces a decision on how to split

the generation between n thermal power units to meet demand D so that the cost

associated with the system is minimal. The units have different (usually convex)

production costs, and may be subject to constraints of different nature. The classical

problem is static, but its more realistic dynamic version is widely studied, for example

see [51] or one can have a look at the recent overview in [66]. The problem can be

solved by different optimisation techniques. For example, one may use the method of

Lagrange multipliers, if n is not too big and the cost functions are relatively simple,

so that the equations can be easily solved. When this is not the case one may apply

more practical iterative methods such as the λ-iteration, the gradient search or the

Newton’s method. These are classical optimisation techniques, for the reference the

reader might see major numerical analysis textbooks such as [4, 12].

The unit commitment (UC) problem is very close to (EDP), but it is a much more

complicated problem to solve. Suppose that one has M power units, each of which can

be either on or off. The system administrator decides which power units to connect

8



Chapter 1: Introduction

to the grid to meet the demand and minimise the cost. There is a switching cost

present in the system as well. The main difficulty comes from the large number of

combinations (equal to 2M) and from the discrete nature of the problem. In the last

20 years, with the increased importance of renewable power, the stochastic version

of unit commitment attracted various researchers [56, 52, 43]. UC is usually being

solved by various methods of stochastic programming. For a general introduction on

the theory one may have a look in [55].

Another interesting example is [41], in which the theory of Markov decision pro-

cesses is applied to scheduling of pool pumps in Florida. This example is in between

supply and demand-side management.

1.2 The Power Supply Problem - our basic model

For simplicity, we consider only four types of power supply in this thesis: conventional

generation, renewable generation, imported power and local storage. We summarize

here the main properties which are of interest for this work.

• Conventional power plants require time to ramp up and down. Therefore, they

must be scheduled in advance. If there is a shortage of power supply in the

system, conventional generation cannot immediately provide the needed power.

• Imported power is more expensive than conventional generation. However in

the event of a power shortage, imported power can be supplied immediately via

interconnectors. Therefore, regardless of its high price, it is still purchased to

prevent blackouts.

• The uncertainty in wind power prediction brings difficulty to the management

of the power supply. We suppose that all wind power plants are switched on and

uncontrollable. The entire amount of wind power produced is supplied to the

system automatically. Therefore we are interested in the so-called net demand,

which is the difference between the total demand and power produced by wind

farms. In this thesis, the net demand is treated as a stochastic process.

• We suppose that the storage may be used locally for covering small shortages.

System operators, National Grid, predict the net demand. The power system acts

autonomously to cover the mean of the predicted net demand, but it is unable to deal

with any forecast errors. Therefore, in the event of a large power shortage imported

power is purchased.

Figure 1.1 represents forecast errors (prediction minus actual wind generation)

made in the period from April 2011 to October 2012. The prediction was made 4

hours in advance, the data was kindly provided by Dr. A. Richards, National Grid.

9
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Figure 1.1: Errors in MW in wind power prediction, for 1.5 year period

When the error is negative there is no need to provide additional power. This is

true since at the moment the power supply was scheduled, the prediction of the wind

power was less optimistic than the actual outcome. Therefore demand is satisfied.

When the error is positive, one faces a situation, where the provided power supply

fails to meet demand. This shortage in the power supply must be covered immediately

which can be done with the help of imported power.

We assume that the smaller forecast errors may be covered by the local storage,

therefore we restrict our interest to only the larger errors. Figure 1.2 is obtained from

the previous one by removing the shortfalls below the level 1000MW.
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Figure 1.2: Only positive errors which are higher than 1000MW, for 1.5 year period

Hence, we model the error process as a collection of spikes (errors) of random

heights with random times between two consecutive shortfalls. The stochastic as-

sumptions for the error process are discussed in detail in Chapter 2.

The expenditure for running this system is the total price for imported power

purchased at shortage moments to balance the system. Suppose that χk is the random

variable standing for the height of the spike number k at time Tk. The average

expenditure over period (Tk−1, Tk] is then expressed as

c1Eχk, (1.1)

where c1 is the unit cost of imported power.

To reduce the total expenditure 1.1 we come up with a different idea. We assume

that we are allowed to provide additional conventional generation. The produced
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Chapter 1: Introduction

power can be used to satisfy the sudden unpredicted changes in the net demand and

possibly to reduce the expenditure connected with the expensive imported power.

Suppose that 0 < c2 is the unit cost of conventional generation. In reality, the

imported power is a lot more expensive than conventional power c1 � c2. The total

cost is comprised of the cost for imported power at shortfall moments and the cost

for the additional conventional generation. Suppose that X(t) units of conventional

generation are produced at moment t On period (Tk−1, Tk] one spends

c2

∫ Tk

Tk−1

X(s)ds+ c1Emax(χk −X(Tk), 0). (1.2)

It is clear that the minimum in cost 1.2 is not larger than cost 1.1, since it is possible to

take X(t) = 0. Hence, by providing additional conventional supply we might reduce

the total expenditure.

We have mentioned before that the level of conventional generation cannot be

changed instantly due to the physical constraints of power units. The upper and

lower rates of a possible change are known as ramp constraints. The ramp constraints

usually depend on the size of a power unit and on the combustible energy source (coal,

oil, gas). For example, for the maximal increase in production rates one may look

at Table 2.2 [65]. Presence of ramp constraints results in the need of scheduling in

advance and in the continuous trajectories for level of conventional generation X(t).

Suppose for a moment that there are no ramp constraints, time instants Tk are known

in advance and shortage χk is constant and known in advance. Clearly, in this scenario

the optimal policy is to provide no additional generation at all the moments but Tk,

at which we would ramp the production up immediately to level χk. However, in the

presence of the ramp constraints it is impossible to be at level χk at time Tk, if for

any δ > 0 the following holds

X(Tk − δ) < X(Tk)− Uδ,

where U is the positive ramp constraint. Therefore, the optimisation problem with

the ramp constraints is more challenging and more interesting.

We are interested in solving the optimality problem for the average cost over

infinite time horizon. From a probabilistic point of view, the most important topic

for us is the stationary behaviour of optimal processes.

1.3 Optimisation under uncertainty

Optimisation under uncertainty started being popular in the 1950s with the famous

works of Bellman [9, 10] and is still a challenging field in optimisation theory. It is very
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difficult to cover the vast variety of optimisation models known nowadays. There are a

number of classical books studying stochastic optimisation such as [11, 13, 35, 46]. A

good mixture of recent advances were published as an outcome of the Modern trends

in Controlled Stochastic Processes conferences in 2010 and 2015 [44, 45]. The author

had the pleasure of being invited to the second one and to submit a paper [18], which

contains partial results of Chapter 3.

To navigate in the world of stochastic optimisation one should be clear about the

main components of the problem. These main components include the state space, the

action space, the nature of randomness in the system. The rigorous definitions of the

objects for our model are given in Chapter 2. State space can be considered as finite,

denumerable or in the most general situation to be a Polish space. The same applies

to the action space. The actions may be taken continuously or at discrete moments in

time. The actions may be allowed to influence not only the controlled process but also

the cost functional and the random environment. There are unbounded possibilities

for the stochastic assumptions on the random environment.

The choice of optimisation criterion is another important aspect. To start with, the

optimisation horizon can be finite or infinite. The existence of the optimal solution for

finite horizon problems is usually obvious. It is easy to write a Bellman equation for

them and then to solve it numerically by using dynamic programming, [55]. However,

these methods are usually computationally difficult. From a probabilistic point of

view the solutions are not of a high interest, because there is not enough time for

them to start showing their limiting behaviour.

For infinite time horizon there are two possibilities: the β-discounted optimisation

and the average cost optimisation. In contrast with the finite time horizon problems,

the existence of the optimal solution is a challenging question. For most of the research

papers on the topic their main contents are the existence of the optimal control

and establishing Bellman equation, so that the optimal policy is its minimiser in a

certain class. Usually β-discounted problems are easier to solve and sometimes the

solution of the average cost problem is obtained as a limit of solutions for the β-

discounted problems. This approach is known as the vanishing discount approach

and the examples of its use can be found in [15, 53, 6]. A good survey on average cost

optimisation for Markov decision processes in discrete time is presented in [2].

For our optimisation problem the state space of the controlled process is R+,

actions are applied in continuous time and we are interested in average cost optimi-

sation. We assume that the actions have a zero influence on the environment state.

There are a number of models in a similar setting, such as Piecewise-Deterministic

Markov Processes (PDMP) [23, 24], Markov Decision Drift Processes(MDDPs) [34]

(predecessor of PDMPs, PDMP generalises the setting for MDDPs), and Stochastic

Fluid Programs (SFPs) [7, 6].
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The randomness is modelled in Markovian way, so that the environmental compo-

nent is a Markov process with a general state space. The dynamics of the controlled

process in all these models are given by two objects:

• a flow function, between the jump times of the underlying environment,

• a probability transition kernel that defines the value of the process at the jump

times.

The setting of continuous control for PDMPs assumes that the controller can

instantly change the underlying Markov process (by speeding it up or slowing it down),

the transition kernel, and the flow function. Flow function control was considered for

PDMPs in [30], however, to the best of our knowledge, there is no general theory on

the average-cost optimisation for PDMPs in the case of the flow function control.

By contrast, similarly to our model, for SFPs the underlying Markov process is

uncontrolled, while the flow function is controlled. The formalism of SFPs is the most

appropriate to us, because it allows us to prove results for the power supply model

without a pre-described flow function, taking into consideration a wider set of possible

solutions.

For most of the problems usually only qualitative results on existence of the opti-

mal solution are proven. In this thesis, we find the exact optimal policies in several

particular cases.

1.4 Contribution and outline of the thesis

In Chapter 2 we formulate an appropriate stochastic optimisation framework for our

problem. We provide rigorous definitions of its components and state the stochastic

assumptions for the error process. This stochastic optimisation problem is new to the

best of our knowledge, mostly due to the nature of the cost functional consisting of

two different components.

In Chapter 3 we show that, under the assumption that the errors occur in accor-

dance with a Poisson process and the errors’ values form a Markov chain, our model

can be treated as a Stochastic fluid program [7]. For this case we establish the exact

shape of the solution for the average cost optimisation problem and discuss how to

find it numerically. We also prove the continuity of the optimal processes with respect

to the ramp constraints.

In Chapter 4 we establish limiting theory for the optimal processes from Chapter

3 under the semi-Markovian assumption on the inter-errors times. By using theory

of regenerative and Markov processes, we prove that there exists a pseudo-optimal

control minimising the cost in this particular subclass of controls.
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Chapter 1: Introduction

In Chapter 5 we explore a number of particular examples for the error process.

Firstly, we explore the deterministic case, in which inter-errors times are constant,

and prove that the solution is periodic and find its closed form. Secondly, we explore

the case, in which the inter-errors times are distributed as shifted exponential distri-

bution and show that the solution inherits properties of both the exponential and the

deterministic cases.

14



Chapter 2

Mathematical model

The primary goal of this chapter is to present the mathematical model we will work

with throughout the thesis. We start with an informal discussion on how to introduce

a stochastic optimisation problem in Section 2.1. We proceed by defining the main

objects for our problem and stating the assumptions in Section 2.2. In Section 2.4 we

show that the basic supply model from Section 1.2 falls into the introduced framework.

Due to the applied nature of our problem we would like the controlled process to be

bounded, and we establish sufficient conditions for this to hold in Section 2.5.

2.1 Optimisation problems and control: discussion

The first challenge in this thesis was to find an appropriate optimisation framework

for the basic supply model from Section 1.2. When an optimisation problem arises in

real life the first two questions that should be answered are:

• What to optimise?

– What does the controlled process represent? Where does it take place?

How is it possible to control it?

– What is the cost associated with the system? What is the time horizon we

work within and the optimality criterion?

– What is the randomness in the system? Is it possible to influence it through

our control? What is influenced by the random environment: controlled

process and/or cost functional, etc.?

• What is the class of controls (policies) we restrict our search to?

– Do they depend on the past?

– When the decisions are taken and can be changed: continuously or at some

specified epochs?

15



Chapter 2: Mathematical model

Only after the answers to all the above are clear one should proceed to the most

important question

• How to optimise it?

– Under which assumptions does the optimal solution exist?

– How to prove that the optimal solution is unique?

– How to find the optimal solution?

This chapter deals with the ”What”-questions and the rest of the thesis is dedicated

to the ”How”-questions.

The following objects and the relationships between them are essential to the

”What”-part. They will be formally defined in the next sections of this chapter. For

now we provide a general understanding of them by making a link to the basic power

supply model. The basic power supply model will be discussed in detail again in

Section 2.4.

• A state space of the controlled process and the controlled process itself.

For instance, for the basic power supply model, the controlled process is the

level of additional conventional supply which at any point in time belongs to

R+.

• A random environment.

We need to define what it is influenced by and what is influenced by it.

For the basic power supply model the random environment models the errors

in wind power prediction. The charge at moments of power shortage depends

on the random environment. The random environment is not influenced by any

actions taken.

• A cost functional.

We need to define when it is being charged and what it depends upon (controlled

process, environment, action).

For the basic power supply model the cost is comprised of two parts: the running

cost which is charged instantly and the terminal charge which is applied at

moments of power shortage in the system. The cost functional does not depend

on the action taken.

• An action space.

We need to understand what is controlled by it.

For the basic power supply model, an action is the rate of warming up/cooling

down of the combustible engine, which provides the system with additional
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Chapter 2: Mathematical model

conventional supply. These rates are usually bounded by capability of the system

and hence, is the action space. As previously mentioned, actions cannot change

the random environment behaviour.

• Dynamics of the controlled process with respect to the action taken and the

environment state.

For the basic power supply model, the dynamics of the system can be given in

integral form, because actions represent rate of change in the power production.

• An optimisation criterion.

Some possibilities are: total cost over finite time horizon, discounted cost over

infinite time horizon or average cost over infinite time horizon.

Once the objects above are specified, the next step is to choose

• a class of admissible policies.

The optimisation problem is considered only in this class.

The nature of these two steps is different. The first set of objects describes the

properties of the model and the problem itself. Whereas the decision in regards to the

class of admissible policies may be influenced by the purposes of research. Generally,

enlarging the class of admissible policies makes it possible to prove the existence of

the optimum. However, in a larger class it is more difficult to find the optimum.

In Section 2.2 we focus on the first step, with the second step analysed in Section

2.3.

2.2 The model

2.2.1 The state space, the random environment and the cost

functional

In this thesis, we work only with controlled processes X(t) taking values in state space

R+.

Throughout the thesis we assume that all random variables and random processes

are defined on the common probability space (Ω,F , P ).

For the model we consider charges of different types. The first is continuously

charged for running the process X(t), so it depends only on the level X(t) and does

not depend on any other variables. The second charge is applied at random times Tn

and can also depend on the environment state Yn. Therefore, we first introduce the

random environment and then define the charges associated with the system.
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Chapter 2: Mathematical model

Definition 2.2.1. The random environment is a sequence of pairs

En = (τn, Yn), n = . . . ,−1, 0, 1, 2, . . . ,

where τn are positive-valued random variables, and Yn are random variables that take

values in set Y ⊂ Z.

Let {Tn}n∈Z =
∑n

0 τn, so that τn = Tn−Tn−1. We require the following assumption

to be satisfied:

Assumption 2.2.1. The mean of inter-arrival times τi is finite for each i,

Eτi <∞

.

We consider the following set of different stochastic assumptions in this thesis:

Assumptions 2.2.2.

1. (IRE - i.i.d. random environment)

Sequences {τn}n∈Z and {Yn}n∈Z are mutually independent and each of them

contains independent identically distributed (i.i.d) elements.

2. (SMRE-I - semi-Markovian environment-I)

Sequence {Yn}n∈Z is a Markov chain taking values in Y .

Sequences {τn}n∈Z and {Yn}n∈Z are mutually independent.

Sequence {τn}n∈Z is an i.i.d. sequence.

3. (SMRE-II - semi-Markovian environment-II)

Sequence {Yn}n∈Z is a Markov chain taking values in Y .

There is a given set {τn,y}n∈Z,y∈Y , the elements of which are independent.

For each y ∈ Y elements of the sequence {τn,y}n∈Z are identically distributed

with common distribution function F τ
y .

If Yn = y then τn+1 = τn+1,y, and given Yn the inter-arrival time τn+1 is inde-

pendent of everything else.

4. (MRE - Markovian random environment )

Assumption (SMRE-I) holds and, in addition, elements of sequence {τn}n∈Z are

exponentially distributed with parameter λ.

5. (SERE - stationary ergodic random environment)

Sequence {En}n∈Z is stationary ergodic.
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Note that

(IRE) ⊂ (MRE) ⊂ (SMRE-I) ⊂ (SMRE-II).

If we further assume that the Markov chain {Yn} is Harris ergodic and, at time 0,

it is distributed in accordance with its stationary distribution, then Assumptions

(SMRE-I, II) and (MRE) are particular subcases of Assumption (SERE). Therefore,

by default we suppose that Assumption (SERE) holds without mentioning it. If we

require stronger assumptions in other parts of the thesis, we explicitly state them.

Next, we introduce the terminal charge (or the terminal penalty) f and the running

cost g. Suppose that, f : R+×Y → R+ and g : R+ → R+ are given. We assume that

the following holds:

Assumption 2.2.3.

• for each fixed y ∈ Y , function f(x, y) is convex in x,

• g is convex and non-decreasing.

Convexity is a natural assumption for optimisation problems. It helps to establish

existence of the optimal control. However, it generally does not guarantee uniqueness

of the solution. The strict convexity is a more restrictive property. For example, even

linear cost g(x) = cx is not a strictly convex function. In Chapter 3, we need the strict

convexity in a slightly weaker sense, only for a weighted sum of the two functions, to

prove uniqueness of the optimal policy.

The cost functional we introduce below formalises the idea of the total charge with

respect to both functions f and g within period [0, t]. Random variables τn stand for

time between two consecutive terminal charges, whereas Yn indicates the type of the

next terminal charge at time Tn+1, so that the next charge is f(X(Tn+1), Yn).

Let

νt := max{n : Tn ≤ t} (2.1)

be a counting process for {Tn}n∈N.

Definition 2.2.2. For a realisation of a stochastic process X(t) we define the sample-

path cost functional on time interval [0, t], t > 0, by

C(X(·), t) =

∫ t

0

g(X(s))ds+
νt∑
i=1

f(X(Ti), Yi−1). (2.2)

As desired, cost functional (2.2) has the following meaning. Amount g(X(s)) is

continuously charged for running the process X(s) and amounts f(X(Tn), Yn−1) are

charged at random times Tn. Hence, the sample-path cost functional is the sum of all

charges applied within time interval [0, t].
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We finish this subsection with a few examples of functions f and g. We start with

examples of the running cost g.

Example 2.2.1.

1. Function g(x) = cx is the cost of purchasing x units of the product at a unit

price equal to c.

2. More generally, for c2 > c1 one can take

g(x) =

{
c1x for x < x1,

c2x+ (c1 − c2)x1 for x ≥ x1.

This cost function is piecewise-linear and continuous.

This cost function models a scenario in which a client pays more for purchas-

ing larger amounts of the product. For example, this type of cost is used with

regards to power supply. Small amounts of power may be delivered from lo-

cal reserve or by using renewable generation, whereas larger amounts of power

should be produced using large conventional or nuclear power plants. The latter

scenario incurs higher production cost and, moreover, delivery cost.

Note that neither of the functions above are strictly convex.

We now turn to examples of the terminal charge f .

Example 2.2.2.

1. Suppose that there is given function z : Y → R+. Then function f(x, y) =

cmax(z(y) − x, 0) = c(z(y) − x)+ may be viewed as a penalty cost in the

following sense: the positive difference must be covered using a resource, which

has a unit cost equal to c.

2. Another type of penalty might be of the form f(x, y) = c|z(y) − x|, which can

be viewed as a difference penalty.

3. This example generalises the first case in Example 2.2.2 with a penalty for not

reaching a random level instead of a fixed level z(y). Assume that for each

y ∈ Y a probability distribution Fy is given of some random variable χy. Let

f(x, y) = cE(χy − x)+ =

∫ ∞
0

(z − x)+dFy(z).

We may regard it as the average penalty cost for not reaching the random level

χy.

Alternatively, one can take f(x, y) = cE|χy − x|, which is the average penalty

for being distant from the random level χy.
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2.2.2 The action space and the dynamics

Recall the discussion in the basic power supply model. Controlled process X(t) stands

for the level of additional conventional power. This power is produced by combustible

engines and cannot be subject to a sudden change. There are physical constraints

(ramp constraints) bounding the rate of change of production level. This can be

expressed as Lipschitz continuity of sample paths of the controlled process X(t).

Hence, we would like to work with controlled processes satisfying the following.

Assumption 2.2.4. There are given U,B > 0 such that any trajectory of the con-

trolled process X(t) satisfies the following assumption

−Bδ ≤ X(t+ δ)−X(t) ≤ Uδ, (2.3)

for all t, δ > 0. Constants U and B are parameters of the system and we refer to

them as the ramp constraints.

Let us introduce the action space and dynamics of the controlled process corre-

sponding to these actions, so that the controlled process satisfies Assumption 2.2.4.

The constant U(or B) then stands for the upper(lower) bound on the ”derivative” of

controlled process X(t) describing how quickly it is possible to change the control.

We write ”derivative” understanding that Lipschitz functions are almost everywhere

differentiable with respect to the Lebesgue measure. Therefore, in the next definition,

we introduce the dynamics by formula 2.4 in integral form.

Definition 2.2.3. Let A = [−B,U ] be the action space of the system.

A control a is any measurable function a : R+ → A.

Controlled process X(t) corresponding to the control a is given by

X(t) = X(0) +

∫ t

0

a(s)ds. (2.4)

Possible answers to the question of when to choose and change the controls a(s)

and what they depend upon result in definitions of different classes of policies in

Section 2.3.

Due to the presence of the ramp constraints in the system, controls a(s) should

incorporate planning for the future. The controlled process cannot change its value

instantly and is governed over time with the help of control a(s).

Suppose that there are no ramp constraints in the system. This is equivalent to

considering the limiting case, in which U = B = ∞, so the policies satisfying As-

sumption 2.2.4, are no longer necessarily continuous. This means that the controlled

process X(t) can be changed instantly and planning for the future is no longer needed.
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Hence, the optimisation problem can be treated locally and the trajectories of the op-

timal controlled process consist of the local optimal controls for each time interval

[Tn, Tn+1]. We consider the scenario, in which U = B tend to infinity in Section 3.4

and prove that the optimal controls tend to those of the limiting case.

We note that in this thesis neither the cost functional nor the environment depend

on the action taken. However, this dependence was considered for PDMPs, see [25]

and references therein, Continuous Time Markov Decision Processes (CDMPs) [32,

26].

2.2.3 Optimisation criteria

Generally, optimisation over infinite time horizon can be done in two different ways:

via cost discounting or via time averaging. In this thesis, we are mainly interested

in the time-average case. However, we also consider the discounted case, but mostly

as an auxiliary step towards the main results. The approach we use is known in the

literature as vanishing discount approach, see [15, 53, 6], for examples.

Suppose that X(s) is any non-negative valued stochastic process defined on the

same probability space (Ω,F ,P) as the random environment {En}. We do not specify

now how the process X(s) is defined. Instead we take a simplistic convention that

all the integrals and expectation in the definitions below exist. There is no loss of

generality because our main goal is optimality, hence, we want the cost functionals to

be correctly defined and to be finite.

Definition 2.2.4.

1. The single period cost functional is

C(X(·), τ0). (2.5)

2. Suppose that β > 0 is a discount parameter. The expected β-discounted cost

over an infinite horizon is

Cβπ = E

[∫ ∞
0

e−βtg(X(s))ds+
∞∑
0

e−βTkf(X(Tk), Yk−1)

]
(2.6)

3. The average cost functional is defined by

Cπ = lim sup
t→∞

1

t
E

(∫ t

0

g(X(s))ds+
νt∑
i=1

f(X(Ti), Yi−1)

)
. (2.7)
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It will be shown in Chapter 4 that under assumption (SMRE-II), for ”sufficiently

good” controlled processes the upper limit can be replaced with the limit

lim sup
t→∞

ECπ(X(·), t)
t

= lim
t→∞

ECπ(X(·), t)
t

.

2.3 Classes of policies

In this section, we introduce the class of open-loop policies, the class of feedback

policies and the class of fluid policies, which are of high interest in this work.

Recall that due to Assumption 2.2.4 the action space is A = [−B,U ].

Definition 2.3.1. Any measurable function a : R+×Y ×R+ → A is called an open-

loop control.

Assume that Yn = y and X(Tn) = x, then the dynamics of the process X(t) until

time Tn+1 under the open-loop control a are

X(t) = X(Tn) +

∫ t−Tn

0

a(x, y, v)dv, (2.8)

In terms of definition of action 2.4 it is equivalent to saying that action a(x, y, v)

is taken at time v+Tn. We consider only admissible open-loop controls, such that the

process X(t) never leaves R+.

Definition 2.3.2. A policy π = (an) is an arbitrary sequence of admissible open-loop

controls. A class of policies is denoted by Π.

Suppose that (X(Tn), Yn) = (x, y). Then action an(x, y, v − Tn) is applied at the

moment v. Random variables τn may have unbounded support, therefore, the controls

an(x, y, t) are defined for all t ∈ R+.

The definition of the open-loop policies can be easily explained. Suppose that at

time Tn the controlled process is equal to X(Tn). At this moment we get the value

of Yn, and (in case of Assumption SMRE-II) information about τn+1. Knowing the

realisation of Yn along with X(Tn), we define the policy until time Tn+1. In other

words, we choose the behaviour of the process X(t) at the beginning of each time

segment and do not change it until the end of this time segment.

Now we are ready to introduce optimal policies and optimal costs for both β-

discounted and average cost functionals.

Definition 2.3.3. The minimal (β)-discounted and the average costs are

Cβ = inf
π∈Π
Cβπ and C = inf

π∈Π
Cπ.

Then the policy π is optimal in both cases if it attains the minimum.
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If function a is left-continuous then the integral in the formula 2.8 has left deriva-

tive at each point and, in particular, has continuous sample paths.

We write Pux,y and Eux,y, when we talk about a one step-transition under open-loop

control u, and Pπx,y, Eπx,y for the entire process.

Suppose that assumption (SMRE-II) holds, then the measures Pπx,y, Eπx,y can be

written in a closed form and the controlled process satisfies the following properties.

• Assume that the process X(t) starts at point x at time 0 and the environment

component is Y0 = y so that

Pπx,y(X(0) = x, Y0 = y) = 1.

• The distribution of inter-arrival time τn+1 depends only on Yn and it results in

Pπx,y(Tn+1−Tn > t|T0, . . . , Tn, X(T0), . . . , X(Tn), Y0, . . . , Yn) = P(Tn+1−Tn > t|Yn).

• Moreover, given Yn the value of Yn+1 is independent of the past and is indepen-

dent of the value of τn+1. Hence, for the process X(t) we have

Pπx,y ((X(Tn+1), Yn+1) ∈ B × {y0}|T0, . . . , Tn, X(T0), . . . , X(Tn), Y0, . . . , Yn)

=P(Yn+1 = y0|Yn)× I
([
X(Tn) +

∫ Tn+1−Tn

0

an(X(Tn), Yn, v)dv

]
∈ B

)
for any y0 ∈ Y and any measurable with respect to Lebesgue measure set B.

Therefore, random sequence {(X(Tn), Yn)} forms a Markov chain.

The definition of open-loop controls was first introduced by Vermes (1985)[58].

This is the main class of optimal controls considered in most papers on optimisation

since the 1990s. Another common option is the class of feedback controls where the

control actions depend only on the position in control space and on the environment

state.

Feedback controls formalise the idea of having ”Markovian” controls, where the

action does not depend neither on the history of the process nor, in particular, on the

time.

We use the following agreement, we write

Y (t) := Yνt ,

where νt is the counting process for the sequence {Tn}n∈N.

Definition 2.3.4. Suppose that function ψ : R+×Y → A is given. Then correspond-
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ing process X(t) with X(0) = x is defined as

X(t) = x+

∫ t

0

ψ(X(s), Y (s))ds

We call the rule ψ the feedback policy.

As one can see, the class of feedback policies ψ is a proper subclass of the class of

open-loop controls.

We present a number of important examples of open-loop controls and the corre-

sponding processes X(t).

Example 2.3.1.

1. Constant function an(x, y, t) = 0, results in constant deterministic process

X(t) = X(0).

2. Let function k(x, z, t) : R+ × R+ × R+ → R+ be

k(x, z, t) = I{x≤z}min(x+ Ut, z) + I{x>z}max(x−Bt, z). (2.9)

This is a function, whose trajectory starts at level x at time 0 and moves with

time t towards level z as quickly as possible. We adopt the convention that this

function has a left derivative and write k′ with the understanding that there are

points where the real derivative does not exist, although the left derivative still

does.

Fix a positive number l and set

an(x, y, t) = k′t(x, l, t)

then the trajectory of the controlled process moves as quickly as possible towards

level l and stays there forever once reached.

3. Alternatively, suppose there is a given sequence {ln} and

an(x, y, t) = k′t(x, ln, t).

The corresponding process has trajectories moving towards level ln in cycle

number n.
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4. Suppose now that l : Y → R+ and let

an(x, y, t) = k′t(x, l(y), t) =


U, if x+ Ut < l(y),

−B, if x−Bt > l(y),

0, otherwise.

(2.10)

A trajectory of the corresponding policy changes its destination at time moments

Tn and moves towards a new level l(Yn) as quickly as possible. The level is

determined by the environment state only.

Definition 2.3.5. Policies satisfying 2.10 form the class of fluid policies.

In Chapter 3 we show that under Assumpiton (MRE) the optimal policy exists

and belongs to the class of fluid policies.

The name of this class goes back to fluid models [59, 39]. This is a set of models

describing behaviour of a water tank of usually a finite capacity C, with different

modes of water inflows and outflows. Suppose that water comes to the tank at

constant rate U and level of water at time 0 is equal to x, then at time t the

water level in the tank is equal to k(x,C, t). If the water is being pumped out

at a constant rate −B then the level of water at time t is equal to k(x, 0, t).

We work closely with fluid models in Chapter 3 and modify known results for

stationary distribution of the water level in the tank for our model.

5. In fact, all the introduced controls in the above example but the third one are

feedback controls.

2.4 Formal description of the basic power supply

model

We formally define the objects from Section 2.2 one by one.

• The controlled process X(t) stands for the additional level of conventional gen-

eration. It takes values in R+.

• Times τn stand for times between two consecutive shortfalls in power supply

(spikes in the picture 1.2). Elements of the environment state space Y represent

significantly different scenarios for the size of the next shortage (the height of

the next spike). The pairs (τn, Yn) should satisfy at least one of stochastic

Assumptions 2.2.2.

Example 2.4.1. One may take Y = {1, 2} and say that
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– shortfalls smaller than 1500 MW are of type 1,

– otherwise they are of type 2.

This is illustrated in the picture below.

t hrs

MW

0

1500MW

1 2 3 4

τ1 τ2 τ3

Y1 = 2

Y2 = 1

Y3 = 1

Y4 = 2

Y5 = 2

τ4

Figure 2.1: Example of the random environment 1

In this scenario random variables τn and Yn are independent.

Example 2.4.2. Alternatively, one may take Y = {1, 2, 3} and assume that

– shortfalls smaller than 1500 MW are of type 1,

– shortfalls greater or equal than 1500 MW, where τn < 2hrs are of type 2,

– shortfalls greater or equal than 1500 MW, where τn ≥ 2hrs are of type 3.

The figure below depicts this case.

t hrs

MW

0

1500MW

1 2 3 4

τ1 τ2 τ3

Y1 = 3

Y2 = 1

Y3 = 1

Y4 = 3

Y5 = 2

τ4

Figure 2.2: Example of the random environment 2

This is an example of a situation, in which random variables τn and Yn are not

independent.
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The choice of the environment should depend on available statistical data and

meteorological knowledge, as well as on the desired accuracy of the results.

It is easier to solve the problem numerically if space Y is small, see for example

Section 3.6.1, although, additional elements in Y can provide a deeper insight

to the behaviour of the spikes’ height distribution and a higher level of accuracy

of the solution.

• Positive constants c1 < c2 stand for the unit costs for conventional and imported

power respectively. Running cost g(x) = c1x stands for the cost of x units of

conventional generation.

• The cost function f(x, y) is modelled in the same manner as in Example 2.2.2.3.

We repeat the definition with a few comments below.

1. For each y ∈ Y there is given a probability distribution function Fy. This

is a set of possible distributions for shortage amounts (height of spikes in

picture 1.2).

2. Suppose that there is given set {χn,y}n∈Z,y∈Y , and its elements are in-

dependent. For each y elements of the sequence {χn,y}n∈Z are identi-

cally distributed with common distribution function Fy. If Yn = y then

χn+1 = χn+1,y, and given Yn, it is independent of everything else:

P{χn > s|T0, . . . , Tn, X(T0), . . . , X(Tn), Y0, . . . , Yn} = P{χn > s|Yn}.

3. Therefore, function f(x, y) = c2E(χy − x)+ represents the expected loss

at shortfall moment Tn+1, if Yn = y and X(Tn+1) = x. When the actual

shortage in the power system is equal to χy and additional conventional

supply is at level x, the net shortage (χy−x)+ must be covered by imported

power at unit cost c2.

Recall from Example 2.2.2 that functions f(x, y) and g(x) are convex.

• Positive constants U and B stand for the ramp constraints of power generation

plants. The power output cannot be changed immediately, because the proce-

dure involves warming up or cooling down large combustion engines. This was

also discussed in Section 1.2.

The action space is A = [−U,B]. A single action a is the rate of change of

conventional generation.

• The dynamics of the level of conventional generation X(t) is represented through
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the rate of change a given by

X(t) = X(0) +

∫ t

0

a(s)ds.

2.5 Class of bounded policies

We would like to take into consideration only bounded controlled processes X(t). This

is justified by applied nature of our problem (X(t) stands for the level of additional

conventional supply in the basic power supply model) and it makes the mathematical

optimisation problem easier to solve, by bringing compactness to the state space of the

controlled process. In this section, we discuss sufficient conditions on the boundedness

of the optimal controlled process and summarise them in Assumption 2.5.1.

By definition, for any function h : R+ → R+ we write z = argminh(x) if for any

y ∈ R+ holds h(z) ≤ h(y). Under assumption SMRE-I the random variables {τn}
are i.i.d. For Assumption SMRE-II, under which the random variables {τn} are not

necessarily i.i.d. we will assume that the reasoning holds for each of the distributions.

Hence we only discuss i.i.d. case.

Suppose that each of the random variables {τn} is a mixture of a continuous

random variable and a discrete random variable. Suppose that t1, t2, . . . , tk, are atoms

with probabilities given by P(τn = tk) = pk and p(t) is the density function so that

P(τn ≤ t) =
∑
tl≤t

pl +

∫ t

0

p(s)ds.

Let us focus on the single period optimisation problem. Suppose there exists a

constant K <∞ such that for any process X(t) a new process X̂(t) = min(X(t), K)

gives a non-larger value to the single period cost functional

C(X̂(t), τ1) ≤ C(X(t), τ1).

This yields that for the average cost optimisation the new process X̂(t) also improves

the value of the cost functional, because the functional is represented as the averaged

sum of functionals for single time periods. Therefore, the optimal controlled process

cannot take values larger than K. We proceed by exploring assumptions which are

sufficient for the existence of constant K.

Assume that the environment state is Y0 = y and the process X(t) is observed on

the interval [0, τ1], then at τ1 penalty f(X(τ1), y) is charged. Let F̄ (t) =
∫∞
t
p(s)ds.

If τ1 is an absolutely continuous with respect to Lebesgue measure random variable

then F̄ is its tail distribution function. The charge associated with the running cost
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may be expressed as

E
∫ τ1

0

g(X(t))dt =
k∑
i=1

pi

∫ ti

0

g(X(t))dt+

∫ ∞
0

(∫ s

0

g(X(t))dt

)
p(s)ds

=
k∑
i=1

pi

∫ ti

0

g(X(t))dt+

∫ ∞
0

(∫ ∞
t

p(s)ds

)
g(X(t))dt

=
k∑
i=1

pi

∫ ti

0

g(X(t))dt+

∫ ∞
0

g(X(t))F̄ (t)dt,

The second equality is obtained by changing the integration order in accordance with

Fubini’s theorem. Hence, for the single period cost functional one may write

C(X(t), τ1) = E
(∫ τ1

0

g(X(t))dt+ f(X(τ1), y)

)

=
k∑
i=1

pi

(∫ ti

0

g(X(t))dt+ f(X(ti), y)

)
+

∫ ∞
0

(
g(X(t))F̄ (t) + f(X(t), y)p(t)

)
dt.

We will tackle discrete and continuous parts separately.

2.5.1 Discrete case

Denote the part of the cost functional corresponding to the discrete part of the random

variable by

Cd =
k∑
i=1

pi

(∫ ti

0

g(X(t))dt+ f(X(ti), y)

)
Instead of studying the minimum of Cd in the class of policies satisfying Assumption

2.2.4 we will have a look at each of the summands∫ ti

0

g(X(t))dt+ f(X(ti), y).

Since g is increasing and U is the upper ramp constraint, minimum of the expression

above is attained at a policy which satisfies X(s) = X(ti) − (ti − s)U . So one may

look for a solution of

min
x∈R+

∫ ti

0

g(x− Ut)dt+ f(x, y).

Denote the solution by Kd(i, y) and let Kd = maxi,yKd(i, y).

Lemma 2.5.1. Suppose that Kd <∞ then for any policy X(t) holds

Cd(min(X(t), Kd)) ≤ Cd(X(t)).
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Proof. Functions
∫ ti

0
g(x − Ut)dt + f(x, y) are convex in x with their minimums at

Kd(i, y). Therefore for every summand we have∫ ti

0

g(min(X(t), Kd))dt+ f(min(X(t), Kd), y) ≤
∫ ti

0

g(X(t))dt+ f(X(ti), y).

Hence, the similar holds for the convex combination of the summands and the lemma

is proven.

2.5.2 Continuous case

If the random variable is not pure discrete we may work with only the integral part

from now on, because boundedness of the controlled process at all time moments, but

tk, implies boundedness at tk due to continuity of the controlled process X(t). One

can divide both terms of the expression under the integral sign by F̄ (t) to get

g(X(t)) + f(X(t), y)
p(t)

F̄ (t)
. (2.11)

The expression is correctly defined, since F̄ (t) = P(τ1 > t) = 0 yields p(t) = 0.

Suppose now that

sup
t

argminx

(
g(x) + f(x, y)

p(t)

F̄ (t)

)
=: K(y) <∞

Suppose that for some t holds X(t) ≥ K(y), then

g(X(t)) + f(X(t), y)
p(t)

F̄ (t)
≥ g(K) + f(K, y)

p(t)

F̄ (t))
,

by convexity of the function and the definition of constant K(y). Hence, the integral

inequality holds

C(X, τ1) =

∫ ∞
0

g(X(t)) + f(X(t), y)
p(t)

F̄ (t)
dt

≥
∫ ∞

0

g(min(K(y), X(t))) + f(min(K(y), X(t)))
p(t)

F̄ (t)
dt

≥ C(min(X,K(y)), τ1).

The inequality is strict if the Lebesgue measure of the set of positive difference is

positive

µ {t : X(t) > K(y)} > 0.
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If we assume that

sup
y∈Y

K(Y ) =: K <∞. (2.12)

then process min(X(t), K) gives a lower value to functional C than process X(t).

Therefore, if processX(t) is a candidate for the optimal controlled process for C(X, τ0),

then it cannot lie above level K.

The condition 2.12 is cumbersome and is difficult to check. Hence, we explore the

sufficient conditions for it to hold, and summarise them in Assumption 2.5.1.

To proceed further, we split set Y into two subsets Y1 and Y2 such that

Y1 = {y ∈ Y : arg min
x
f(x, y) <∞} Y2 = Y \ Y1. (2.13)

The other object we are interested in is hazard rate function r(t) = p(t)
P(τ1≥t) . It is some-

times also called failure rate. The hazard rate function is one of the key definitions

in insurance, finance and survival analysis. It is closely related with classification of

tails for probability distributions. For the theory of heavy-tailed distributions one

may look in [31].

We take into consideration two options:

1. sup r(t) <∞,

2. sup r(t) =∞.

Notice that, for the exponential distribution with parameter λ the hazard rate func-

tion r(t) = λ and for Weibull distribution with parameter k > 1 holds sup r(t) =∞.

Hazard rate functions can demonstrate very different behaviour. For example, mono-

tone hazard rate functions are widely used in survival analysis and insurance. A

distribution with a decreasing hazard rate function might be used to model infant

mortality. A distribution with an increasing hazard rate function might be used to

model the lifespan of species or products. Although, there exist distributions with

non-monotone hazard rate functions.

It is a well known fact that for two strictly convex functions f0 and f1, their linear

combination α0f0 + α1f1, where αi ≥ 0 has the following property

argminα0f0 + α1f1 ∈ [min
i=0,1

(argmin fi),max
i=0,1

(argmin fi)].

Moreover, argminα0f0 + α1f1 = argmin fi in the case αi/α1−i =∞.

Assume that K < ∞. Let us show that Y2 6= ∅ yields sup(r(t)) := R < ∞.

Function g is non-decreasing. Hence the expression

argminx g(x) + sf(x, y)

32



Chapter 2: Mathematical model

can be arbitrarily large for large s, because argmin f(x, y) =∞ due to the definition

of set Y2. Therefore, if set Y2 is non-empty, we have to assume that sup r(t) = R <∞.

In this case, it is sufficient to have

sup
y∈Y2

argminx (g(x) +Rf(x, y)) <∞.

For set Y1 we consider both options R =∞ and R <∞. In the first case one has

sup
t,y

argminx g(x) + r(t)f(x, y) = sup
y

argminx f(x, y) <∞.

For the second case it is enough to have a weaker condition satisfied

sup
y

argminx g(x) +Rf(x, y) <∞.

We now summarise all the findings in the following assumption. As we have shown

above this assumptions yields that a candidate for the optimal controlled process is

bounded from above.

Assumption 2.5.1.

• If random variable τ1 is discrete with atoms in ti then

max
i,y

arg min
x∈R+

∫ ti

0

g(x− Ut)dt+ f(x, y) ≤ ∞.

• If random variable is absolutely continuous with respect to Lebesgue measure

and the set Y2 6= ∅, then R <∞ and

sup
y∈Y

argminx (g(x) +Rf(x, y)) <∞.

• If random variable is absolutely continuous with respect to Lebesgue measure

and the set Y2 = ∅, and R =∞ then

sup
y∈Y

argminx f(x, y) <∞.

• If random variable is absolutely continuous with respect to Lebesgue measure

and the set Y2 = ∅, and R <∞ then

sup
y∈Y

argminx (g(x) +Rf(x, y)) <∞.

33



Chapter 2: Mathematical model

From now on we will only consider models for which Assumption 2.5.1 holds.
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Exponential inter-arrival times

In this chapter, we consider the model under the Assumption (MRE). The cost func-

tional given by formula 2.7 is comprised of two components: the terminal charges and

the running cost. We show that under the assumption (MRE) these two components

are similar in nature and the analysis can be done for both of them in the same

manner.

To make the thesis self-contained, we describe the class of models known as

Stochastic Fluid Programs (SFP), introduced by N.Bäuerle in [6] and [7] and sum-

marise the main results and assumptions for it. We proceed by showing that under

assumption (MRE) our model is a particular case of (SFP). The results from [6] and

[7] are then used to show the existence of the optimal control. Our main result then

states the uniqueness and describes the exact form of the solution. In Theorem (3.3.8)

we prove that the unique optimal policy belongs to the class of fluid policies. The

content of this part of the Chapter was presented at the Modern trends in controlled

stochastic processes conference in Liverpool in July 2015 and it was later published in

[18].

To find the optimal control numerically one may restrict their search to the class

of fluid controls only. We recall that an element of this class is a policy, given by a

number of levels {l(y)}y∈Y . If Yn = y then the controlled process moves towards the

level l(y) as quickly as possible and then stays at this level until the state variable

changes to Yn+1.

Section (3.5) provides a system of differential equations that describes stationary

distributions for controls in the class of fluid policies (see Example 2.3.1.2). The

functions in the equations are not continuous, which makes the problem more inter-

esting. We discuss a possible way to bypass this complication and obtain the solution

in Section 3.5.1. The time-average cost functional in the class of fluid policies can

then be written as a function of levels {l(y)}. To conclude this chapter, we present

some closed-form solutions for special cases with the environmental space Y , such

that |Y| = 2, 3.
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3.1 The cost functional in the exponential case

In this subsection, we explain why the average cost optimisation problem under As-

sumption (MRE) can be replaced by an equivalent one with a modified cost functional.

This cost functional has only the component corresponding to the continuous charge.

Lemma 3.1.1. Suppose that τ is an exponential random variable with parameter λ.

Then for any function g ≥ 0 and deterministic function X : R+ → R+ the following

holds

E
∫ τ

0

g(X(t))dt = E
g(X(τ))

λ
.

Proof. Recall that the exponential distribution is the only probability distribution for

which the tail probability and the density p(t) are proportional

λP{τ ≥ t} = p(t).

Using this and the change of the integration order one has

E
∫ τ

0

g(X(t))dt =

∫ ∞
0

∫ τ

0

λg(X(t))dt exp(−λτ)dτ

=

∫ ∞
0

(∫ ∞
t

λ exp(−λτ)dτ

)
g(X(t))dt

=

∫ ∞
0

g(X(t)) exp(−λt)dt = E
g(X(τ))

λ
.

Remark 3.1.2. The proposition still holds if the nonnegativity of g is replaced with

the absolute integrability.

We write Y (t) for a continuous version of Markov chain Yn, so that Y (t) = Yn for

t ∈ [Tn, Tn+1). Suppose that the process Y (t) is a uniformised Markov process. This

means that Tn+1−Tn are i.i.d. exponentially distributed with parameter λ. As before

νt = max{n : Tn ≤ t}.
Suppose that the environment satisfies Assumption 2.5.1 and any candidate for

the optimal controlled process X(t) does not leave a compact set [0, K] a.s. The

time-average version of the cost functional 2.7 can be written as

lim sup
t→∞

EC(X(·), [0, t])
t

= lim sup
t→∞

E
∫ t

0
g(X(s))ds+

∑νt
i=1 f(X(Ti), Yi−1)

t

= lim sup
t→∞

E
∫ t

0
g(X(s)) + λf(X(s), Y (s))ds

t
− E

∫ t
Tνt
λf(X(s), Y (s))ds

t
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= lim sup
t→∞

E
∫ t

0
g(X(s)) + λf(X(s), Y (s))ds

t
.

The last equality holds since

0 ≤ E

∫ t
Tνt
λf(X(t), Y (t))dt

t
≤ E(Tνt+1 − Tνt) maxx∈[0,K],y∈Y f(x, y)

t
≤ maxx∈[0,K],y∈Y f(x, y)

λt
.

By a similar reasoning

lim sup
t→∞

EC(X(·), [0, t])
t

= lim sup
t→∞

E

∑νt
i=1 λ

−1g(X(Ti)) + f(X(Ti), Yi−1) +
∫ t
Tνt
g(X(t))dt

t

= lim sup
t→∞

E
∑νt

i=1 λ
−1g(X(Ti)) + f(X(Ti), Yi−1)

t
.

The similar relations hold for the infinite-time discounted cost functional as well.

Therefore, one may take functions

g̃(x) = 0 and f̃(x, y) = λ−1g(x) + f(x, y) (3.1)

and consider a new model, where the charges apply only at points Tn. Or similarly,

by letting

ĝ(x, y) = g(x) + λf(x, y) and f̂(x, y) = 0, (3.2)

we reduce it to a model with the running cost only.

3.2 Stochastic fluid programs

We discuss the class of models, stochastic fluid programs (SFP), introduced in Bäuerle

[6], [7] and show that under the assumption (MRE) our model might be viewed as a

particular case of (SFP). Recall that the assumption (MRE) states that {Tn}n∈Z is a

Poisson process with a constant intensity and the sequence {Yn}n∈Z is a Markov chain.

The notation in this section is different from the notation introduced in Bäuerle in

order to keep the notation throughout the thesis consistent.

3.2.1 Definition

Let Y be a countable set and Q a generator for a Markov process Y (t) that takes values

in Y . We refer to Y (t) as environment process. Denote by Tn the jump times of the

environment process Y (t). We assume that the process Y (t) is a uniformised Markov

process, and elements of the sequence {Tn+1 − Tn}n≥0 are exponentially distributed
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with a common parameter λ (see Section 3.7 for the definition).

Remark 3.2.1. In Bäuerle [6], the state space Y is assumed to be finite. Although, if

the state space is countable and process Y (t) is uniformisable (see definition 3.7.1),

the main results of the paper still hold.

Let a closed set S ⊂ Rn be the state space of the controlled process and suppose

that B(S) is the Borel σ-algebra on S. A compact and convex set A ⊂ Rk is the

action set of the system.

The dynamics for SFP generalise dynamics for our problem. Suppose that for each

y ∈ Y there is a linear function by : A → Rn. The controlled process X(t) is defined

as follows. Let X(0) = x0 ∈ S. Suppose that at moment t action a(t) ∈ A is taken,

then the dynamics of the controlled process X(t) on time interval [0, T1] are given by

X(t) = X(0) +

∫ t

0

by(a(s))ds. (3.3)

We use the same terminology as in the last chapter.

Any measurable function a : S × Y × R+ → A is called an open-loop control.

Assume that Y (s) = y for s ∈ [Tn, Tn+1] and X(Tn) = x, then the dynamics of the

process X(t) in [Tn, Tn+1] under the open-loop control a are

X(t) = X(Tn) +

∫ t−Tn

0

by(a(x, y, s))ds, for Tn ≤ t ≤ Tn+1. (3.4)

This is the same as to say that action a(x, y, s) is taken at time s + Tn. If function

a is left-continuous in s then the trajectories of the controlled process have a left

derivative at each point and, in particular, have continuous sample paths. Sometimes

we write Xa(t) to underline the dependence of the process on the open-loop control

a.

As before we are also interested in the class of feedback controls. For feedback

controls the action taken depends only on the state (x, y) and neither on the history

of the process nor, in particular, on the time.

Suppose that function ψ : S×Y → A is given. Then corresponding process Xψ(t)

with X(0) = x is defined as

Xψ(t) = x+

∫ t

0

bY (s)(ψ(X(s), Y (s)))ds

We call the rule ψ feedback policy.

As one can see, the class of feedback policies ψ is a proper subclass of the class of

open-loop controls.

We consider only admissible controls, such that the process X(t) never leaves the
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set S:

D(x, y) = {a : ∀t ≥ 0 X(t) ∈ S, if X(0) = x, Y (0) = y}.

A policy π = (an) is an arbitrary sequence of admissible open-loop controls. If

(X(Tn), Y (Tn)) = (x, y) then action aνs(x, y, s− Tνs) is applied at the moment s.

Probability measures Pπx,y and expectations Eπx,y correspond to the process starting

at (x, y) and controlled by policy π. We write Pax,y and Eax,y, when we talk about a

one step-transition under open-loop control a.

Since the exponential random variable Tn+1 − Tn can take arbitrary large values,

the controls an(x, y, t) should be defined for all t ∈ R+. This might explain their name

open-loop controls.

Remark 3.2.2. It is convenient to have the same action set for all states (x, y), but

different dynamics. The functions by make this possible. The dynamics of the model

depend upon linear functions by, therefore the left-derivative of the controlled process

is different for the same actions taken at different environment states. As sets D(x, y)

can be different, one should make sure that the controlled process does not leave the

space S.

Finally, we introduce the cost rate function

c : S × Y × A→ R+,

which is assumed to be convex in x and a for all y ∈ Y .

Definition 3.2.1. Collection (S,Y , A, b, Q, c) defines a stochastic fluid program.

Remark 3.2.3. Our model is an SFP given by (R+,Z, [−B,U ], b(x) = x,Q, ĝ), where

ĝ is given by equation 3.2. Therefore, to use the results proved for SFP we need only

to verify the assumptions required for them.

In the last part of this section we define the β-discounted and average cost function-

als. The definitions are very close to the ones introduced for our model in Definition

2.2.4.

Definition 3.2.2. For a policy π let πs = aνs(X(Tνs), Y (s), s−Tνs) be the continuous

version of the policy.

1. Suppose that β > 0 is a discount parameter. The expected β-discounted cost

over an infinite horizon under policy π starting at (x, y) is

Cβπ (x, y) = Eπx,y
[∫ ∞

0

e−βtc(X(s), Y (s), πs)ds

]
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2. For a fixed initial value (x, y) the average cost functional under policy π is

defined by

Cπ(x, y) = lim sup
t→∞

1

t
Eπx,y

∫ t

0

c(X(s), Y (s), πs)ds.

3. The minimal (β)-discounted and the average costs are

Cβ(x, y) = inf
π
Cβπ (x, y) and C(x, y) = inf

π
Cπ(x, y).

Then the policy π is optimal in both cases if it attains the minimum.

3.2.2 Some remarks on SFP

In this subsection we discuss the importance of the linear functions by. It might

appear that one could eliminate them by taking a larger action space, however, we

show that this is not true. The presence of linear function by makes the problem more

complicated and broadens the class of physical models where the formalism of SFP

might be applied.

Let us attempt to enlarge the action space. Optimisation in a larger class is at

least as efficient. However, the modified set of controls might make no physical sense.

We present an example to prove this point.

Suppose we have a modification of the model. For a set Z ⊂ Rk we write conv(Z)

for its convex envelope, which is the minimal convex set containing Z. Let Ã =

conv(∪y∈Yby(A)). Consider a model with linear functions b̂y(u) = u defining the

dynamics and action set Ã. The open-loop controls for this model are ã : S×Y×R+ →
Ã.

The new model allows more open-loop controls, because for each open-loop control

a one can define ã(x, y, s) = by(a(x, y, s)) ∈ Ã. Therefore, the optimization in the

new class should be at least as efficient. However, some of the new controls may have

no physical explanation. In the next example, we show how functions by may help to

introduce the natural restrictions in a model, and show that the proposed enlargement

of the action space might lead to the loss of the physical sense.

Example 3.2.4. We discuss an example introduced in Sethi et al. [54]. Suppose there

is a manufacturing machine, which is able to produce n different types of products.

The machine can work in a number of modes with different production capacity. The

environment space Y formalises the idea of these modes, and for each y ∈ Y there is

a known finite production capacity β(y).

The state space is S = Rn. A vector x ∈ S gives inventory/backlog levels for all

the products. The decision space A stands for percentages of the total production
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assigned to each of the products at particular time moment. It can be written as

A = {a ∈ Rn : ai ≥ 0,
∑

ai ≤ 1}.

The demand vector µ ∈ Rk is assumed to be constant.

The rate of change of the inventory levels can be written as

by(a) = β(y)a− µ.

So after integration one gets

X(t) = X(0) + t(β(y)a− µ)

gives the vector of production levels at time t.

Suppose now that along with this model we introduce the model with extended

action space Ã. We can see that some of its elements violate the assumption that the

sum of the productions should be less than the total possible production rate β(y). In

real life, sometimes it would be better to produce more, but it is not always possible

due to the system constraints.

Hence, the formalism of the functions by is absolutely relevant in this case.

3.2.3 Main results and assumptions for SFP

This section summarises the results from Bäuerle [6], [7], which are relevant to our

work. We start by stating assumptions and results for the β-discounted optimality.

We proceed further by providing additional assumptions to formulate Theorem (3.2.7),

which states the existence of the optimal solution for the average cost functional and

provides the average cost optimality equation (ACOE 3.6).

For our model, one of these assumptions does not hold. Nevertheless, we explain

why the results still hold. Finally, we take a closer look at ACOE and explain it in a

less formal manner.

We use notation C(x, y, a) for the expected cost between two jumps under open-

loop control a. We can write

C(x, y, a) =

∫ ∞
0

exp(−λt)c(Xa(s), y, a(s))ds.

According to Lemma (3.1.1) we can also use the representation

C(x, y, a) =
Ec(Xa(T1), Y1)

λ
.

According to Bäuerle [7], the following set of assumptions are needed to establish the
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existence of a β-discounted optimal policy.

Assumptions 3.2.1.

(a) The state space S of the controlled process is closed. The action space A is

convex and compact in the Euclidean norm.

(b) The function c(x, y, a) is lower semicontinuous and convex in x and a for all

y ∈ Y ;

(c) There exists a policy πβ such that Cβ
πβ

(x, y) <∞ for all (x, y) ∈ S × Y .

Remark 3.2.5. It is well known that a convex function is Lipshitz on open subsets of its

domain (see Rockafellar [50]). Therefore, the assumption on the lower semicontinuity

may be replaced with the continuity upto the boundary.

The following theorem states the existence of the optimal policy for β > 0 and

provides the β-discounted cost optimality equation.

Theorem 3.2.6 (Theorem 4 and Lemma 5 in Bäuerle ([7])).

Suppose that assumptions (3.2.1) hold, then

• Cβ is the minimal solution of

hβ(x, y) = min
a∈D(x,y)

[
C(x, y, a) + Eax,y exp(−(β + λ)T1)hβ(X(T1), Y (T1))

]
. (3.5)

• There exists a minimiser aβ : S×Y×R+ → A of (3.5) and the stationary policy

(aβ, aβ, aβ, . . .) is β-discounted optimal.

• Solution Cβ(x, y) is convex in x for all y.

Throughout the literature, equations alike to equation (3.5) are generally referred

to as the Bellman equation.

Existence of the optimal solution in the average-cost problem is obtained by using

a technique known as vanishing discount approach. In this approach, the solution

is found as a limit of a sequence of the solutions of discounted problems along a

certain subsequence βn → 0. Hence, Assumptions (3.2.1) are required to hold for any

β > 0. The existence of β-discounted optimal stationary policy requires relatively mild

assumptions, however, the existence of the time-average optimal stationary policy

requires a more complicated and restrictive set of assumptions.

Fix (x∗, y∗) ∈ S × Y and let

hβ(x, y) = Cβ(x, y)− Cβ(x∗, y∗).
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Assumptions 3.2.2.

(a) The state space is S = Rn or S = (R+)n and the action space A is convex and

compact in the Euclidean norm;

(b) The cost function c(x, y, a) is convex and continuous in x and a for all y ∈ Y ;

(c) For all β > 0 there exists a policy πβ such that Cβ
πβ

(x, y) < ∞ for all (x, y) ∈
S × Y ;

(d) There exists a policy π such that Cπ(x, y) <∞ for all (x, y) ∈ S × Y ;

(e) There exist constants L ∈ R and β̂ > 0 and upper semicontinuous function

M : S × Y → R+ such that for all (x, y) ∈ S × Y and 0 ≤ β ≤ β̂ the following

holds

L ≤ hβ(x, y) ≤M(x, y).

Moreover, for all admissible open-loop controls a ∈ D(x, y) the following holds

Eax,yM(X(T1), Y (T1)) <∞.

(f) If S = (R+)n then for the β-discounted optimal policies πβ the following holds

Cβ
πβ

(x, y) is increasing in y.

Theorem 3.2.7 (Theorem 4,5, Bäuerle ([6])). Under assumptions (3.2.2) the follow-

ing is true.

1. There exists a constant ρ ≥ 0 and a convex function h : S × Y → R such that

the average optimality equation holds for all (x, y) ∈ S × Y:

λρ+ h(x, y) = inf
a∈D(x,y)

[
C(x, y, a) + Eax,yh(X(T1), Y (T1))

]
. (3.6)

2. There exists a function a0 : S × Y × R+ → A, such that the infimum of the

right-hand side of equation (3.6) for (x, y) is attained for it. There also exists

a sequence βn → 0 such that

a0(x, y) = lim
n→∞

aβn(x, y), (3.7)

where aβn are solutions for the discounted problems with parameters βn.

3. Suppose that a0(x, y, t) can be given by a feedback control ψ0 and c(x, y, a) does

not depend on a.
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Then a0 is an average optimal policy and ρ is the minimal average cost.

Remark 3.2.8. Controls aβ(x, y, t) are functions of t. Their convergence in 3.7 is

understood in the Young topology (see Section 3.8).

For our problem, Assumption 3.2.2.(f) fails to hold. Indeed if it was true, then

Cβ(x, y) would attain its minimum at x = 0. Therefore the optimal controlled process

would stay at level 0 for all β and y.

This assumption was used in Lemma 3 from [6] to show equi-continuity of functions

hβ for small β. Then Lemma 3 was used in the proof of Theorem (3.2.7). It is easy

to see that this assumption is not necessary for equi-continuity and was used for the

means of the proof. Take a set of non-monotone equi-continuous functions defined on

Rn and restrict them to (R+)n. The restriction is not necessarily monotone.

Lemma 3 from [6] was also stated in Fernández-Gaucherand et al. [29] for convex

c(x, y, a) and S = Rn, however there is no proof presented.

In Bäuerle [6] statement of the lemma was first proved for S = Rn and then for

S = (R+)n by extending functions hβ in a convex manner on R+ and applying the

first result to the extension.

In the following modification of the lemma we show that equi-continuity still holds

if Assumption 3.2.2.(f) is removed from the list. Therefore, the statement of Lemma

3 and Theorem 4 from [6] still hold without Assumption 3.2.2.(f).

Lemma 3.2.9. Suppose that S = (R+)n and that Assumptions 3.2.2.(a)-(e) hold.

Then functions hβ(x, y) are equi-Lipschitz in x on closed bounded subsets of S.

To prove the lemma, we apply results on the extension of convex functions based

on results in Yan [67].

Extension 3.2.10 (Theorem 3.1. Yan [67]). Suppose f is a convex function on an

arbitrary set S ⊂ Rn. Then under either of the following assumptions, f can be

extended to a convex function on the convex hull conv(S):

(a) f is bounded below,

(b) S contains a point in the relative interior of the convex hull conv(S).

The new function is defined as

f̂(x) = inf

{∑
k

λkf(xk), where k ∈ N, λk ≥ 0,
∑
i

λi = 1, xk ∈ S,
∑

λkxk = x

}
.

(3.8)

Remark 3.2.11. Note that both the assumptions hold for our problem.
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Extension 3.2.12 (Theorem 4.1. Yan [67], Dragomirescu and Ivan [27]). A convex

function on a bounded convex subset can be extended to a convex function on the whole

linear space if and only if it is a Lipschitz function.

The new function is defined as

f̂(x) = sup{λf(y) + (1− λ)f(z), x = λy + (1− λ)z, y, z ∈ S, λ ≥ 1}. (3.9)

Remark 3.2.13. It is shown in the proof in [67] that f̂(x) takes only finite values.

Proof of Lemma 3.2.9. We fix y ∈ Y for the entire proof and suppress it in the no-

tation for the proof. The proof consists of two parts. Firstly, we extend the convex

functions hβ(x) on Ŝ = [−1,∞)n and show that they are still uniformly bounded

by some function M̂(x). Then, we apply Theorem 10.6 from Rockafellar [50], which

states that any collection of uniformly bounded convex functions on an open bounded

set S is equi-Lipschitz on S.

Note: if we apply Theorem 10.6 from Rockafellar [50] to the interior of S we show

continuity only on those closed bounded sets, which do not intersect with the bound-

ary of S. Hence, we enlarge the set S and then apply the theorem to the interior of

the larger set Ŝ.

Note that, local convexity in a convex set yields global convexity in it. Therefore,

we can construct extensions of functions hβ(x) onto a sequence of increasing subsets

Sk ↗ Ŝ, step by step, making sure that they stay convex after every step.

The extension of functions hβ(x) is described in an algorithmic way. Precisely,

we show that any β function hβ on S can be extended to function ĥβ on Ŝ and that

there exists a function M̂ (which does not depend on β) such that ĥβ(x) ≤ M̂(x).

For the convenience of the proof we take M(x) = supβ(hβ(x)), which is finite due to

Assumptions (3.2.2). It is convex as a supremum of convex functions.

Step 1

Extend hβ and M from [0, 1]n to [−1, 1]n by applying Extension 3.2.12. Let S1 =

S ∪ [−1, 1]n. The extended function hβ is convex on S1. By formula (3.9) we see that

for extended functions f̂(x) ≤ M̂(x).

Step 2

Extend hβ from S1 ∩ [−1, 2]n to [−1, 2]n by applying Extension 3.2.10. Let S2 =

S ∪ [−1, 2]n. The extended function hβ is convex on S2. For x ∈ [−1, 2]n holds

hβ(x) ≤ max
z∈S1∩[−1,2]n

M̂(z),

thus the extended function hβ is bounded.

Step k

Extend f from Sk−1 ∩ [−1, k]n to [−1, k]n by applying the Extension 3.2.10. Let
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Sk = S ∪ [−1, k]n. Function hβ is convex and bounded on Sk.

It is clear that Sk is a sequence of sets increasing to Ŝ. Hence we have obtained a

convex extension of functions hβ(x) on Ŝ and a function M̂(x) such that for all small

β holds hβ(x) ≤ M̂(x). The last step is to apply Theorem 10.6 from Rockafellar [50]

to the interior of Ŝ.

Since in Theorem 3.2.7 the optimal rule is found as a limit of a certain subsequence

of rules for the discounted problems with βk → 0, Assumptions 3.2.1 for large β can

be eliminated. We prove a stronger result.

Proposition 3.2.14. Assumption 3.2.2.(d) yields 3.2.2.(c) for small β.

Proof. Corollary (1c) on page 183 of Widder [62] in our notation says that for any

policy π and any initial state (x, y) the following holds

lim sup
β→0

βCβπ (x, y) ≤ Cπ(x, y).

By the definition of the upper limit for ε = 1 there exists β̄ such that

sup
β≤β̄

βCβπ (x, y) ≤ Cπ(x, y) + 1,

and, therefore, given the assumption, (3.2.2.(d)) this yields

Cβπ (x, y) ≤ Cπ(x, y) + 1

β
<∞ for β ≤ β̄.

Usually, the average optimality equation is used as a tool for establishing the

existence of the optimal solution in optimization problems. On rare occasions it is

possible to solve the equation explicitly. Sometimes it is possible to guess a solution

and by using the equation (3.6) show that any other policy will be no better.

One should think of ρ, h and a0 in the following manner. Policy a0 is the optimal

policy minimising C(x0, y0). It is stationary and does not depend on the initial point

(x0, y0). Constant ρ is the optimal long time average cost corresponding to the optimal

policy a0. Recall that the length of a period Tn+1 − Tn is exponentially distributed

with parameter λ. Hence, the average cost over interval [Tn, Tn+1] under policy a0 is

equal to λρ. On the right hand side, C(x, y, a0) represents the cost for one single time

period.

Function h(x, y) is a little more difficult to explain. It is usually referred to as rel-

ative value function. One might think about a regeneration structure in the following

manner. Consider two optimal strategies starting from (x, y) and (x∗, y∗). Then cost

h(x, y) is the difference we pay before the control trajectories couple.
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3.3 Our main results

In this subsection we assume that S ⊂ R. In all statements we assume that the action

space A is convex and compact. Hence, it is a closed connected subset of Rn. The

images by(A) are one-dimensional convex compact sets for all y ∈ Y , thus they are

closed intervals. For each y ∈ Y point 0 either belongs to it or the whole interval lies

to one or the other side from 0. For our convenience we need the following.

Assumption 3.3.1. We assume that 0 ∈ by(A) for all y ∈ Y , so the control process

X(t) is allowed to move up and down, and also stop, regardless of the state of the

environment.

Under assumption (3.3.1) there exist functions B,U : Y → R+ such that

by(U) = [−B(y), U(y)].

Recall function k(x, z, t) : R+ × R+ × R+ → R+ given by formula 2.9 as

k(x, z, t) = I{x≤z}min(x+ Ut, z) + I{x>z}max(x−Bt, z).

Its trajectory with respect to t starts at point x then increases(decreases) to level z

at the maximal possible pace in accordance with the ramp constraints.

We modify functions k in accordance with the maximal possible constraints on

the derivative by(a) at the environment state y:

k̄(x, y, z, t) = I{x≤z}min(x+ U(y)t, z) + I{x>z}max(x−B(y)t, z). (3.10)

Remark 3.3.1. Suppose that A = [−B,U ] and by(a) = a then function k̄(x, y, z, t) =

k(x, z, t). This is an important case when the ramp constraints do not depend on the

environment.

In order to prove our main results we need an auxiliary lemma.

Lemma 3.3.2. Suppose that f : R→ R is a strictly convex function and x∗ ∈ R is a

point where the minimum of function f(·) attains

f(x∗) < f(x), ∀x 6= x∗.

Assume further, that P is a probability measure on R+ absolutely continuous with

respect to Lebesque measure. Consider a class of functions X : R+ → R, where

X(0) = x0 and X satisfies

−Bδ ≤ (X(t+ δ)−X(t)) ≤ Uδ,
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where positive constants U and B are ramp constraints.

Then the optimization problem in the class of functions described above

L(X(t), x0) :=

∫ ∞
0

f(X(t))dP (t)→ min
X(t)

has a unique solution given by

X∗(t) = k(x0, x
∗, t). (3.11)

Proof. For the entire proof suppose that x0 < x∗. The opposite case may be treated

similarly. Firstly, we show that if X(t) is the optimal policy then for all t ≥ 0 holds

X(t) ≤ x∗. Consider a new policy X1(t) = min(X(t), x∗) then the set {t : f(X1(t)) <

f(X(t))} has positive measure due to the presence of constraints U and B. Therefore

L(X1(t), x0) < L(X(t), x0).

Hence, the policy crossing level x∗ cannot be optimal.

The second step is to observe that if we have two controls X1(t) < X2(t) ≤ x∗ for

all t ≥ 0 then clearly

L(X2(t), x0) < L(X1(t), x0).

This shows that at each point t the optimal control X(t) should be as close to the

optimal point x∗ as possible. The fastest movement towards x∗ is linear with speed

U . The dynamics are formalised by function k(x0, x
∗, t).

We start with a solution for the discounted optimality problem.

Theorem 3.3.3. Suppose that S = R+, c(x, y, a) does not depend on a and is strictly

convex in x, Assumptions 3.2.1 and 3.3.1 hold for all β > 0. Assume that the initial

value is known (X(0), Y (0)) = (x0, y0).

Then there exists a unique function lβ(y) : Y → R+ such that the trajectory of the

corresponding optimal process X(t) can be found recursively in the following manner.

• X(0) = x0;

• for t ∈ [0, T1] let X(t) = k̄(x0, y0, l
β(y0), t);

• for t ∈ [Tn, Tn+1] let X(t) = k̄(X(Tn), Y (Tn), lβ(Y (Tn)), t− Tn).

Remark 3.3.4. If assumption (3.3.1) fails then none of the controls given by formula

(3.10) are feasible.

Remark 3.3.5. The sample path of the process X(t) may be written in a close formula

X(t) = k̄(Xνt , Yνt , l(Yνt), t− Tνt),
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where as before νt = max{n : Tn < t}.
Remark 3.3.6. There exist a set of levels {lβ(y)} labelled by the elements of the

environment state Y . Whenever the environment is in the state y the trajectory

starts moving towards l(y) at the maximal possible speed and stops if it reaches this

level.

Remark 3.3.7. Another possibility to formulate the theorem is to explicitly give the

control function a0(x, y, t), which is done in the proof of the theorem.

Proof. Due to Theorem (3.2.6) there exist ρ ≥ 0, convex function hβ : E → R and

u0, which satisfy the discounted optimality equation (3.5). Starting with the Bellman

equation (3.5) we may write:

Cβ(x, y) = min
a∈D(x,y)

(
C(x, y, a) + Eax,y exp(−(β + λ)T1)Cβ((X(T1)), Y (T1), a)

)
(3.12)

= min
a∈D(x,y)

(∫ ∞
0

c(X(t), y) exp(−(β + λ)t)dt+ (3.13)

+Eax,y exp(−(β + λ)T1)Cβ(X(T1), Y (T1))

)
(3.14)

= min
a∈D(x,y)

∫ ∞
0

(
c(X(t), y)+ (3.15)

+
∑

y′∈Y,y′ 6=y

−qyy′
qyy

(β + λ)Cβ(X(t), y′))

)
exp(−(β + λ)t)dt. (3.16)

The function

c(x, y) +
∑
y′ 6=y

−qyy′
qyy

(β + λ)Cβ(x, y′) =: H(x, y) (3.17)

is strictly convex in x due to convexity of Cβ(x, y) for all y and strict convexity of

c(x, y). Therefore there exist points lβ(y), where the minimum of function (3.17)

attains.

Applying Lemma (3.3.2) to H(x, y) and dP (t) = exp(−(β + λ)t)dt one gets that

X∗(t) = k̄(x, y, lβ, t)(y)

provides the minimum in the right-hand side of equation 3.12.
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Therefore, in terms of open-loop controls, we can write

aβ(x, y, t) =



U(y) if t < lβ(y)−x
U(y)

0 if t ≥ lβ(y)−x
U(y)

if x < lβ(y)

−B(y) if t < x−lβ(y)
B(y)

0 if t ≥ x−lβ(y)
B(y)

if x ≥ lβ(y)

(3.18)

A similar result holds for the time-average optimality.

Theorem 3.3.8. Suppose that S = R+, and c(x, y, u) does not depend on u. Assume

that assumptions (3.2.2) and (3.3.1) hold. Suppose that the process starts from the

initial point (x0, y0).

Then there exists a function l0(y) : Y → R+ such that the trajectory of the corre-

sponding optimal process X(t) can be constructed recursively in the following manner.

• X(0) = x0;

• for t ∈ [0, T1] let X(t) = k̄(x0, y0, l
0(y0), t);

• for t ∈ [Tn, Tn+1] let X(t) = k̄(X(Tn), Y (Tn), l0(Y (Tn)), t− Tn).

Proof. The proof is similar to the proof of Theorem (3.3.3) with only a slight modifi-

cation related to a different form of the optimality equation. Under the assumptions

(3.2.2) there exist ρ and convex function h(x, y) satisfying the equation (3.6), by the

Theorem (3.2.7). Hence, starting with the ACOE one can write

λρ+ h(x, y) = inf
u

[∫ ∞
0

c(X(t), y) exp(−λt)dt+

∫
E

h(x′, y′)P (x, y, u, dx′, dy′)

]
= (3.19)

inf
u

∫ ∞
0

(
c(X(t), y) +

∑
y′∈Y,y′ 6=y

qy0y′

qy0y0
λh(X(t), y′)

)
exp(−λt)dt.

Let

H(x, y) :=
c(x, y)

λ
+
∑
y′ 6=y

qyy′h(x, y′).

Function h(x, y) is convex in x due to Theorem 3.2.7. Therefore, function H(x, y) is

strictly convex in x due to convexity of all summands and strict convexity of c(x, y).

Hence, there exist points l0(y), where the minimum attains. We finish the proof by
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using Lemma (3.3.2) with H(x, y) and dP (t) = exp(−(λ)t)dt. As before, the optimal

control is given by

a0(x, y, t) =



U(y) if t < l0(y)−x
U(y)

0 if t ≥ l0(y)−x
U(y)

if x < l0(y)

−B(y) if t < x−l0(y)
B(y)

0 if t ≥ x−l0(y)
B(y)

if x ≥ l0(y)

(3.20)

Trajectories X0(t) corresponding to u0 are exactly

X0(t) = k̄(Xνt , Yνtl(Yνt), t− Tνt)

Hence, due to the uniqueness of the optimal control in Lemma (3.3.2) we have shown

that a0(x, y, t) minimises the left-hand side of the equation (3.19). The last step is to

notice that the obtained controls are given by a feedback rule and, hence, due to the

Theorem (3.2.7) part (3) it is indeed the optimal control.

The uniqueness of the optimal policy allows us to show that the optimal solution in

the time-average case can be obtained not only as a limit along a certain subsequence,

but as a continuous limit.

Corollary 3.3.9. Under the assumptions of Theorem (3.3.8) for all (x, y), we have

1.

a0(x, y) = lim
β→0

aβ(x, y), (3.21)

2.

l0(y) = lim
β→0

lβ(y). (3.22)

Proof. 1. We prove that the sequential limit of aβn in Theorem (3.2.7) may be

replaced with the continuous limit when β goes to 0. Due to the Theorem

(3.2.7) we know that there exists a sequence βn such that

aβn(x, y)→ a0(x, y). (3.23)

The convergence is understood in the Young topology (see Section 3.8). In the

proof of Theorem (3.2.7) (see Theorem 4, Bäuerle [6]), the limiting function a0

is obtained in the following manner. For an arbitrary sequence βn, there exists

a further subsequence βnm such that there is convergence

hβnm (x)→ h0(x) (3.24)
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uniformly on compacts (due to equi-continuity and uniform boundedness by

Arcela-Askoli Theorem). Its limit â0 minimises the right-hand side of the equa-

tion (3.6). However, in Theorem (3.3.8) we have shown that the solution is

unique. Therefore, each sequence βn has a subsequence βnm such that

aβnm (x, y)→ a0(x, y). (3.25)

We know that the sequence is convergent if, and only if, any subsequence has a

further convergent subsequence and the limits are all the same. From this we

deduce that

aβ(x, y)→ a0(x, y). (3.26)

2. Theorems (3.3.3) and (3.3.8) state that the policies are determined by the sets

of levels lβ(y) for β ≥ 0. We fix (x, y) for now and drop it in the notation when

it is convenient. Convergence aβ → a0 in the Young Topology is equivalent to

convergence ∫ ∞
0

g(t, aβ(t))dt→
∫ ∞

0

g(t, a0(t))dt, (3.27)

for all g(t, u) ∈ L1(R+, C(U)), where the latter is the space of functions measur-

able in t and continuous in u. Take g(t, u) = e−tu, which belongs to L1(R+, C(U)).

We know that fβ can take only three different values U , −B and 0 due to the

formulas (3.18) and (3.20). Without loss of generality, assume that the initial

value x ≤ l0(y) then

∫ ∞
0

e−ta0(t)dt =

∫ l(y)−x
U

0

e−tUdt = U

(
1− exp

(
− l(y)− x

U

))
≥ 0. (3.28)

We first prove by contradiction that there exists β̂ such that for all β ≤ β̂ the

inequality x ≤ lβ(y) holds. Suppose there exist a sequence of βk such that

x > lβk(y) for all k ≥ 0. Then we can write

∫ ∞
0

e−taβk(t)dt =

∫ x−lβk (y)
B

0

−e−tBdt = −B
(

1− exp

(
−x− l

βk(y)

B

))
≤ 0,

(3.29)

which should converge to the left-hand side of equation (3.30). As the expres-

sions have different signs it must mean that both of them are equal to 0. Hence

l0(y) = x and lβk(y)→ x, so lβk(y)→ l0(y) only if l0(y) = x. Now if we take a

different initial value x′ 6= l0(y) we would obtain a contradiction.
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Now take only β < β̂ so that x ≤ lβ(y), then

∫ ∞
0

e−taβ(t)dt =

∫ lβ(y)−x
U

0

e−tUdt = U

(
1− exp

(
− l

β(y)− x
U

))
(3.30)

converges to to the left-hand side of equation (3.30) if, and only, if lβ(y)→ l0(y).

Therefore, we have proven the required convergence.

Theorem 3.3.10. Suppose that Y is finite, Markov chain Y (Tn) is irreducible, R =

maxy argminx c(x, y) <∞ and optimal levels {lβ(y)}y∈Y exist for all β > 0.

Then there exist integrable function M(x, y) and constant L such that Assumption

3.2.2.(e) holds.

Proof. Suppose that X(t) is an arbitrary controlled process, then a process defined

by X̂(t) = min(X(t), R) gives a better value locally for β-discounted cost functional

for all β. Hence, we obtain that the optimal policy should not lie above level R. This

yields that lβ(y) ≤ R for all β > 0 and y ∈ Y . Note that if X(0) = x1 ≤ R then for

any t ≥ 0 holds X(t) ≤ R, so the process never leaves compact [0, R] once reached.

Now fix 0 < x0 < R and y0 ∈ Y and let hβ(x, y) = Cβ(x, y)− Cβ(x0, y0).

The rest of the proof is split into two parts for x1 ≤ R and x1 > R. We write

(Xi(t), Yi(t)) for the process that starts at (xi, yi) for i = 0, 1.

Suppose that x1 ≤ x0. As before {Tk} denote jumping times of the embedded

Markov chain of the process Y (t). Random time σ1 is defined as

σ1 = min{i : Y0(Ti) = Y1(Ti)} (3.31)

It is well known that time σ1 is a.s. finite and, moreover, Eσ1 < ∞, see for example

[40]. Denote by σ2 random time such as

σ2 = min{i ≥ 0 : X0(Ti+σ1) = X1(Ti+σ1)}. (3.32)

We now show that Eσ2 < ∞. Let w = miny(min(U(y), B(y)). If for k holds Tk −
Tk−1 ≥ R

w
then one has X1(Tk) = X0(Tk), because there is enough time to reach level

lβ(Y (Tk−1)) from any point x ∈ [0, R].

Since Tk − Tk−1 is an exponential random variable with parameter λ we have

P
{
Tk − Tk−1 ≥

R

w

}
= exp

(−λR
w

)
=: p∗. (3.33)

There exists a random variable Γ ∼ Geom(p∗) such that σ2 ≤
∑Γ

j=σ1+1 Tj. Random

variable Γ is independent of future values of {Tj}j≥Γ. Therefore, we may apply the

53



Chapter 3: Exponential inter-arrival times

Wald’s identity

Eσ2 ≤
1

λ
EΓ <∞. (3.34)

Hence,

|hβ(x1, y1)| = |Cβ(x1, y1)− Cβ(x0, y0)| ≤ 2E(σ1 + σ2) max
x∈[0,R],y

c(x, y) =: L. (3.35)

Let M(x, y) = L for x1 ≤ x0.

Now suppose that x1 > R. Then

hβ(x1, y1) =
(
Cβ(x1, y1)− Cβ(x0, y1)

)
+
(
Cβ(x0, y1)− Cβ(x0, y0)

)
≥ −L. (3.36)

As was explained at the beginning of the proof, the first bracket on the right hand

side is positive. The second bracket is greater than −L as was shown before.

To establish the upper bound we note that for t ≤ x1−R
miny B(y)

, the process X1(t)

decreases to R. Let σ3 = max{σ1, [
x1−R

miny B(y)
]}, where [x] = minZ{z ≥ x} is the ceiling

function. Then for j ≥ σ3 hold Y1(Tj) = Y0(Tj) and X1(Tj) ≤ R.

Let σ4 = min{j : X1(Tj+σ3) = X0(Tj+σ3)}. Similarly to the previous case, we get

Eσ4 <∞. Hence we have

|hβ(x1, y1)| =≤ max

(
Eσ1,

x1 −R
miny B(y)

)
max
y
c(x1, y)+

+ Eσ4 max
x∈[0,x0],y

c(x, y) =: M(x1, y1) <∞. (3.37)

Therefore we have constructed L and M(x, y) as needed.

To summarise the minimal assumptions required for the existence of the levels

l0(y) we state a straight forward corollary of the results above.

Corollary 3.3.11. Suppose that S = R+, Y is finite, Markov chain Y (Tn) is irre-

ducible and the strictly convex function c(x, y, u) does not depend on u. Suppose that

Assumptions (3.2.2.(d)) and (3.3.1) hold. Then there exists the set of optimal levels

l0(y).

3.3.1 The case of no environment

Suppose that there is no environment present, e.q. ‖Y‖ = 1. Then there is no new

information about the environment at any point in time and the optimal controlled

process stays at the same level. This informal reasoning is formalised in the following

corollary. This result with the informal reasoning was first suggested to us by Stan

Zachary.
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Corollary 3.3.12. Suppose that |Y| = 1 so Y (Tn) are all identical (deterministic).

Let X(0) = x0 Then there exist a number l and the process corresponding to the

optimal policy is

X(t) = k(x0, l, t).

For any initial value there exists T > 0 such that X(t) = l for all t ≥ T .

3.4 On the continuity of the optimal solution

when U,B →∞
In this subsection we assume that the optimal levels l0(y) exist for all considered

problems and that the ramp constraints do not depend on states of the process Y (t).

Now we would like to compare models with different values of ramp constraints U

and B, whilst keeping the matrix Q and the cost functional c(x, y) fixed. Then the

optimal levels l0(y) might be regarded as functions of U and B. We denote them by

l0U,B(y). Let m(y) = argminx c(x, y), and renumber elements of Y so that m(i) ≤ m(j)

if i ≤ j. Assume that |Y| = n. Let m = (m(1),m(2), . . . ,m(n)).

We use the following notation in this section.

• For the set of levels ` = {l(y)y∈Y} we write X`
U,B(t) for the corresponding fluid

process with levels ` and ramp constraints U and B.

• The optimal policy for ramp constraints U and B is then X
`0U,B
U,B (t), where

`0
U,B = (l0U,B(1), l0U,B(2), . . . , l0U,B(n))

is the set of the optimal levels.

• Suppose that U = B = ∞, then for t ∈ [Tn, Tn+1] and levels ` the trajectory

X`
∞,∞(t) is defined by

X`
∞,∞(t) = l(YTn).

Note that the trajectory is not continuous.

• Let X̃ = Xm
∞,∞.

• Let ∆(U,B) = (m(n)−m(1)) max(1/U, 1/B).

Note that for any pair x1, x2 ∈ [m(1),m(n)] and ramp constraints U and B the

time to reach level x2 starting at level x1 is not longer than ∆(U,B).

Consider the limiting case where U = B =∞. In this situation there are no ramp

constraints, so the trajectories are no longer necessarily continuous, and any positive
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function on R+ may be considered as a possible trajectory. Then the trajectory X̃

is average-optimal in the class of positive functions on R+ as it minimises the cost

functional at every point:

∀x, y c(x, y) ≥ c(m(y), y) =⇒ (3.38)

∀X(t), y E
∫ τ

0

c(X(s), y)ds ≥ E
∫ τ

0

c(X̃(s), y)ds. (3.39)

Intuition suggests that the larger the ramp constraints, the faster it is possible to

move to the optimal levels l0(y). Thus the optimal levels l0U,B(y) should approach

m(y) as U,B →∞. This is the content of the following theorem.

Theorem 3.4.1. Suppose that U,B →∞ then l0U,B(y)→ m(y), for all y.

Moreover, there exists C̃ > 0 such that, for all y

|l0U,B(y)−m(y)| ≤ C̃

(
max

(
1

U
,

1

B

))
. (3.40)

To prove the theorem we need a simple auxiliary lemma.

Lemma 3.4.2. 1. There exists a constant Ĉ such that

C(Xm
U,B)− C(X̃) ≤ Ĉ ×∆(U,B). (3.41)

In particular,

C(Xm
U,B)→ C(X̃) as U,B →∞. (3.42)

2. Suppose that for the set of levels {l(y)}y∈Y there exist y0 such that

|l(y0)−m(y0)| ≥ δ.

Then

C(X`
U,B)− C(X̃) ≥ P{Y (t) = y0} × δ × λ× exp(−∆(U,B)λ). (3.43)

Proof. 1. Let M = maxy maxx1,x2∈[m(1),m(n)] |c(x1, y)− c(x2, y)|. Within each time

interval [Tn, Tn+1] the maximal possible difference between the charges for both

policies is

E
∫ Tn+1

Tn

(
c(Xm

U,B(s), y)− c(X̃(s), y)
)
ds ≤ ∆(U,B)M. (3.44)

56



Chapter 3: Exponential inter-arrival times

Therefore, for the average cost the following inequality holds

0 ≤ C(Xm
U,B)− C(X̃) ≤ ∆(U,B)M

λ
, (3.45)

since Eτn = 1/λ. Now if U and B tend to infinity we have ∆(U,B)M
λ

→ 0.

2. For the difference between the average cost functionals we have

C(X`
U,B)− C(X̃) = lim sup

k→∞

E
∫ Tk

0

(
c(X`

U,B(s), Y (s))− c(X̃(s), Y (s))
)
ds

k
λ

= lim sup
k→∞

∑k
1 P{Y (t) = y0}

∫∞
∆(U,B)

δ × (s−∆(U,B))× λ exp(−λs)ds
k
λ

≥ P{Y (t) = y0}δ × λ exp(−∆(U,B)λ).

Now we are ready to prove Theorem (3.4.1).

Proof of Theorem (3.4.1). We prove the theorem by contradiction.

Suppose that there exists y such that the sequence of levels for average optimal

policies l0(y)(U,B) does not converge to m(y). Then there exist δ > 0 and a subse-

quence (Un, Bn) that

|l0Un,Bn(y)−m(y)| ≥ δ. (3.46)

Due to the first part of Lemma (3.4.2), we can take U0, B0 such that for U > U0, B >

B0 the following holds

C(Xm
U,B)− C(X̃) ≤ δλP{Y (t) = y}

4
and (3.47)

exp(−∆(U,B)λ) ≥ 1

2
. (3.48)

Due to inequality (3.43) one has

C(X`0
U,B)− C(X̃) ≥ δP{Y (t) = y}λ exp(−∆(U,B)λ) ≥ δλP{Y (t) = y}

2
. (3.49)

Now by the definition of U0, B0 and by the triangle inequality one has

C(X`0
U,B)− C(XU,B) ≥ δλP{Y (t) = y}

4
.
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Therefore we get a contradiction with the optimality of strategy X`0
UB

. Hence the

assumption that l0U,B(y) does not converge to m(y) is false.

Finally, the rate of convergence may be obtained as follows. For U > U0 and

B > B0, we have

|C(X`0
U,B)− C(X̃)| ≤ |C(Xm

U,B)− C(X̃)| ≤ Ĉ∆(U,B),

|C(X`0
U,B)− C(X̃)| ≥ max

y
|l0U,B(y)−m(y)|min

y
(P{Y (t) = y})× λ exp(−∆(U,B)λ)

≥ max
y
|l0U,B(y)−m(y)|Ĉ1,

where Ĉ1 > 0. Hence, maxy |l0U,B(y)(U,B) − m(y)| ≤ C̃∆(U,B), where C̃ = Ĉ ×
Ĉ1

−1
.

The convergence of the optimal levels l0U,B(y) to m(y) has a useful application.

For large U and B, instead of searching for the optimal levels l0U,B(y), which is com-

putationally difficult, one may take m(y) as the set of levels for the trajectory, which

is nearly optimal. Calculating m(y) is simple, it is nothing more than finding the

minimums of functions c(x, y).

3.4.1 Computational example

We support the convergence result with an example obtained by running the Matlab

code (see Appendix B). This code is based on the numeric algorithm described in

Section 3.6 and the solution for each pair of ramp constraints is found on the grid

with the parameter h = 0.1.

Suppose that n = 3,

Q =

−2 1 1

1 −2 1

1 1 −2


and

c(x, 1) = x+ 2 max{1− x, 0}, m(1) = 1,

c(x, 2) = x+ 2 max{2− x, 0}, m(2) = 2,

c(x, 3) = x+ 2 max{5− x, 0}, m(3) = 5,

The code returns the numeric approximation of the solution oh the grid with param-

eter h = 0.1. We obtained the following results:

58



Chapter 3: Exponential inter-arrival times

U=B=0.1 l0U,B(1) = 1.9 l0U,B(2) = 2 l0U,B(3) = 2.1

U=B=0.3 l0U,B(1) = 1.8 l0U,B(2) = 2 l0U,B(3) = 2.2

U=B=0.5 l0U,B(1) = 1.7 l0U,B(2) = 2 l0U,B(3) = 2.3

U=B=0.7 l0U,B(1) = 1.5 l0U,B(2) = 2 l0U,B(3) = 2.5

U=B=0.9 l0U,B(1) = 1.4 l0U,B(2) = 2 l0U,B(3) = 2.6

U=B=1 l0U,B(1) = 1.3 l0U,B(2) = 2 l0U,B(3) = 2.7

U=B=3 l0U,B(1) = 1 l0U,B(2) = 2 l0U,B(3) = 4

U=B=5 l0U,B(1) = 1 l0U,B(2) = 2 l0U,B(3) = 5

U=B=7 l0U,B(1) = 1 l0U,B(2) = 2 l0U,B(3) = 5

U=B=9 l0U,B(1) = 1 l0U,B(2) = 2 l0U,B(3) = 5

Table 3.1: Convergence of the levels l0U,B(y)

The table shows a clear convergence and this convergence is monotone.

3.5 Markov-modulated fluid model with multiple

marks on the tank and differential equations

for its joint stationary distribution

We have shown in Theorems 3.3.3 and 3.3.8 that the optimal controlled processes

X(t) are of a certain form: if Y (Tk) = y then it goes to level lβ(y) at the maximal

pace. In this subsection we derive a differential equation along with the boundary

conditions, the solution of which descibes the time-stationary distribution of these

processes. We then discuss how to solve this system.

Different fluid models (also knows as fluid queues or dam models) have been widely

studied since the 1960s. For the classical model one may look in [1], [42] or [39], and

for the most advanced models in [8], [21] or [22].

We describe a new fluid model below. We are given a water tank of capacity

ln with marks for levels l1 < l2 < . . . < ln. The continuous time Markov process

Y (t) takes values in {1, . . . , n}. Its Q-matrix is given by (qij)1≤i,j≤n. Suppose that

U(i), B(i) > 0 are maximal rates to fill and empty the water tank, when Y (t) is in

state i.

Process X(t) stands for the water level in the tank. It evolves in accordance with

Y (t) and {li}ni=1. Given that Y (t) = j the process is defined by

dX(t)

dt
=


0, if X(t) = lj,

U(j), if X(t) < lj,

−B(j) if X(t) > lj.

(3.50)

This is a situation in which the level of water in the tank tries to reach level lj as
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quickly as possible, whilst Y (t) = j. We assume that the dynamics of the process Y (s)

in [t, t + h] are independent of {X(t1)}t1≤t given that Y (t) is known. In particular,

the number of jumps of Y (s) in [t, t+h] are also independent of past values of process

X(t).

P( # of jumps of Y (s) ∈ [t, t+ h] = k|X(t) = x0, Y (t)) (3.51)

=P(# of jumps of Y (s) ∈ [t, t+ h] = k|Y (t)). (3.52)

We refer to the stochastic process (X(t), Y (t)) as FL(l1, . . . , ln).

Remark 3.5.1.

Control processes X(t) from Theorems (3.3.3) and (3.3.8) are FL(lβ(1), . . . , lβ(n)).

Suppose that (X̃, Ỹ ) denotes the unique stationary regime of process (X(t), Y (t)).

Existence of the limiting distribution for Markov process (X(t), Y (t)) (which coincides

with the stationary distribution in embedded moments) is discussed for a class of fluid

policies for semi-Markov random environment in Chapter 4. We use notation

Fj(x, t) = P(X(t) < x, Y (t) = j), Gj(x, t) = P(X(t) ≥ x, Y (t) = j) (3.53)

Fj(x) = lim
t→+∞

Fj(x, t), Gj(x) = lim
t→+∞

Gj(x, t). (3.54)

Theorem 3.5.2. The joint probability distribution functions Fj(x) (and Gj(x) as

well) satisfy the system of equations

dFj(x)

dx
=

{
1

U(j)

∑
1≤i≤n Fi(x)qij, if l1 < x < lj,

−1
B(j)

∑
1≤i≤n Fi(x)qij, if ln > x > lj,

(3.55)

along with the set of boundary conditions{
Fj(l1) = 0, if 1 < j ≤ n,

Fj(ln) = πj, if 1 ≤ j < n,
(3.56)

where πj = P(Ỹ = j) is the stationary distribution for process Y (t).

Functions Fj(x) are continuous everywhere but in lj, so distribution of stationary

version X̃ has positive atoms in l1, . . . , ln.

Remark 3.5.3. There are 2n−2 boundary conditions and 2n−2 differential equations.

If we had fewer boundary conditions, the system could have had multiple solutions.

If we had more boundary conditions, the system could have been unsolvable.

Proof. We start by showing that the boundary conditions satisfy Equation 3.56. Sup-

pose that X(0) = x0 > ln then for t > x0−ln
miniB(i)

one has X(t) ∈ [l1, ln]. This and the
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similar reasoning for x0 < l1 yields that in stationary regime X̃ ∈ [l1, ln]. Moreover,

P(X̃ ∈ B) > 0 for any open non-empty set B ⊂ [l1, ln]. These two observations imply

the result.

The rest of the proof is influenced by the proof of Theorem (1.2.1) in A.de Silva

Soares [20], which was inspired by the proof of Theorem (1.3.7) Barbot [5]. Suppose

that, Tk is the time of the last jump of the process Y (t) and Y (Tk) = j. Since

Y (Tk−1) 6= j, we obtain that the probability of event X(Tk) = lj is equal to 0. Thus

for small δ > 0 process X(Tk + δ) is moving towards level lj at either pace U(j) if

X(Tk) < lj or at −B(j) if X(Tk) > lj.

With no loss of generality, we denote the rate by r. One has

∂

∂t
Gj(x, t) = lim

h→0+

Gj(x, t+ h)−Gj(x, t)

h

= lim
h→0+

P(X(t+ h) > x, Y (t+ h) = j)− P(X(t) > x, Y (t) = j)

h

= lim
h→0+

P(X(t+ h) > x, Y (t+ h) = j, 0 jumps in [t, t+ h])

h

+ lim
h→0+

P(X(t+ h) > x, Y (t+ h) = j, 1 jumps in [t, t+ h])− P(X(t) > x), Y (t) = j)

h

+ lim
h→0+

o(h)

h

=: lim
h→0+

P0 + P1 − P(X(t) > x), Y (t) = j)

h
. (3.57)

We may consider only 0 or 1 jumps in [t, t+ h] due to the fact that

P(# of jumps in [t, t+ h] ≥ 2) = o(h). (3.58)

The first term P0 is easy to tackle. If there was no jump in the period [t, t + h]

then

X(t+ h) = X(t) + rh for small h such that X(t) + rh 6= lj.

Denote by A0 = {0 jumps in [t, t+ h]} then one has

P(X(t+ h) > x), Y (t+ h) = j, A0) = P(X(t) > x− rh, Y (t) = j, A0) (3.59)

= P(A0|X(t) > x− rh, Y (t) = j)× P(X(t) > x− rh, Y (t) = j) (3.60)

= P(A0|Y (t) = j)×Gj(x− rh, t) = (1 + qjjh)Gj(x− rh, t), (3.61)
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where the first equality in the third line follows from formula (3.51).

To proceed with the expression for P1 we note that

X(t) > x+ r1h =⇒ X(t+ h) > x =⇒ X(t) > x− r2h, (3.62)

where r1 = minj(min(U(j), B(j)) and r2 = maxj(max(U(j), B(j)) Therefore, for any

event A one obtains

P(X(t) > x+ r1h,A) ≤ P(X(t+ h) > x,A) ≤ P(X(t) > x− r2h,A). (3.63)

We show that for event A1 = {Y (t+h) = j, 1 jump in (t, t+h]} and for any y ∈ [l1, ln]

holds

P(X(t) > y,A1) =
∑
i 6=j

qijhGj(y, t) + o(h). (3.64)

By the law of total probability we may write

P(X(t) > y,A1) =
∑
i 6=j

P(X(t) > y, Y (t) = i, A1)

=
∑
i 6=j

P(A1|Y (t) = i,X(t) > y)×Gi(y, t)

=
∑
i 6=j

P(A1|Y (t) = i)×Gi(y, t)

=
∑
i 6=j

qijhGi(y, t) + o(h). (3.65)

Hence, by continuity of Gj(y, t) everywhere but at point lj and the formula (3.63) we

get

lim
h→0

1

h
P(X(t+ h) > x, Y (t+ h) = j, 1 jump ) =

∑
i 6=j

qijGi(x, t). (3.66)

Thus, substituting formulas for P0 and P1 into formula 3.57 one has

∂

∂t
Gj(x, t) = lim

h→0+

1

h
((1 + qjjh)Gj(x− rh, t)−Gj(x, t)) +

∑
i 6=j

qijGi(x, t)

= −r ∂
∂x
Gj(x, t) + qjjGj(x, t) +

∑
i 6=j

qijGi(x, t)

= −r ∂
∂x
Gj(x, t) +

∑
i

qijGi(x, t). (3.67)

Since there is a convergence in distribution to the time-stationary distribution we
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have

lim
t→∞

∂

∂t
Gj(x, t) = 0.

Therefore,

r
∂

∂x
Gj(x) =

∑
i

qijGi(x) (3.68)

The last step is to return from functions Gj(x) to Fj(x) = πj −Gj(x).

3.5.1 How to solve the system of equations given the bound-

ary conditions

The system of equations 3.55 is discontinuous at points (lj, j). Although in every

segment Sj = [lj, lj+1) is a homogeneous linear differential equation. It would be

possible to solve it if we knew correct boundary conditions at points lj and lj+1. The

boundary conditions we have are concentrated in l1 and ln. Below, we present an

algorithm allowing us to overcome this difficulty.

Let Sj = [lj, lj+1) for j = 1 . . . n− 1 and Sn = ln. Then Sj forms a partition of the

state space S of process X(t). In each segment Sj the system (3.55) is a homogeneous

matrix differential equation. If we use notation F for vector (F1(x), . . . , Fn(x)) one

may write

dF
dx

= FQj, x ∈ Sj, (3.69)

where Qj is given by its entries qji,l

qji,l =

{
qil
U(j)

, if i > j

− qil
B(j)

, if i ≤ j,
(3.70)

If the boundary conditions are known, the solution of the system (3.69) in each Sj can

be obtained via spectral analysis. The solution of the system satisfying the boundary

conditions can then be expressed as a linear combination of eigenvectors corresponding

to the system. For the theory of classic differential equations one may look at [49] or

[28].

Each of the probability distribution functions Fj(x) are continuous everywhere

except at a single point lj. Let pj = P(X(t) = lj, Y (t) = j). Values pj are unknown

variables, however we use them to obtain the solution. The solution is described

algorithmically step by step.

Algorithm

• Step one

Solve system 3.69 in S1 with boundary conditions Fj(l1) = 0 if j > 1 and
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F1(l1) = p1.

• Step i

Solve the system in Si. All the functions except Fi(x) are continuous at li.

We use their previously defined values Fj(li)(p1, . . . , pi−1) and Fi(li) = pi as

boundary conditions. Notation Fj(li)(p1, . . . , pi−1) underlines that constructed

functions depend on unknown values p1, . . . pi−1.

• Define values pj to satisfy the boundary conditions at ln

We obtained that functions F(p1, . . . , pn−1) are now defined everywhere except

at point bn. We know that Fj(ln) = πj for j < n. These are n − 1 numeric

equations for n−1 unknown values p1, . . . , pn−1. Value pn can then be expressed

as follows

pn = πn − Fn(ln−),

where Fn(ln−) = P(X(t) < ln, Y (t) = n) is obtained as a solution of the system.

We have defined functions F(x) for all x and they satisfy the boundary conditions

(3.56).

1

2

n− 1

n

F = A1F

F = A2F

F = An−1F

l1

l2

ln−1

ln

F1(l1) = p1;F2(l1) = : : : = Fn(l1) = 0

F2(l2) = p2;Fi(l2) = Fi(l2)(p1); i = 1; 3; : : : ; n

Fn−1(ln−1) = pn−1;Fi(ln−1) = Fi(ln−1)(p1; : : : pn−2); i = 1; : : : ; n− 2; n

equation boundary condition

Fi(ln) = πi; i = 1 : : : n− 1

First step

Last step

Check boundary conditions at the top

Figure 3.1: Step-by-step solution of the system

3.6 Optimization in the introduced class of fluid

models

We have shown in Theorems (3.3.3) and (3.3.8) that the trajectories of the optimal

control processes X(t) correspond to a water level of a fluid model with levels lβ(y).

Therefore, if the model satisfies the assumptions of the theorems, one may restrict
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the area of search from the set of all open-loop controls to the set of fluid models

with levels l1, . . . , ln, which are treated here as variables. The average cost functional

under control FL(l1, . . . , ln) is a function of levels l1, . . . , ln and can be expressed as

L(l1, . . . , ln) =
n∑
i=1

(∫ ln

l1

c(x, i)dFi(x)(l1, . . . , ln) + pic(li, i)

)
. (3.71)

Suppose that L(l1, . . . , ln) is differentiable with respect to its parameters, then one

can use the method of Lagrangian multipliers to find its minimal value.

For small values of n it is possible to obtain an explicit equation for the stationary

distribution of FL(l1, . . . , ln). It then is possible to get the exact values (li)
n
i=1 by

solving the corresponding equations numerically. For example, we have a written a

Matlab code (see Appendix B) to find the optimal solution, in the case when Markov

chain Y has only three states. It calculates the stationary distribution as a function

of parameters (l1, l2, l3) by applying the algorithm from Subsection 3.5.1 and spectral

analysis. Then it numerically finds a pseudo optimal solution on a grid. We have used

the outcomes to support the convergence rate of the optimal solutions with respect

to the ramp constraints in Section 3.4.

3.6.1 An exact solution of the system for |Y| = 2

Consider the easiest scenario when |Y| = 2, U(1) = U(2) = U , B(1) = B(2) = B.

Assume that

Q =

(
−λ1 λ1

λ2 −λ2

)
.

Then a fluid model Fl(l1, l2) is an example of the simplest single buffer fluid model.

It is well known that stationary distribution of the process (X(t), Y (t)) exists and the

equations were given in multiple papers, for example in [1]. It is a particular subcase

of Theorem 3.5.2. In this case is possible to solve the system explicitly and the next

lemma gives a closed form solution.

Lemma 3.6.1. The stationary distribution of model Fl(l1, l2)), ( l1 < l2) can be given

by the following formulas

• If λ2U 6= λ1B the stationary distribution is

F1(x) =
λ2

λ1 + λ2

· U
′zx − U ′zl1

B′zl2 − U ′zl1 , (3.72)

F2(x) =
λ1

λ1 + λ2

· B
′zx − U ′zl1

B′zl2 − U ′zl1 , (3.73)

P(X(0) = l1, Y (0) = 2) = F2(l1), (3.74)
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P(X(0) = l2, Y (0) = 1) =
λ2

λ1 + λ2

− F1(l2), (3.75)

(3.76)

where U ′ = λ1/U , B′ = λ2/B and z = exp(B′ − U ′).

• If λ2U = λ1B one has

F1(x) = λ2z(x− l1) + zU (3.77)

F2(x) =
λ2Bz

U
(x− l1), (3.78)

P(X(0) = l1, Y (0) = 1) = F1(l1) = zU, (3.79)

P(X(0) = l2, Y (0) = 2) =
λ1

λ1 + λ2

− F2(l2), where (3.80)

z =
λ2

λ1 + λ2

× 1

λ2(l2 − l1) + U
. (3.81)

Proof. To start with, the stationary distribution for Markov process Y (t) is a solution

of the equation πQ = 0, which results in

π =

(
λ2

λ1 + λ2

,
λ1

λ1 + λ2

)
The system 3.55 along with the boundary conditions 3.56 can be rewritten as

F1(x)′ = λ1
B
F1(x) + −λ2

B
F2(x),

F2(x)′ = λ1
U
F1(x)− −λ2

U
F2(x),

F2(l1) = 0,

F1(l2) = λ2
λ1+λ2

.

(3.82)

Multiplying the first equation by B, the second by U and then subtracting them

results in

BF ′1(x) = UF ′2(x).

By integrating it one gets

F2(x) =
B

U
F1(x) + c1, (3.83)

where c1 is a currently unknown constant. Now substitute the expression 3.83 in the
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first differential equation of 3.82 to obtain

F1(x)′ = F1(x)

(
λ1

B
− λ2

U

)
− λ2c1

B
. (3.84)

Now suppose that λ1U = λ2B, then the first term disappears and we get that

F1(x) = −λ2c1

B
x+ c2,

and the constants c1 and c2 can be found from the equations on the boundary condi-

tions.

Now suppose that λ2U 6= λ1B, then the equation (3.84) is a linear differential

equation of the form f ′(x) = Af(x) + D, which has solutions of the form f(x) =

c/A exp(Ax)−D/A, where c is a constant. Therefore, we obtain

F1(x) =
c2

λ1
B
− λ2

U

exp

(
λ1

B
− λ2

U

)
x+

λ2c1

B
(
λ1
B
− λ2

U

) . (3.85)

By solving the equations on the boundary conditions one obtains values for constants

c1 and c2.

3.6.2 Optimisation for a particular problem with |Y| = 2

We suppose that U = B = 1. Assume that the infinitesimal operator of Markov

process Y (t) is given by

Q =

(
−2 2

2 −2

)
.

Then the stationary distribution for Markov process Y (t) is π = (π1, π2) = (1/2, 1/2).

Therefore due to Lemma (3.6.1), the time-stationary distribution of the fluid model

Fl(a, b) driven by process Y (t) may be expresses in the form
F1(x) = x−a+2

2(b−a)+4
,

F2(x) = x−a
2(b−a)+4

,

P(X(0) = a, Y (0) = 1) = P(X(0) = b, Y (0) = 2) = 1
(b−a)+2

.

(3.86)

Using Proposition (3.1.1) we can write the average cost functional, defined by the

triple of functions (g(x), f(x, 1), f(x, 2)), as

H(a, b) = C(FL(a, b)) = Eg(x) + 2f(x, y) =

=

∫ b

a

g(x)d(F1(x) + F2(x)) + 2

∫ b

a

f(x, 1)dF1(x) + 2

∫ b

a

f(x, 2)dF2(x)+
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+g(a)F1(a) + g(b)(
1

2
− F2(b))

+2f(a, 1)F1(a) + 2f(b, 2)(
1

2
− F2(b)) =

=

∫ b
a
g(x) + f(x, 1) + f(x, 2)dx+ 2f(a, 1) + 2f(b, 2) + g(a) + g(b)

b− a+ 2
. (3.87)

Suppose that a ≤ b ≤ c, then we have an interesting property

H(a, c) =
H(a, b)(b− a+ 2) +H(b, c)(c− b+ 2)− 2H(b, b)

c− a+ 2
. (3.88)

Given numbers c ≥ 0 and A ≤ D assume that the cost functional is defined by

g(x) = cx, f(x, 1) = |A− x| and f(x, 2) = |D − x|. (3.89)

We classify the optimal policies for the introduced model with respect to the param-

eters.

Theorem 3.6.2. 1. If c = 2 then any couple 0 ≤ a ≤ b ≤ A is optimal.

2. If c > 2 then the optimal couple is a = b = 0.

3. If c < 2 and
√

8/c+ A− 2 ≤ D

then (a, b) = (A,
√

8/c+ A− 2).

4. If c < 2,
√

8/c+ A− 2 > D and 4
1+
√

4−2c
≥ D − A+ 2

then (a, b) = (A,D).

5. If c < 2,
√

8/c+ A− 2 > D and 4
1+
√

4−2c
< D − A+ 2

then (a, b) = ((D + 2)− (D − A)
√

2/(2− c), D).

Remark 3.6.3. For c = 2 the cost functional g(x) + 2f(x, 1) is not strictly convex,

therefore there is no contradiction with the theorem 3.3.8 stating the uniqueness of

the optimal policy.

The proof of the theorem is technical and involves long, basic mathematical com-

putations. For the sake of simplicity of the text, the proof is presented in Appendix

A.

3.7 Appendix I- Uniformisable Markov processes

Suppose that X(t) is a continuous-time Markov process (CTMP) with a countable

state space S and generator matrix Q = {qij}i,j∈S.
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Definition 3.7.1. If the elements of the diagonal satisfy

sup
i∈S

(−qii) <∞

we say that the Markov process is uniformisable.

Let γ ≥ supi(−qii) and define matrix P by

P = I +
1

γ
Q.

Suppose that Markov chain X̄n has state space S and transition probability matrix

P . Suppose that sequence {Tn}n≥0 represents arrival times of a Poisson process with

intensity γ and process X̂(t) changes its state at times Tn so that

X̂(Tn) = X̄n.

Theorem 3.7.1. The process X̂(t) is a CTMP and its transition law coincides with

the one of process X(t).

The proof of the theorem might be found in many sources for example in ([36]).

Therefore, a uniformisable CTMP can be viewed as a discrete-time Markov chain

with matrix P , where changes occur in accordance with Poisson process {Tn} with

intensity λ.

3.8 Appendix II - Young topology

This section follows section 43, Davis [23]. We introduce Young topology. Suppose

that U ⊂ Rk is compact and P(U) is the space of probability measures on it. The set

R of relaxed controls is the set of measurable functions ν : R+ → P(U). To introduce

topology on R we need an auxiliary space X. Let X = L1(R+, C(U)) the space of

functions f(t, u) measurable in t, continuous in u and satisfy

‖f‖ =

∫ ∞
0

max
u∈U
|f(t, u)|dt <∞.

X is a Banach space under this norm. Its dual space is X∗ = L∞(R+, C∗(U)). Space

C∗(U) consists of the set of signed measures on U under the total variation norm.

Therefore, X∗ consists of measurable functions ν : R+ → C∗(U)) such that

‖ν‖∗ = esssupt∈R+ ‖νt‖C∗ <∞.

69



Chapter 3: Exponential inter-arrival times

The weak∗ topology on X∗ is the topology which is equivalent to the following notion

of convergence:

νn → ν ⇐⇒ (f, νn)→ (f, ν) for all f ∈ X,

where

(f, ν) =

∫ ∞
0

∫
U
f(t, u)dνt(u)dt.

By Alaoglu Theorem unit ball B1 in X∗ is compact in the weak∗ topology. The last

thing to say is that R is a closed subset of B1, hence is compact.

Definition 3.8.1. The Young topology Y on R is the relative weak∗ topology of R
considered as a subset of B1.

Thus (R,Y) is a compact space.
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Fluid policies in semi-Markovian

environment

In this chapter we assume that the random environment {En} = {τn, Yn} satisfies

Assumption (SMRE-II) 2.2.2.3. Recall that this is a situation, in which sequence

{Yn} forms a Markov chain and inter-arrival times {τn+1}n≥0 = {τ(n+1,Yn)}n≥0 depend

on the value of Yn only.

In Chapter 3 we showed that under Assumption (MRE) 2.2.2.2 the optimal control

exists and belongs to the class of fluid policies. We have also proposed how to find the

optimal fluid control numerically. For the case of a semi-Markovian environment, we

cannot guarantee that the optimal control always belongs to the class of fluid policies.

Moreover, in Chapter 5, we provide a number of examples of random environment,

and establish the exact shape of the optimal controls, and it is obvious that these

controls do not belong to the class of fluid policies.

Although optimality in the class of fluid policies does not guarantee optimality

in the larger class of open-loop policies, finding the optimal control in the class of

fluid policies may be attractive for multiple reasons. Firstly, the approach is compu-

tationally tractable. To find the solution one needs to solve a system of differential

equations alike 3.55. Secondly, the fluid policies are simple and, therefore, easy to

implement in practice. One needs to have a system controller with only three modes:

”up” (a(s) = U), ”down” (a(s) = −B) and ”off” (a(s) = 0).

The idea behind the proof of the existence of the optimal solution in the class of

fluid policies follows from the basic topological fact: A continuous function attains its

minimum in a compact set. We show that the set of fluid policies is compact in `∞.

The main challenge then is to show that the average cost functional is continuous as

a function of the set of levels, which define the fluid policy. To achieve this we apply

the theory of regenerative processes and Markov chains to show that the limiting

and the stationary at embedded moments distributions exist and are continuous as

functions of control. The relevant definitions and theorems on both theories can be
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found respectively in Sections 4.8 and 4.9. Continuity is not a trivial property. For

example, it was studied for a single server queue in [37] and [60] and for various

stochastic models in [47].

4.1 Controlled process associated with a fluid pol-

icy is regenerative

The theory of regenerative processes is a powerful tool to establish the existence

of limiting distributions of stochastic processes under very mild assumptions. The

definition 4.8.2 of regenerative process formalises the idea that the process might be

split into i.i.d. cycles, so that the process starts over again in a new cycle and does

not depend completely on the past.

Recall that function k is defined by formula 2.9 as

k(x, y, t) = I{x≤y}min(x+ Ut, y) + I{x>y}max(x−Bt, y).

Then the controlled process corresponding to the fluid policy starting at x0 and

given by function l : Y → R+ is

X(0) = x0,

X(Tk + t) = k(X(Tk), l(Yk), t) for 0 < t < τk+1, k ≥ 1.

To prove the main results we need a further assumption on the random environ-

ment. Denote by ∆ = max(K/U,K/B), where K is the reasonable upper bound

defined in Section 2.5.

Assumption 4.1.1. Markov chain Yn is positive recurrent with atom {y0} ⊂ Y so

that

Ey0σ(y0) <∞, where (4.1)

σ(y0) = min{k ≥ 1 : Yk = y0} (4.2)

Moreover, inter-arrival times τ(n,Yn) are greater than ∆ with positive probability

P(τn,y0 > ∆) =: δ2 > 0. (4.3)

Remark 4.1.1. Since the state space Y of the Markov chain {Yn}n≥0 is finite, the

assumption on having a positive recurrent atom can be replaced by the assumption

on the chain to be irreducible, because an irreducible finite-state Markov chain is
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always positive recurrent.

Fix element y1 ∈ Y such that P(Yn+1 = y1|Yn = y0) =: δ1 > 0.

Theorem 4.1.2. Suppose that Assumption 4.1.1 holds. Then X(t) is a regenerative

process. Namely, there exists a renewal process Sn = Z1 + . . . + Zn, n = 1, 2, . . .

such that

• The post-Sn process {XSn+t}t≥0 is independent of {Sk}nk=1;

• The distribution of the post-Sn process is independent of n. In particular, ele-

ments {Zk}k≥2 are identically distributed;

• Increments Zn+1, Zn+2, . . . are independent of {Sk}nk=1. In particular, elements

{Zk}k≥1 are independent.

Moreover, the length of a typical cycle Zn, (n ≥ 2) has finite mean

EZn <∞.

Proof. Due to the independence of τn of Yn and Markov property of {Yn}n≥0 we have

P(τn > ∆, Yn = y1|Yn−1 = y0) = δ1 × δ2 = γ > 0.

Consider a sequence of events

{An}n≥0 = {ω : Yn+1 = y1, Yn = y0, τn+1 > ∆}n≥0.

Note that event An implies that the level l(y0) will be reached regardless of value

X(Tn), and therefore (X(Tn+1), Yn+1) = (l(y0), y1). Hence, if event An occurs, then

the post-Tn process does not depend on the past.

Denote by σ1, σ2, . . . consecutive occurrences of the events An:

σ1(ω) = min(k : I(Ak) = 1),

σi(ω) = min(k > σi−1 : I(Ak) = 1).

We also need

ηl,0(ω) = σl(ω),

ηl,1(ω) = min(k > σl : Yk = y0),

ηl,i(ω) = min(k > ηl,i−1 : Yk = y0).
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Denote by αk = σk − σk−1 the length of k-th cycle. Then sequence {αk}k ≥ 0 is i.i.d.

because

αk =d

Γk∑
i=1

ηl,i,

where Γk is a geometric random variable with parameter γ independent of future

values (τi, Yi)i>αk .

The structure of the cycles is depicted in the figure below.

σ1 σ2 σ30 η1,1 η1,2 η1,3 η2,1 η2,2 η2,3 η2,4 η3,1

Γ1 = 4 Γ2 = 5 Γ3 = 3

Figure 4.1: Regenerative cycles

Since {Yn} is Harris ergodic with positive recurrent atom {y0} we have E (ηi,j+1 − ηi,j) <
∞. Due to the independence of Γk of future values (τi, Yi)i>αk one may apply the

Wald’s identity

Eαk ≤
1

γ
Eη1,1 <∞. (4.4)

Consider sequence {Zi}i≥1 = {Tσi − Tσi−1
}i≥1. To show that {Zi}i≥2 is i.i.d. we

write

Zi = τσi−1+1 + τσi−1+2 + . . .+ τσi−1 + τσi (4.5)

=

Γi∑
k=1

ηi,k∑
j=ηi,k−1+1

τj. (4.6)

Cycles (τηi,k−1+1, τηi,k−1+2, τηi,k)i≥1 are i.i.d. Their number is equal to Γi and it is

independent of i.

Moreover, since Γi is independent of future values (τi, Yi)i>αk we can apply the

Wald’s identity

EZi = E
Γi∑
k=1

ηi,k∑
j=ηi,k−1+1

τj + τσi

= EΓi × E

 ηi,k∑
j=ηi,k−1+1

τj


≤ 1

γ
× Eαk ×max

y
Eτ1,y <∞. (4.7)
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Hence Tσk is a delayed renewal process Tσk = Tσ1 + Z2 + . . . + Zk. The process

X(t) is regenerative and Tσk is its imbedded renewal process.

4.2 Existence of the limiting distribution

To establish existence of the limiting distribution for regenerative processes X(t) we

require the following

Assumption 4.2.1. Elements {τn} have a spread-out distribution.

Definition 4.8.3 recalls the definition of the spread-out distribution. The assump-

tion about the spread-out distribution is a generalisation of the assumption of non-

periodicity, which is required for the stability of a Markov Chain.

Due to the formula 4.5, the assumption implies that the increments of the imbed-

ded renewal process Zn also have a spread-out distribution. Furthermore, the formula

4.7 shows that the length of the usual cycle has finite mean. The straightforward

application of Theorem 4.8.1 results in the following:

Proposition 4.2.1. Suppose that Assumptions 4.2.1 and 4.1.1 hold. Then the limit-

ing distribution of the process X(t) exists and is independent of the starting point x0.

The convergence holds in the sense of total variation distance.

We will refer to the limiting distribution as π1.

4.3 Imbedded Markov process and stationary dis-

tribution

The terminal charges f(x, y) are applied at imbedded epochs {Tn}n≥0. The stationary

distribution of the imbedded process {X(Tn)}n≥0 does not necessarily coincide with

the limiting distribution in continuous time π1. The property, when both distributions

are the same, is widely known as PASTA (Poisson arrivals see time averages) and

was first studied in [63]. Later it was studied for a variety of stochastic models,

see [57], [38], for example. In Chapter 3, we used reasoning similar to PASTA to

establish that the terminal and the running charges can be treated in a similar way,

if the environment is Markovian (satisfies Assumption MRE). In the semi-Markov

case PASTA property generally does not hold. For example, in papers [64], [17] it

was shown that for certain models the fact that the limiting and the stationary at

imbedded moments distributions coincide implies exponentiality of inter-arrival times

and this property is known as ANTI-PASTA.

In this section we establish sufficient conditions for the stationary distribution at

imbedded moments to exist.
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We will apply the following well known theorem, for the proof see [16].

Theorem 4.3.1. • Suppose that Xn is a discrete time-homogeneous Markov chain

defined on state space X with finite generated σ-algebra B(X ).

Then there exists a function W : X × [0, 1] → X and an i.i.d. sequence χ of

random variables uniformly distributed on the interval [0, 1] (the distribution is

denoted by U[0,1]), such that the representation holds almost surely

Xn+1 = W (Xn, χ) for all n ≥ 0.

• Suppose that a sequence of random variables {Xn}n≥0 is given by

Xn+1 = W (Xn, χ),

where elements χn≥0 are an i.i.d sequence.

Then {Xn} is a Markov chain.

By the definition of a fluid policy, we have

X(Tn+1) = k(X(Tn), l(Yn), τn,Yn).

We know that τn = τn,Yn is independent of {τk, Yk}k 6=n conditionally on Yn. Hence,

there exists a sequence {χn,1}n≥0 of i.i.d U [0, 1] variables and a function W1 such that

the representation holds

τn = W1(Yn, χn,1).

Markov property for chain {Yn} implies that there exists a function W2 and an

i.i.d. sequence {χn,2} of U [0, 1] variables such that

Yn+1 = W2(Yn, χn,2).

Therefore,

X(Tn+1, Yn+1) = (k(X(Tn), l(Yn),W1(Yn, χn)),W2(Yn, χ2)).

Hence, by applying theorem 4.3.1 we obtain that the chain (X(Tn), Yn) is Markov.

We explore necessary conditions for the process to be Harris ergodic. The Harris

ergodicity is a sufficient condition for the stationary probability measure to exist and

be unique. Moreover, the process converges to its stationary distribution in total

variation norm. The main definitions and statements on Harris chains can be found

in Section 4.9.
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Recall elements y0 and y1 from Section 4.1. To show that atom R = (l(y0), y1)

is a regenerative set for Markov chain {X(Tn), Yn}n≥0 it is enough to show that this

set is positive recurrent, since any one-point recurrent set is regenerative (see e.q.

Asmussen [3]). Let σ(R) = min(n > 0 : (X(Tn), Yn) ∈ R, (X(0), Y0) ∈ R). We show

that Eσ(R) <∞ holds.

Notation of the previous subsection allows us to write

Eσ(R) = E(σ2 − σ1) <∞,

where boundedness of the latter was established in Theorem 4.1.2.

Therefore, (X(Tn), Yn) is a Harris chain and the stationary measure exists and is

unique. We refer to it as π2.

To show that the convergence to the stationary distribution is in total variation

norm, one needs aperiodicity of the process. In our case, aperiodicity of chain Yn is a

sufficient condition.

4.4 Average cost functional represented through

stationary distributions

In this section we show that the average cost functional may be regarded as a function

of limiting distribution π1 and stationary distribution in imbedded moments π2. This

yields that the upper limit in definition of the average cost functional may be replaced

by the ordinary limit and does not depend on the initial state. We prove that the

convergence is in fact the a.s. convergence and not only the convergence of means.

Recall that νt = max{n : Tn ≤ t}.

Theorem 4.4.1. Suppose that Assumptions 4.1.1 and 4.2.1 hold.

Then for any x0 we have

• The a.s. convergence

1

t

(∫ t

0

g(X(s))ds+
νt∑
i=1

f(X(Ti), Yi−1)

)
a.s.−−→ Eπ1g(X(0)) +

Eπ2f(X(0), Y0)

Eτ1

;

• The L1 convergence

E

∣∣∣∣∣1t
(∫ t

0

g(X(s))ds+
νt∑
i=1

f(X(Ti), Yi−1)

)
−
(
Eπ1g(X(0)) +

Eπ2f(X(0), Y0)

Eτ1

)∣∣∣∣∣→ 0;
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• The convergence of means

E
1

t

(∫ t

0

g(X(s))ds+
νt∑
i=1

f(X(Ti), Yi−1)

)
→ Eπ1g(X(0)) +

Eπ2f(X(0), Y0)

Eτ1

.

In particular we have,

C(X) = lim
t→∞

E
1

t

(∫ t

0

g(X(s))ds+
νt∑
i=1

f(X(Ti), Yi−1)

)

= Eπ1g(X(0)) +
Eπ2f(X(0), Y0)

Eτ1

,

so that the limit exists and does not depend on the initial state X(0).

Proof. Both components can be treated in the same way since Markov chain (X(Tn), Yn)

is regenerative in discrete time. Therefore, we proceed with the component corre-

sponding to the continuous time only.

• The strong law of large numbers and the central limit theorem were proven for

averages of functions of regenerative processes in Whitt [61] and a proof is also

provided in Asmussen [3]. To apply the result, we need that to be sure that the

length of a usual cycle has finite mean

EZi <∞,

and that the maximal difference in values of the function f , namely random

variable

maxSn−1≤t<Sn(f(X(t))− f(XSn(t))) =: Vn has finite mean

EVn <∞.

The first was shown by formula 4.7. The second holds since the controlled

process does not leave compact set [0, K].

• Almost sure convergence and uniform integrability result in convergence in L1-

norm. Here, uniform integrability holds in even stronger sense of uniform dom-

inance, since process X(t) does not leave compact set [0, K] due to Assumption

2.5.1.

• Convergence of means follows from convergence in L1-norm.
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4.5 Topology on the set of level functions l

Each level function l : Y → [0, K] can be regarded as an element of space [0, K]Y .

Suppose that each of the copies [0, K] is embedded with standard Euclidian topology,

then due to Tikhonov’s theorem the product space is compact in the sense of the

product topology. The norm on the product space can be arbitrarily chosen from a

set of `p-norms

dp(l1, l2) =
∑
y∈Y

(|l1(y)− l2(y)|p)1/p, 1 ≤ p <∞ (4.8)

d∞(l1, l2) = max
y
|l1(y)− l2(y)|, (4.9)

though for our purposes the most convenient is d∞-metric.

4.6 Continuity of the limiting and the stationary

distribution with respect to the levels function

To establish the continuity we need to introduce the Lévy metric. We show that con-

vergence of the sets of levels in d∞-metric results in convergence of the corresponding

limiting (and stationary) distributions in the Lévy metric and also in the weak sense.

This holds as convergence in Lévy metric is equivalent to the weak convergence, see

[14], for example.

Definition 4.6.1. Let F,G : R → [0, 1] be two probability distribution functions.

Define the Lévy distance between them to be

L(F,G) := inf{ε > 0|F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε, for allx ∈ R}.

We use the same notation for random variables L(X1, X2) := L(F,G), where F

and G are their distribution functions.

The space of real-valued measures with Lévy metric is a complete metric space,

see for example [14].

Theorem 4.6.1. Suppose that controlled processes X1 and X2 are defined by sets of

levels {l1(y)} and {l2(y)} respectively and d∞(l1, l2) = δ. Then

1. If |X1(0)(ω)−X2(0)(ω)| ≤ δ a.s. then for any t > 0 the following holds

|X1(t)(ω)−X2(t)(ω)| ≤ δ a.s.
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2. For any X1(0) = x1 and X2(0) = x2 there exists t∗ > 0 such that, for t > t∗,

the following holds

|X1(t)(ω)−X2(t)(ω)| ≤ δ a.s. .

If random variables τi,y have unbounded support, then we can guarantee

Et∗ <∞.

3. Suppose that π1
1 and π2

1 are limiting distributions of the processes X1(0) and

X2(0), then

L(π1
1, π

2
1) ≤ δ.

4. Suppose π1
2 and π2

2 are stationary distributions of the first components of the

imbedded Markov chains {(X1(Tk), Yk)} and {(X2(Tk), Yk)}, then

L(π1
2, π

2
2) ≤ δ.

Proof. 1. For t :∈ [Tk, Tk+1] the following is true

|X1(t)(ω)−X2(t)(ω)| ≤ max (l1(Yk)− l2(Yk), X1(Tk)(ω)−X2(Tk)(ω)) ≤ δ.

Therefore,

|X1(Tk)(ω)−X2(Tk)(ω)| ≤ δ a.s.

yields

|X1(Tk+1)(ω)−X2(Tk+1)(ω)| ≤ δ a.s.

and then the statement will follow by induction.

2. Consider a sequence of events

Ck = {τk > max(K, x1, x2)/min(U,B)}.

If Ck occurs then X1(Tk) = X2(Tk) and Y1(k − 1) = Y2(k − 1) so

|X1(Tk)(ω)−X2(Tk)(ω)| = |l1(Yk)− l2(Yk)| ≤ δ.

Using the induction argument from the previous part of the theorem we obtain

that the similar holds for all t ≥ Tk.

Let σ(C) = min{K : I(Ak) = 1} for the number of the first successful event Ak.

Then σ(C) is a geometric random variable with mean 2
p(x1,x2)

, where p(x1, x2) =

infy P(τk,y > max(K, x1, x2)/min(U,B)). Therefore, Eσ(C) <∞.
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3. Proof of two last statements is similar. Convergence in the Lévy metric is

equivalent to the weak convergence. Since the differences between corresponding

elements of two sequences are uniformly bounded, the same applies to their weak

limits.

The straightforward corollary takes place

Corollary 4.6.2. Limiting distribution π1(l) and stationary distribution π2(l) are

continuous functions with respect to Lévy-Prokhorov metric.

Convergence of d∞(ln, l)→ 0 results in the weak convergence of the corresponding

distributions.

4.7 Continuity of the average cost functional with

respect to the levels function and the existence

of the optimal fluid policy

The very last step in this chapter is to combine the convergence results from Theorem

4.6.1 with the convergence result of Theorem 4.4.1 saying that the cost functional

is a function of the limiting and the stationary distributions. By superposition this

results in the following

Proposition 4.7.1. Average cost functional C is continuous as a function of levels

l(y) in `∞ topology.

Proof. Suppose that ln → l in d∞. Denote by π1(ln) and π2(ln) the corresponding

limiting and stationary processes of ln and by π1(l) and π2(l) those of l.

Then for any continuous function H : [0, K] → R+, for any ε > 0 there exists

N > 0 such that for n > N∣∣∣∣∫ K

0

H(x)dπi(ln)(x)−
∫ K

0

H(x)dπi(l)(x)

∣∣∣∣ ≤ ε.

Recall the representation of the cost functional from Theorem 4.4.1 as an integral

function of the limiting and the stationary distributions. Combining the last two

arguments we get that the average cost functional is continuous as a function of the

set of levels l.

The existence of the optimal fluid policy is a consequence of the compactness of

the set of level functions and the continuity of the cost functional with respect to this

topology.

We summarise our main findings of this chapter in the following theorem.

81



Chapter 4: Fluid policies in semi-Markovian environment

Theorem 4.7.2. If Assumptions 4.1.1 and 4.2.1 hold, then the optimal policy in the

class of fluid polices exist.

4.8 Appendix I - Regenerative processes

Definition 4.8.1.

Suppose that (Yi)i∈Z+ are independent positive valued random variables and that

(Yi)i>0 are identically distributed. Let S0 = Y0 and Sn = Sn−1 + Yn. Then {Sn} is

called a renewal process.

Definition 4.8.2.

We call stochastic process Xt regenerative if there exists a renewal process Sn =

Y0 + · · ·+ Yn such that the post-Sn process ((Yn+k)k∈N, (XSn+t)t>0) is independent of

Y0, . . . Yn and its distribution does not depend upon n. For Y0 = 0 we will call by

P0 and E0 the probability and expectation functionals of the corresponding renewal

process and refer to this scenario as 0-delayed case. If Y0 6= 0 then we refer to it as

delayed case.

Definition 4.8.3.

We say that distribution F is spread out if there exists an integer n and an absolutely

continuous distribution G so that

F ∗n(A) ≥ G(A).

We refer to distribution G as to the absolutely continuous component of distribution

F .

Theorem 4.8.1.

Assume that a (possibly delayed) regenerative process Xt has metric state space, right-

continuous paths and non-lattice cycle length distribution F with finite mean µ. Then

the limiting distribution, say Pe, of Xt exists and is given by

Eef(Xt) =
1

µ
E0

∫ Y

0

f(Xs)ds

Suppose that F is a spread-out distribution and the paths Xt(ω) are measurable then

the above convergence also holds in total variation distance sense.

4.9 Appendix II - Markov processes

This section summarises main definitions and theorems on the theory of Markov

chains, along the lines of [3]. Suppose that there is a given sequence of random
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variables {Xn}n≥0 on a common probability space Ω with Borel sigma-algebra B(Ω)

taking values in (S,B(S)). Denote by Fn the sigma-algebra generated by random

variables X0, . . . , Xn.

Definition 4.9.1.

Sequence Xn forms a Markov chain if

P{Xn+1 ∈ A|Fn} = P{Xn+1 ∈ A|Xn}.

We write Pr(x,A) = Px(Xr ∈ A), for r ≥ 0.

Definition 4.9.2.

Suppose that Xn is a Markov chain. Let τ(R) = inf{k ≥ 1 : Xk ∈ R}.

• Then a set R ∈ B(S) is called recurrent if τ(R) is measurable and Px(τ(R) <

∞) = 1.

• We call R a regeneration set if R is recurrent and for some r > 0 there exist

ε ∈ (0, 1) and probability measure λ on (Ω,B(Ω)) such that for all x ∈ R and

B ∈ B(Ω) the following holds

Pr(x,B) ≥ ελ(B).

• We call a Markov chain Xn with a regeneration set Harris recurrent.

• It is shown in Asmussen (p199, [3]) that a Harris chain is a regenerative process.

Denote by Y the length of the first cycle of the 0-delayed process. We call the

chain positive recurrent if EY <∞. We call the chain aperiodic if distribution

of Y is aperiodic.

• Aperiodic positive recurrent Harris chain is called Harris ergodic.

• A σ-finite measure ν is called stationary if ν ≥ 0, ν 6= 0 and

νPr = ν, for all r ≥ 0.

Theorem 4.9.1 (Theorems 3.5-6, [3]).

• For a Harris recurrent Markov chain the stationary probability measure exists

and is unique.

• For a Harris ergodic chain the Px distribution of Xn converges to its stationary

measure π in total variation norm.
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Other environments

In this chapter we consider three different options for inter-arrival times τn in a par-

ticular case, where the only randomness in the system comes from the inter-arrival

times. Thus, in terms of our model we assume that |Y| = 1. The primary goal of this

chapter is to present a multitude of possible behaviours of optimal policies depending

on the inter-arrival times. In all scenarios we assume that {τn} is i.i.d. sequence.

The scenarios are:

1. Markovian randomness, τn ∼ exp(λ), a subcase of MRE stochastic assumptions

(this case was studied thoroughly in Chapter 3);

2. Full predictability, τn ≡ T , where T is a constant known in advance;

3. Blend of predictability and randomness, τn = T + exp(λ), so-called shifted

exponential distribution.

We will describe optimal policies under all three scenarios, and establish a link between

them.

In the basic energy supply model 1.2 these scenarios model different behaviour of

the error process for the wind power prediction. We analyse them separately below.

Scenario 1: Markovian randomness

The memorylessness property of the exponential distribution suggests that regardless

of the time passed since the last shortfall, the distribution of the remaining waiting

time is unchanged. On the other hand, for all other distributions the following is true:

the time passed since the last shortfall provides an additional information about the

remaining waiting time. In theory, knowing this information, we might adapt the

policy with time. Although, under the considered scenario, there is no new infor-

mation available with time, which would suggest to adjust the policy. The intuitive

explanation was suggested by Stan Zachary and led to the result that the constant

policy is optimal in this case.
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The rigorous proof of this result is a straightforward corollary of Theorem 3.3.8 to

the case where |Y| = 1 and we summarised it as Corollary 3.3.12. The constant level

l∗ will be found in Section 5.1.

Scenario 2: Full predictability

This models the situation, in which the times between two consecutive shortfalls in

power supply (the errors in the wind power prediction) are known in advance.

Although the situation is not very realistic, we consider it for the sake of mathe-

matical completeness of the study. Chronologically, the results for deterministic inter

arrival times were amongst the first results obtained for the thesis.

Intuition suggests, that due to the lack of randomness the information available

to a decision maker at times Tn does not change with time. Hence, the policy should

be periodic. This intuition is formalised in Section 5.2. Moreover the exact equation

for the optimal policy is found.

Scenario 3: Blend of predictability and randomness

Under this scenario the time between shortfalls is known to be greater than T , but

after time T the waiting time does not provide any additional information. This

might model an English idiom ”the calm before the storm” or if we look form the

other side (and change the idiom a little bit) ”the calm after the storm”. The author

is neither expert in meteorology nor in the scientific base of English idioms, although

still believes that such a situation might be close to reality.

It is natural to expect a combination of behaviours of the two previous scenarios

for the optimal policy. In Section 5.3 we show that the intuition is indeed correct.

Three sections in this chapter deal are dedicated to scenarios (1-3) respectively.

5.1 Markovian randomness

The main purpose of this section is to find an expression for the constant l∗ from

Corollary 3.3.9. Recall that it is the constant, such that policy X(t) ≡ l∗ is time

average optimal policy. We show that such a policy is locally optimal and, hence, is

time average optimal. Since |Y| = 1 we may suppress y from notation and write f(x)

meaning f(x, y).

Theorem 5.1.1. The policy optimizing the time average cost functional is a constant

function l∗, where

l∗ = arg min
x

(g(x) + λf(x)) .

Proof. Due to Lemma 3.1.1 the one time-period cost functional can be expressed as

E
g(X(τ))

λ
+ f(X(τ)).
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Therefore l∗ = arg minx (g(x) + λf(x)) minimises the cost functional locally, and,

hence, is the optimal solution.

Note that the level l∗ does not depend on the ramp constraints. As we have just

shown the optimal level l∗ is the argminimum of the convex combination of convex

functions, hence the following corollary holds.

Corollary 5.1.2. • If λ→ 0 then l∗ → arg minx g(x) = 0.

• If λ→∞ then l∗ → arg minx f(x).

5.2 Full predictability

In this section we assume that the charges f(x, y) are applied at time instants {kT}k≥0

and that there is only one possible value of y so we may write f(x, y) = f(x). We

start by showing that the class of feasible policies can be replaced with a smaller class,

so that the optimal policy belongs to the new class. The search will be then done in

this class.

Suppose that s(v) is an arbitrary function. With the knowledge of values s(iT ),

i = 1, 2, . . . we construct a new function s̄(y), such that the value of the cost functional

not larger. Consider a set of non-negative valued continuous functions s̃ such that

s̃(iT ) = s(iT ) for all i and the left derivative of s̃ on each interval [iT, (i+ 1)T ] is an

increasing function with values in {−B, 0, U}. Take s̄ as the minimal function in this

set, so that

s̃(v) ≥ s̄(v) for all s̃(v) and y.

It is easy to see that the minimal function exists and is unique. The value of the

cost functional is smaller for s̄ than for s, because the part corresponding to the area

beneath the plot of the function is smaller, since s̄(v) ≤ s(v) for all v.

Therefore we restrict our search if the optimal policy to the class of functions

S = {s(v) : s′(v) is increasing , s′(v) ∈ {−B, 0, U} and s′(v) = 0 only if s(v) = 0}.

As we have just shown, the functions from class S can be uniquely defined and hence

parametrised by the sequence {s(iT )i∈Z}.
Now we proceed with exploring properties of the cost functional on a single period

of time [0, T ]. Due to the last observation, we work only with the functions from class

S restricted on interval [0, T ]. An alternative way to parametrise these functions by

(x, t), where s(0) = x, is presented in the picture below.
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x

x

0 t 0 t t∗ TT

An easy computation shows that

s(x, t, y) =

{
(x−By)+, if y < t

(x−Bt+ U(y − t))+, if y ≥ t.
(5.1)

Recall the classic definition from analysis, see [50] for the theory of convex functions.

Definition 5.2.1. Suppose that S ⊂ Rk. A function f : S → R is convex if for any

point x, y ∈ S and p ∈ [0, 1] so that px+ (1− p)y ∈ S holds

f(px+ (1− p)y) ≤ pf(x) + (1− p)f(y).

Lemma 5.2.1. Function I(x, t) =
∫ T

0
g(s(x, t, y))dy is convex.

Proof. To prove that a twice-differentiable function of two variables is convex, it is

enough to show that its Hessian is positive semidefinite. By definition

H(I) = det

(
I ′′xxI

′′
xt

I ′′txI
′′
tt

)
= I ′′xx × I ′′tt − I ′′2tx

Using the property of differentiation under the integral sign one gets

I ′x(x, t) =

∫ T

0

g′(s(x, t, y))s′x(x, t, y)dy,

I ′′xx(x, t) =

∫ T

0

g′′(s(x, t, y))(s′x(x, t, y))2 + g′(s(x, t, y))s′′xxdy =

=

∫ T

0

g′′(s(x, t, y))(s′x(x, t, y))2dy,

I ′t(x, t) =

∫ T

0

g′(s(x, t, y))s′t(x, t, y)dy,

I ′′tt(x, t) =

∫ T

0

g′′(s(x, t, y))(s′t(x, t, y))2 + g′(s(x, t, y))s′′ttdy =

87



Chapter 5: Other environments

=

∫ T

0

g′′(s(x, t, y))(s′t(x, t, y))2dy,

I ′′tx(x, t) =

∫ T

0

g′′(s(x, t, y))s′t(x, t, y)s′x(x, t, y) + g′(s(x, t, y))s′′txdy =

=

∫ T

0

g′′(s(x, t, y))s′t(x, t, y)s′x(x, t, y).

To obtain the inequality for the Hessian, we apply Hölder inequality to the functions

h1 = g′′(s(x, t, y))1/2(s′x(x, t, y)) and h2 = −g′′(s(x, t, y))1/2(s′t(x, t, y)). Functions h1

and h2 are correctly defined, because function g is convex. Therefore,

I ′′xx × I ′′tt − I ′′2tx =

∫ T

0

g′′(s(x, t, y))(s′x(x, t, y))2dy ×
∫ T

0

g′′(s(x, t, y))(s′t(x, t, y))2dy−

−
(∫ T

0

g′′(s(x, t, y))s′t(x, t, y)s′x(x, t, y)

)2

=

∫ T

0

h2
1(y)dy ×

∫ T

0

h2
2(y)dy −

(∫ T

0

h1(y)h2(y)dy

)2

≥ 0.

5.2.1 Optimisation for a single period problem

For further investigation, we introduce a family of additional one-period cost func-

tionals.

Definition 5.2.2. Suppose that p ∈ [0, 1] and let q = 1 − p. We define p-cost

functional by the equation

Cp(x, t) = pf(x) +

∫ T

0

g(s(x, t, y))dy + qf(x+ UT − (U +B)t).

The main idea behind the definition can be easily explained. We would like to

show that the solution of the average cost problem can be constructed as a solution

to a single period problem. Although, clearly for the single period cost functional

the optimal solution is to be at level 0 for as long as possible and then to increase at

maximal pace U . The original cost functional treats values x(0) and x(T ) significantly

different.

On the other hand, the optimal policy for the average cost optimisation problem

is shift preserving (X(s) = X(T + s)), so the end point for one period is the start one

for the next one.
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Thus, we try to balance the impact of the start and end points to the cost func-

tional. The p-cost functionals formalise this idea

Let us find a point t∗ such that s(x, t∗, T ) = x. We have s(x, t∗, T ) = x + UT −
(U +B)t∗ = x, and hence t∗ := UT

U+B
.

Theorem 5.2.2. 1. Function Cp(x, t) is strictly convex.

2. For each p ∈ [0, 1] there exist a unique pair (x(p), t(p)) minimising C(p, x, t).

3. Let I(x, t) =
∫ T

0
g(s(x, t, y))dy. Suppose that

f ′(0) + I ′x(0, t
∗) ≤ 0. (5.2)

(a) There exists x∗ such that for all p ∈ [0, 1] holds (Cp(x
∗, t∗))′x = 0.

(b) There exists p∗ such that (Cp∗(x
∗, t∗))′t = 0

(c) Policy s(x∗, t∗, y) is p∗-optimal.

4. Suppose that

f ′(0) + I ′x(0, t
∗) > 0.

Then a policy s(x∗, t∗, y) = s(0, t∗, y) ≡ 0 is optimal for functional Cp(x, t) for

any p.

5. Suppose that Sp∗(t) is a periodic extension of the function s(x(p∗), t(p∗), y) from

[0, T ] on R. If for another policy Ŝ(t) there exists ε > 0 such that

lim
n→∞

|{n : |Ŝ(nT )− Sp∗(nT )| ≥ ε}|
n

6= 0

then for the average cost functional C(S) holds

C(Ŝ) > C(Sp∗).

Proof. 1. Function Cp(x, t) is strictly convex as a convex combination of strictly

convex function f(x) and convex functions I(x, t) and f(s(x, t, T )).

2. Strictly convex function Cp(x, t) attains its minimum on compact set [0, arg min f(x)].

The optimal policy cannot lie above level arg min f(x), because g is an increasing

function.

3. (a) For the derivative with respect to t at point (x, t∗) one has

(Cp(x, t∗))′x = pf ′(x) +

∫ T

0

g′(s(x, t∗, y))s′x(x, t
∗, y)dy.
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This function is increasing in x. By taking its value at x0 = arg min f(x)

(Cp(x0, t
∗))′x =

∫ T

0

g′(s(x, t∗, y))s′x(x, t
∗, y)dy ≥ 0.

Therefore, if equation 5.2 holds then there exists x∗ such that (Cp(x∗, t∗))′x =

0.

(b) Now by taking a derivative with respect to t we have

(Cp(x
∗, t∗))′t = I ′t(x

∗, t∗)− (1− p)(U +B)f ′(x∗).

The derivative is decreasing with respect to p. We now substitute values

p = 0 and p = 1 to get

(C0(x∗, t∗))′t = −(U +B)f ′(x∗) > 0

(C1(x∗, t∗))′t = I ′t(x
∗, t∗) =

∫ T

0

g′(s(x, t∗, y))s′t(x, t
∗, y) ≤ 0.

Therefore, there exists p∗ such that (C∗p(x∗, t∗))′t = 0.

(c) The statement follows immediately, as we have found a zero of the gradient

of a strictly convex function.

4. Suppose that |Ŝ(nT )− Sp∗(nT )| ≥ ε then let

δ = min(f(x∗ − ε)− f(x∗), f(x∗)− f(x∗ + ε)) = f(x∗)− f(x∗ + ε),

since f is convex.

Denote by Sn the restriction of policy Ŝ on [nT, (n+ 1)T ], then

C(Ŝ) = lim inf
n→∞

∑n
0 Cp∗(Sn)

n

≥ lim inf
n→∞

∑n
0 Cp∗(s(x

∗, t∗)) + δI(|S(nT )− x∗| ≥ ε)

n

≥ Cp∗(x∗, t∗) + δ lim inf
n→∞

|{n : |Ŝ(nT )− Sp∗(nT )| ≥ ε}|
n

> Cp∗(x∗, t∗).
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5.2.2 Numeric example

In this subsections we find an exact solution for the optimal control for the basic

example. Recall that the terminal charge f is associated with the cost of purchasing

of nuclear power to cover the shortage in power supply and the continuous charge

corresponds to the additional level of conventional generation. It was discussed in

Section 2.4 that it is reasonable to take g(x) = c1x and f(x) = c2E(χ − x)+ for this

model.

We start by establishing formulas for area beneath function s(x, t, y) representing

the integral part of the cost functional. We explore different cases for the location

of the plot of the function s(x, t, y) and x-axis. They might intersect or may not. A

graphic proof is presented in figures below and then the result is summarised in Table

5.1.

S1 S2

S3 S1
S2

x

x−Bt

x−Bt+ U(T − t)

x−Bt+ U(T − t)x

0 t 0 t t∗ T

‘

‘

Table 5.1: Areas for functions s(x, t, y)

- x ≥ Bt x ≤ Bt

S1
Bt2

2
x2

2B

S2
U(T−t)2

2
(x+UT−(U+B)t)2

2U

S3 (x−Bt)T -

Recall a very useful representation

E(χ− x)+ =

∫ +∞

x

F̄ (y)dy.

Hence, the one period cost functional C(x, t) can be written as

C(x, t) = c2

∫ +∞

x+UT−(U+B)t

F̄ (y)dy+c1

{
Bt2

2
+ U(T−t)2

2
+ (x− (Bt)T ) , for x ≥ Bt

x2

2B
+ (x+UT−(U+B)t)2

2U
, otherwise.

(5.3)

To find the optimal policy it is sufficient to find p∗ and x∗ satisfying the assump-

tions of Theorem 5.2.2.

91



Chapter 5: Other environments

Theorem 5.2.3. Assume that p∗ = U
U+B

and x∗ ≥ 0 satisfies the equation

c2F (x) = c1 min

(
T,
x(U +B)

UB

)
. (5.4)

Then cost functional Cp∗(x, t) attains its minimum at point (x∗, t∗) and s(x∗, t∗, y)

(which was given by the equation 5.1) is the optimal policy for the time average cost

functional.

Proof. The function Cp(x, t) is differentiable and strictly convex as a function of x and

t. To find its minimum it is sufficient to find a zero of its gradient.

Firstly, we take a derivative with respect to t:

Cp(x, t)′t = c2(1−p)(U+B)F (x+UT−(U+B)t)+c1

{
(U +B)(t− T ), x ≥ Bt

(t(U+B)−UT−x)(U+B)
U

, x ≤ Bt.

(5.5)

At point (x, UT
U+B

) one gets:

C
(
x,

UT

U +B

)′
t

= c2(1− p)(U +B)F (x) + c1

{
−BT x ≥ BUT

U+B

−x(U+B)
U

x ≤ BUT
U+B

= c2(1− p)(U +B)F (x)− c1 min

(
BT,

x(U +B)

U

)
.

Secondly, by taking a derivative with respect to x one gets

C
(
x,

UT

U +B

)′
x

= −c2F (x) + c1

{
T x ≥ Bt

x(U+B)
BU

x ≤ Bt
(5.6)

Hence, at point (x, UT
U+B

) we have

Cp
(
x,

UT

U +B

)′
x

= −c2F (x) + c1 min

(
T,
x(U +B)

UB

)
.

If x∗ is a zero of derivative Cp(x, UT
U+B

)′x = 0, when x∗ satisfies equation 5.4. If we take

p∗ = U
U+B

, then

Cp∗
(
x∗,

UT

U +B

)′
t

= c2(1− p)(U +B)F (x)− c1 min

(
BT,

x(U +B)

U

)

= −(U +B)(1− p)Cp∗
(
x∗,

UT

U +B

)′
x

= 0.

Hence, we found p∗ such that p∗-cost functional attains its minimum at point (x∗, t∗).

So the policy corresponding to it is optimal.
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5.3 Blend of predictability and randomness

Suppose that Ti+1 = Ti+T+χi+1, where {χi}i≥0 are i.i.d. with increments distributed

as exp(λ). We refer to [Ti, Ti + T ] as deterministic phase and to [Ti + T, Ti+1] as

exponential phase. Recall class S introduced in Section 1

S = {s(v) : s′(v) is increasing , s′(v) ∈ {−B, 0, U} and s′(v) = 0 only if s(v) = 0}.

In this section we restrict our search only to the policies such that the corresponding

control process belongs to the class described below.

Definition 5.3.1.

A process X belongs to the class S if

• For any i holds X|[Ti,Ti+T ] ∈ S and

• There exists a constant level l ≥ 0 such that for all i ≥ 0 and for all s ∈
[Ti + T, Ti+1] holds X(s) = k(X(Ti + T ), l, s− Ti), where k is given by formula

2.9.

The figure below depicts controls of the class on a single period. Level l may or

may not be reached at times {Ti}i≥0.

Remark 5.3.1. The assumption to restrict our consideration to the class S is made in

order to simplify our analysis. However, there are strong arguments to support the

conjecture that the optimal policy belongs to the class S. First, it was proven earlier

in the Markovian case, where T = 0. Second, it will be justified in a few pages for

sufficiently large values of T . Third, suppose that an analogue of ACOE 3.6 holds

not only for Markovian environment, but also for the semi-Markovian setting with

Ti+1 = Ti + T + exp(λ). In our particular subcase there is no environment, so one

may write

λρ+ h(x) = inf
a∈A

[C(x, a) + Exh(Xa(T + χ1))] , (5.7)

where A is the class of feasible policies. Then there exists a convex relative value

function h minimising both sides of the equation. Recall that C(x, a) stands for the

average single period cost for a process which starts at x and evolves according to
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policy a. Since Ti+1 − Ti ∼ T + exp(λ) one may expand the expression for C(x, a) as

C(x, a) =

∫ T

0

g(Xa(t))dt+ E
(
λ−1g(Xa(T + χ1)) + f(Xa(T + χ1))

)
.

Therefore, the right-hand side of ACOE can be rewritten as

inf
a∈A

∫ T

0

g(Xa(t))dt+
(
Exλ−1g(Xa(T + χ1)) + f(Xa(T + χ1)) + h(Xa(T + χ1))

)
.

Function H(y) := λ−1g(y) + f(y) + h(y) is strictly convex and independent of the

starting point x. Hence, due to Lemma 3.3.2, the optimal trajectory goes to level

argminyH(y) as fast as possible, and stays there if the level is reached before the

beginning of the new deterministic period.

Finally, we expect that the proof of the conjecture is lengthy, but routine.

Time-homogeneous policies such that the controlled processes corresponding to

them belong to the class S can be parametrised in several ways. The most convenient

parametrisation for us is the following. The parametrisation is given by function

z : R+ → R+ and the level l such that for any x0 the policy starting at x0 at time Ti is

at level z(x0) at time Ti +T . We will work with subclass Sz of S, which is introduced

in the definition below. Its important properties are given following the definition.

Definition 5.3.2.

Class Sz contains all the processes of S for which z(x) ≡ c, where c is a positive

constant.

There are multiple benefits of solving the problem in the class Sz.

• Any policy of the subclass is parametrised by only two values (z, l). Hence,

finding pseudo-optimal controls is an easier problem to solve.

• The pseudo-optimal controls are very easy to implement in real-life.

• For any policy of class Sz, sequence {X(Ti + T )}k≥0 is stationary.

The outline for the rest of this section is as follows. In Subsection 5.3.1 we find an

exact solution for sufficiently large T . This solution belongs to the class Sz. Hence,

for this case the assumption regarding the existence of the unique level l for all time

periods is justified. In Subsection 5.3.2 we explain how to solve the problem in class

Sz even for smaller T . The problem reduces to a single period problem, which can be

easily solved. Finally, in Subsection 5.3.3, we show that policies of the class Sz can

only be optimal if the controlled process touches 0 level at every deterministic phase

[Ti, Ti + T ].
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5.3.1 Solution for large T

Intuition suggests that when T goes to infinity, the optimal process will stay at level

0 for long periods of time, leaving it only a short time prior to the beginning of an

exponential cycle and then returning to 0 as quickly as possible. To solve the problem

for large T we need a simple auxiliary lemma.

Lemma 5.3.2. Suppose that G is a strictly convex function with its minimum at l,

then for any s > 0 function G(k(x, l, s)) is a convex function of x.

Proof. For a fixed s one has

k(x, l, s) =


x+ Us , if x ≤ l − Us
l , if l − Us ≤ x ≤ l +Bs

x−Bs , if x ≥ l +Bs

Since convexity is local property and is preserved with respect to linear changes of

variables, we only need to check the convexity of the superposition G(k) at l − Us
and l + Bs. Suppose that x1 < x2 and p are such that px1 + (1− p)x2 = l − Us and

x1 < l − Us and x2 < l +Bs. Then

f(x1 + Us) > f(l),

since l is the function’s argminimum and, hence, the convexity holds

f(l) = f(k(l − Us, l, s)) < p(f(x1 + Us)) + qf(l).

In the following proposition we establish a lower bound for T such that the intuition

described in the beginning of the subsection holds. For this T we find the optimal

level l and prove the uniqueness of the optimal solution.

Proposition 5.3.3. Suppose that g(x) = x. Let L := argminx f(x) +λ−1x. Then the

following holds.

1. The optimal level l ≤ L.

2. For T ≥ L
B

+ L
U

the optimal level is l = argminx

(
f(x) + λ−1x+ x2

2U

)
and there

exists a unique constant t(x) = t.

Proof. 1. For any process X(t) the process X(t) = min(X(t), L) gives a lower value

for the single-period cost functional, and, hence for the average-cost functional

as well.
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2. Firstly we show that, for any process from the class S such that X(0) ≤ L and

X(T ) ≤ L, its trajectory hits level 0 during time interval [0, T ]. Suppose that

the process is given by (t(x), l) then if the process does not hit level 0 one has

X(T ) = x− (U +B)t(x) + UT ≥ UT ≥ U

(
L

B
+
L

U

)
> L.

Now consider a slightly different optimisation problem. As before χ1 is exponen-

tially distributed with parameter λ. Consider the optimisation problem on the

single interval [−L/U, χ + L/B]. Clearly, the trajectory of the optimal process

starts at 0 at unknown time −t and goes towards unknown level l at speed U ,

then remains at level l, if the level is reached, before time χ1. At time χ1, the

trajectory changes its direction and goes towards 0 at pace −B. As a function

of t and l the cost functional can be written as

Ĉ(t, l) =
Ut2

2
+ E

(
f(k(Ut, l, χ1)) + λ−1k(Ut, l, χ1) +

(k(Ut, l, χ1))2

2B

)
. (5.8)

Function f + λ−1x+ x2/2B is strictly convex. Let l∗ = argminx(f(x) + λ−1x+

x2/2B). Hence, we can apply Lemma 3.3.2 to obtain that for any fixed t the

minimum of the functional attains for process X(s) = k(Ut, l∗, s). Function

Ĉ(t, l∗) is strictly convex with respect to t. This holds due to Lemma 5.3.2 and

strict convexity of Ut2

2
. Therefore, there exists a unique t∗, such that (Ut∗, l) is

the optimal policy for the average cost functional.

5.3.2 Optimisation in class Sz
Recall that this class of policies is parametrised by the value z = X(Ti + T ) and the

level l. The process should evolve optimally in [Ti + T, Ti+1 + T ] so that the total

cost on this period is the smallest, given that the border values are fixed. Hence,

the average cost optimisation in class Sz can be replaced with the optimisation for a

single-period problem for interval [Ti + T, Ti + T + χi+1 + T ] in the class of policies

with X(Ti + T ) = X(Ti + T + χi+1 + T ). Denote by G(z1, z2) the minimal charges of

a functional ∫ T

0

X(s)ds, given X(0) = z1 and X(T ) = z2.

Then, the charges on a single period are:

E
∫ T+χ1

T

g(k(z, l, s))ds+ f(k(z, l, T + χ1)) +

∫ T+χ1+T

T+χ1

G(k(z, l, T + χ1), z)ds. (5.9)

We may find the distribution at time Ti+1 as a function of (z, l).
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Proposition 5.3.4. For any z < v < l holds

P(XTi+1
< v|XTi+T = z) = 1− exp

(
−λv − z

U

)
and

P(XTi+1
= l|XTi+T = z) = exp

(
−λl − z

U

)
.

Proof. One has

P(XTi+1
< v|XTi+T = z) = P(x+ Uχi+1 < v|XTi+T = z)

=P
(
χi+1 <

v − z
U

)
= 1− exp

(
−λv − z

U

)
.

The second equality is obtained in a similar way.

Take a random variable θ having distribution from the last proposition. Then the

total cost on this single period is equal to

E
(
f(θ) + λ−1θ)

)
+ EG(θ, z)ds.

This is a function of two variables (z, l) and its minimum may be found by using

direct differentiation or by applying any of numeric methods.

5.3.3 Properties of the optimal solution

In this section we suppose that the version of ACOE holds for our problem and that

there exists a convex relative value function h.

Lemma 5.3.5. Consider the optimisation problem on an interval of length T with

strictly convex terminal charge H(x) and continuous charge x so that the cost func-

tional is

L(X) =

∫ T

0

X(s)ds+H(X(T )).

Suppose that X(0) = x and find the optimal ”turning point” t(x). Then

1. t(x) is a non-decreasing function;

2. For the optimal solutions given by (z(x), l), starting at x1 and x2 holds

|z2 − z1| ≤ |x2 − x1|.

3. Suppose that for some x < l the optimal trajectory does not touch 0, then z(x)

cannot be constant.
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Proof. 1. Suppose that for some x = 0 the optimal policy stays at 0 till time t.

Then for all x ≥ Ut the optimal policy will start going upwards only at time t.

So t(x) is constant for x ≥ Ut. Consider cost functional L(X) as a function of

(x, t). It was calculated in Table 5.1 that for policies not touching level 0 the

cost functional is equal to

L(x, t) =
Bt2

2
+
U(T − t)2

2
+ (x−Bt)T +H(x+ UT − (U +B)t).

Turning point t(x) is the point where the derivative L′t(x, t) = 0. Note that

X(T ) ≤ argminsH(s). One has for x1 < x2 and the same t

L′t(x1, t) = −(B + U)T + (B + U)t− (U +B)H ′(x1 + UT − (U +B)t) (5.10)

> −(B + U)T + (B + U)t− (U +B)H ′(x2 + UT − (U +B)t),

because the derivative H ′ is an increasing function since H is convex. Then

the derivative L′t(x, t) is an increasing function of t with x fixed. Therefore if

L′t(x1, t(x1)) = 0 then L′t(x2, t(x1)) < 0 and hence for t(x2) we have t(x2) >

t(x1).

2. Suppose that x1 < x2 then as we have just shown t(x1) ≤ t(x2).

z1 = x1 + UT − (U +B)t(x1)

z2 = x2 + UT − (U +B)t(x2)

z2 − z1 = (x2 − x1) + (U +B)(t(x1)− t(x2)) ≥ (x2 − x1).

The last inequality is strict if t(x1) < t(x2).

3. Suppose that z is constant, then due to the last statement, for any x ≥ l the

optimal policy touches zero.

To apply the last statement of the theorem in our case we should take H(z) as

the remaining part of the cost for the process crossing level z at moment T , plus the

average of the relative value function h with respect to the value X(T + χ1).
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Proof of Theorem 3.6.2

Proof. The cost functional can be written as

H(a, b) =

∫ b
a
cx+ |A− x|+ |D − x|dx+ c(a+ b) + 2|A− a|+ 2|D − b|

b− 2 + 2
=

=
c(a+ b)

2
+

∫ b
a
|A− x|+ |D − x|dx+ 2|A− a|+ 2|D − b|

b− a+ 2
.

To open the absolute values we consider the following cases

1. a ≤ b ≤ A ≤ D,

2. A ≤ a ≤ b ≤ D,

3. a ≤ A ≤ b ≤ D,

4. a ≤ A ≤ D ≤ b,

5. A ≤ a ≤ D ≤ b,

6. A ≤ D ≤ a ≤ b.

First of all, notice that the optimal solution cannot be of types (4)-(6).

For a couple (a, b) of type (5) consider couple a∗ = A−(b−D) and b∗ = D−(a−A)

of type (3). We can see that b− a = b∗ − a∗ and∫ b
a
|A− x|+ |D − x|dx+ 2|A− a|+ 2|D − b|

b− a+ 2
=

=

∫ b∗
a∗
|A− x|+ |D − x|dx+ 2|A− a∗|+ 2|D − b∗|

b∗ − a∗ + 2
,

but a∗ + b∗ ≤ a+ b. Therefore H(a∗, b∗) ≤ H(a, b).

For couple (a, b) of the case (6) one takes couple a∗ = A − (b − D) and b∗ =

A− (a−D) of type (1), which gives a smaller value of the functional H. Finally, for a

couple (a, b) of type (4) can be replaced with couple (a∗, b∗) = (a−min(a,D− b), b−
min(a,D − b)) of type (3).

We use notation Mi for the minimal value in the case (i).
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1. In the case when a ≤ b ≤ A ≤ D the cost functional is equal to

H(a, b) =
c(a+ b)

2
+

∫ b
a
(A+D − 2x)dx+ 2(A+D)− 2(a+ b)

b− a+ 2
=

=
c(a+ b)

2
+

(b− a+ 2)(A+D)− (b+ a)(b− a+ 2)

b− a+ 2
=

= A+D +
( c

2
− 1
)

(a+ b).

The minimum value of the expression depends on the sign of c/2− 1.

• If c < 2 we get a = b = A and M1 = (c− 1)A+D,

• If c = 2 then an arbitrary couple 0 ≤ a ≤ b ≤ A is optimal and M1 = A+D,

• else if c > 2 then a = b = 0 and M1 = A+D.

2. If A ≤ a ≤ b ≤ D the cost functional is equal to

H(a, b) =
c(a+ b)

2
+

∫ b
a
(D − A)dx+ 2(D − A)− 2(b− a)

b− a+ 2
=

=
c(a+ b)

2
+

(b− a+ 2)(D − A)− 2(b− a+ 2) + 4

b− a+ 2
=

= D − A− 2 +
c(a+ b)

2
+

4

b− a+ 2
.

Function H(a, b) increases in a if b − a is fixed, therefore a = A. Taking a

derivative with respect to b one gets

∂H

∂b
=
c

2
− 4

(b− A+ 2)2
.

The derivative is an increasing function of b. At point b = A the sign of the

derivative coincides with the sign of c− 2. Therefore, if c ≥ 2, then the optimal

b = A, and since pair (A,A) belongs to the case (1) we have M2 ≥M1. If c = 2

one can see that M1 = M2.

If c < 2 we need to look for the zero of the derivative which attains at b =√
8/c + A − 2). It yields that b = min(D,

√
8/c + A − 2). As we have shown

before the optimal pair a = b = A for the case (1) given c < 2 belongs to the

case (2), hence M2 ≤M1.

3. In the case (3) the cost functional is equal to

H(a, b) =
c(a+ b)

2
+

∫ A
a
A+D − 2xdx+

∫ b
A
D − Adx+ 2(D − b) + 2(A− a)

b− a+ 2
=
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=
c(a+ b)

2
+

(A+D)(A− a)− A2 + a2 + (D − A)(b− A) + 2(A+D)− 2(a+ b)

b− a+ 2
=

= D − A− 2 +
c(a+ b)

2
+

(A− a+ 2)2

b− a+ 2
.

The derivative with respect to b is

∂H

∂b
=
c

2
− (A− a+ 2)2

(b− a+ 2)2
.

If c ≥ 2 then ∂H
∂b
≥ 0 and the function is everywhere increasing in b, thus optimal

b = A. Hence, the optimal couple belongs to the case (1) and the minimum is

not improved: M3 ≥M1.

If c < 2 then the derivative ∂H
∂b

increases in a and b and ∂H
∂b

(A,A) ≤ 0. Therefore,

for each a there exists b(a) =
√

8/c + A − 2 > A such that ∂H
∂b

(a, b(a)) = 0.

Notice, that it is possible to have b(a) > D, which doesn’t belong to the case

(3). Now we would like to choose the best of the couples (a, b(a)). Taking a

derivative with respect to a one gets

∂H

∂a
(a, b(a)) =

c

2
+
−2(A− a+ 2)(b(a)− a+ 2) + (A− a+ 2)2

(b(a)− a+ 2)2
=

=
(A− a+ 2)2

(b(a)− a+ 2)2
− 1 +

(A− a+ 2− (b(a)− a+ 2))2

(b(a)− a+ 2)2
=

=
(A− a+ 2)2 + (b(a)− A)2

(b(a)− a+ 2)2
− 1 =

= −2(A− a+ 2)(b(a)− A)

(b(a)− a+ 2)2
≤ 0.

Therefore, from the couples (a, b(a)) the biggest one would be the best. If

b(A) ≤ D then couple (A, b(A)) is the best one because for b > b∗(A) holds
∂H
∂b

(A, b) > 0.

If b(A) > D, let â be such that b(â) = D. The optimal couple (a, b) satisfies

a ≥ â and b = D, since the derivative with respect to b is increasing when

b ≤ b(â) = D. Finally,

∂H

∂a
(a,D) =

c

2
+
−2(A− a+ 2)(D − a+ 2) + (A− a+ 2)2

(D − a+ 2)2
=

=
c

2
− 1 +

(D − A)2

(D − a+ 2)2
.
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The derivative increases in a. Denote the zero of the derivative by a∗, then then

for optimal a = min(a∗, A). Let x∗ = 2
(D−a+2)

, then one can obtain the sign of
∂H
∂a

(A,D) by finding a positive solution of the equation

c

2
− 1 + (1− x)2 = 0⇐⇒ x =

1 +
√

4− 2c

2

Therefore, if x∗ ≥ x then a = A, otherwise a = a∗.

To finish we list all possible variants for optimal couples (a, b).

• If c ≥ 2 then M3 ≥M1 and the optimal solution belongs to case (1).

otherwise for c < 2:

• if
√

8/c+ A− 2 ≤ D then (a, b) = (A, b(A)) and M3 = M2 ≤M1

for c < 2 and
√

8/c+ A− 2 ≥ D can be two possible scenarios:

• if 4
1+
√

4−2c
≥ D − A+ 2 then (a, b) = (A,D) and M3 = M2 ≤M1,

• or if 4
1+
√

4−2c
< D − A+ 2 then (a, b) = (a∗, D) and M3 ≤M2 ≤M1.

By checking all possible options we obtained that the global minimum is either M1 if

c ≥ 2, or M3 otherwise.

102



Appendix B

Matlab code

1 % INSERT TRANSITION MATRIX

2 Q=[−2 1 1 ; 1 −2 1 ; 1 1 −2];

3 Qh=[Q [ 1 ; 1 ; 1 ] ] ;

4 b=[0 0 0 1 ] ’ ;

5 pi=Qh’\b ;

6 % INSERT TERMINAL CHARGES

7 A1=1;

8 A2=2;

9 A3=5;

10 cos t1=@( x ) x + 2 .∗max(A1−x , 0 ) ;

11 cos t2=@( x ) x + 2 .∗max(A2−x , 0 ) ;

12 cos t3=@( x ) x + 2 .∗max(A3−x , 0 ) ;

13 f o r k = 0 . 3 : 0 . 1 : 0 . 3

14 B=k ;

15 U=k ;

16

17 %−−−−−−−−−−−−−−−−−−−−−−−−
18 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 m1=[−1/B 0 0 ; 0 1/U 0 ; 0 0 1/U ] ;

20 m2=[−1/B 0 0 ; 0 −1/B 0 ; 0 0 1/U ] ;

21 Q1=m1∗Q’ ;

22 Q2=m2∗Q’ ;

23 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 [ ve1 , va1 ]= e i g (Q1) ; % e i g e n v e c t o r s are columns

25 [ ve2 , va2 ]= e i g (Q2) ;

26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27

28 Y11=@( x ) exp ( ( va1 (1 , 1 ) )∗x ) ;
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29 Y12=@( x ) exp ( ( va1 (2 , 2 ) )∗x ) ;

30 Y13=@( x ) exp ( ( va1 (3 , 3 ) )∗x ) ;

31

32 Y21=@( x ) exp ( ( va2 (1 , 1 ) )∗x ) ;

33 Y22=@( x ) exp ( ( va2 (2 , 2 ) )∗x ) ;

34 Y23=@( x ) exp ( ( va2 (3 , 3 ) )∗x ) ;

35

36 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 m=10000;

38 s o l =[A1 A1 A1 ] ;

39 f o r l 1=A1:10ˆ(−1) : A3

40 f o r l 2=l 1 :10ˆ(−1) : A3

41 f o r l 3=l 2 :10ˆ(−1) : A3

42 l =[ l 1 l 2 l 3 ] ;

43 bot=[ve1 ( : , 1 ) .∗Y11( l 1 ) ve1 ( : , 2 ) .∗Y12( l 1 ) ve1 ( : , 3 ) .∗
Y13( l 1 ) ] ;

44 top=[ve2 ( : , 1 ) .∗Y21( l 3 ) ve2 ( : , 2 ) .∗Y22( l 3 ) ve2 ( : , 3 ) .∗Y23( l 3 ) ] ;

45 mid1=[ve1 ( : , 1 ) .∗Y11( l 2 ) ve1 ( : , 2 ) .∗Y12( l 2 ) ve1 ( : , 3 ) .∗Y13( l 2 ) ] ;

% BC’ s

46 mid2=[ve2 ( : , 1 ) .∗Y21( l 2 ) ve2 ( : , 2 ) .∗Y22( l 2 ) ve2 ( : , 3 ) .∗Y23( l 2 ) ] ;

47 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 s i x =[bot z e r o s (3 , 3 ) ; z e r o s (3 , 3 ) top ] ;

49 co l 1=ze ro s (5 , 1 ) ;

50 e i g h t s i x =[ s i x [−1; co l 1 ] [ c o l 1 ; −1 ] ] ;

51 bc1=[ mid1 ( 1 , : ) ; mid1 ( 3 , : ) ] ;

52 bc2=[ mid2 ( 1 , : ) ; mid2 ( 3 , : ) ] ;

53 e i gh t =[ e i g h t s i x ; bc1 −bc2 z e ro s (2 , 2 ) ] ;

54

55 y=[0 0 0 p i (1 ) p i (2 ) 0 0 0 ] ’ ;

56

57 c=e i gh t \y ;

58 % c11=c (1) , c12=c (2 ) , c13=c (3 ) , c21=c (4 ) , c22=c (5) , c23=c (6 ) ,

p1=c (7 )

59 % q3=pi (3 )−p3=c (8)=>

60 p1=c (7) ;

61 p3=pi (3 )−c (8 ) ;

62 p2=−(mid1 (2 , 1 ) ∗c (1 )+mid1 (2 , 2 ) ∗c (2 )+mid1 (2 , 3 ) ∗c (3 )−mid2 (2 , 1 ) ∗c

(4 )−mid2 (2 , 2 ) ∗c (5 )−mid2 (2 , 3 ) ∗c (6 ) ) ;

63
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64 F11=@( x ) c (1 ) ∗ve1 (1 , 1 ) ∗Y11( x )+c (2 ) ∗ve1 (1 , 2 ) ∗Y12( x )+c (3 ) ∗ve1

(1 , 3 ) ∗Y13( x ) ;

65 F12=@( x ) c (1 ) ∗ve1 (2 , 1 ) ∗Y11( x )+c (2 ) ∗ve1 (2 , 2 ) ∗Y12( x )+c (3 ) ∗ve1

(2 , 3 ) ∗Y13( x ) ;

66 F13=@( x ) c (1 ) ∗ve1 (3 , 1 ) ∗Y11( x )+c (2 ) ∗ve1 (3 , 2 ) ∗Y12( x )+c (3 ) ∗ve1

(3 , 3 ) ∗Y13( x ) ;

67 F21=@( x ) c (4 ) ∗ve2 (1 , 1 ) ∗Y21( x )+c (5 ) ∗ve2 (1 , 2 ) ∗Y22( x )+c (6 ) ∗ve2

(1 , 3 ) ∗Y23( x ) ;

68 F22=@( x ) c (4 ) ∗ve2 (2 , 1 ) ∗Y21( x )+c (5 ) ∗ve2 (2 , 2 ) ∗Y22( x )+c (6 ) ∗ve2

(2 , 3 ) ∗Y23( x ) ;

69 F23=@( x ) c (4 ) ∗ve2 (3 , 1 ) ∗Y21( x )+c (5 ) ∗ve2 (3 , 2 ) ∗Y22( x )+c (6 ) ∗ve2

(3 , 3 ) ∗Y23( x ) ;

70 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71 G11=@( x ) c (1 ) ∗ve1 (1 , 1 ) ∗va1 (1 , 1 ) ∗Y11( x )+c (2 ) ∗ve1 (1 , 2 ) ∗va1 (2 , 2 )

∗Y12( x )+c (3 ) ∗ve1 (1 , 3 ) ∗va1 (3 , 3 ) ∗Y13( x ) ;

72 G12=@( x ) c (1 ) ∗ve1 (2 , 1 ) ∗va1 (1 , 1 ) ∗Y11( x )+c (2 ) ∗ve1 (2 , 2 ) ∗va1 (2 , 2 )

∗Y12( x )+c (3 ) ∗ve1 (2 , 3 ) ∗va1 (3 , 3 ) ∗Y13( x ) ;

73 G13=@( x ) c (1 ) ∗ve1 (3 , 1 ) ∗va1 (1 , 1 ) ∗Y11( x )+c (2 ) ∗ve1 (3 , 2 ) ∗va1 (2 , 2 )

∗Y12( x )+c (3 ) ∗ve1 (3 , 3 ) ∗va1 (3 , 3 ) ∗Y13( x ) ;

74 G21=@( x ) c (4 ) ∗ve2 (1 , 1 ) ∗va2 (1 , 1 ) ∗Y21( x )+c (5 ) ∗ve2 (1 , 2 ) ∗va2 (2 , 2 )

∗Y22( x )+c (6 ) ∗ve2 (1 , 3 ) ∗va2 (3 , 3 ) ∗Y23( x ) ;

75 G22=@( x ) c (4 ) ∗ve2 (2 , 1 ) ∗va2 (1 , 1 ) ∗Y21( x )+c (5 ) ∗ve2 (2 , 2 ) ∗va2 (2 , 2 )

∗Y22( x )+c (6 ) ∗ve2 (2 , 3 ) ∗va2 (3 , 3 ) ∗Y23( x ) ;

76 G23=@( x ) c (4 ) ∗ve2 (3 , 1 ) ∗va2 (1 , 1 ) ∗Y21( x )+c (5 ) ∗ve2 (3 , 2 ) ∗va2 (2 , 2 )

∗Y22( x )+c (6 ) ∗ve2 (3 , 3 ) ∗va2 (3 , 3 ) ∗Y23( x ) ;

77 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78

79

80 %x=l 1 :10ˆ(−6) : l 3 ;

81 F1=@( x ) (x>l 2 ) . ∗ ( F21 ( x )−F11 ( x ) )+ F11 ( x ) ;

82 F2=@( x ) (x>l 2 ) . ∗ ( F22 ( x )−F12 ( x ) )+ F12 ( x ) ;

83 F3=@( x ) (x>l 2 ) . ∗ ( F23 ( x )−F13 ( x ) )+ F13 ( x ) ;

84

85 %−−−−−−−−−−−−−−−−−−−−−−−−
86 part11=@( x ) cos t1 ( x ) .∗G11( x ) ;

87 part12=@( x ) cos t2 ( x ) .∗G12( x ) ;

88 part13=@( x ) cos t3 ( x ) .∗G13( x ) ;

89 part21=@( x ) cos t1 ( x ) .∗G21( x ) ;

90 part22=@( x ) cos t2 ( x ) .∗G22( x ) ;
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91 part23=@( x ) cos t3 ( x ) .∗G23( x ) ;

92 %−−−−−−−−−−−−−−−−−−−−−−−−
93 % plo t (x , part11 ( x ) )

94 i 11=i n t e g r a l ( part11 , l1 , l 2 ) ;

95 i 12=i n t e g r a l ( part12 , l1 , l 2 ) ;

96 i 13=i n t e g r a l ( part13 , l1 , l 2 ) ;

97 i 21=i n t e g r a l ( part21 , l2 , l 3 ) ;

98 i 22=i n t e g r a l ( part22 , l2 , l 3 ) ;

99 i 23=i n t e g r a l ( part23 , l2 , l 3 ) ;

100 %−−−−−−−−−−−−−−−−−−−−−−−−
101 r e s=i11+i12+i13+i21+i22+i23+p1 .∗ cos t1 ( l 1 ) +p2 .∗ cos t2 ( l 2 )+p3 .∗

cos t3 ( l 3 ) ;

102 %s t r = ’The value o f the cur r ent i t e r a t i o n i s :\n ’ ;

103 %f p r i n t f ( s t r )

104 i f r e s < m

105 m=r e s ;

106 s o l = [ l 1 l 2 l 3 ] ;

107 %f p r i n t f ( ’%d , %d , %d , %d , \n ’ , l1 , l2 , l3 , m)

108 end

109 end

110

111 end

112 end

113 %s t r = ’The value f o r the cur r ent B i s : ’ ;

114 f p r i n t f ( ’%d , %d , %d , %d , \n ’ , k , s o l (1 ) , s o l (2 ) , s o l (3 ) )

115 end
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[7] Bäuerle, N. Discounted stochastic fluid programs. Mathematics of Operations

Research 26, 2 (2001), 401–420.

[8] Bean, N. G., and OReilly, M. M. Performance measures of a multi-layer

markovian fluid model. Annals of Operations Research 160, 1 (2008), 99–120.

[9] Bellman, R. Dynamic programming and lagrange multipliers. Proceedings of

the National Academy of Sciences 42, 10 (1956), 767–769.

[10] Bellman, R. A markovian decision process. Tech. rep., DTIC Document, 1957.

[11] Bertsekas, D. P. Dynamic programming and optimal control, vol. 1. Athena

Scientific Belmont, MA, 1995.

[12] Bertsekas, D. P. Nonlinear programming.

107



BIBLIOGRAPHY

[13] Bertsekas, D. P., Shreve, S. E., and Scientific, A. Stochastic optimal

central: T he discretetime case.

[14] Billingsley, P. Convergence of probability measures. John Wiley & Sons,

2013.

[15] Blackwell, D. Discounted dynamic programming. The Annals of Mathemat-

ical Statistics 36, 1 (1965), 226–235.

[16] Borovkov, A. A., and Foss, S. G. Stochastically recursive sequences and

their generalizations. Siberian Advances in Mathematics 2, 1 (1992), 16–81.
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