11,266 research outputs found

    An Almost Optimal Algorithm for Computing Nonnegative Rank

    Get PDF
    Here, we give an algorithm for deciding if the nonnegative rank of a matrix M of dimension m \times n$ is at most r which runs in time (nm)[superscript O(r2)]. This is the first exact algorithm that runs in time singly exponential in r. This algorithm (and earlier algorithms) are built on methods for finding a solution to a system of polynomial inequalities (if one exists). Notably, the best algorithms for this task run in time exponential in the number of variables but polynomial in all of the other parameters (the number of inequalities and the maximum degree). Hence, these algorithms motivate natural algebraic questions whose solution have immediate algorithmic implications: How many variables do we need to represent the decision problem, and does M have nonnegative rank at most r? A naive formulation uses nr + mr variables and yields an algorithm that is exponential in n and m even for constant r. Arora et al. [Proceedings of STOC, 2012, pp. 145--162] recently reduced the number of variables to 2r[superscript 2] 2[superscript r], and here we exponentially reduce the number of variables to 2r[superscript 2] and this yields our main algorithm. In fact, the algorithm that we obtain is nearly optimal (under the exponential time hypothesis) since an algorithm that runs in time (nm)[superscript o(r)] would yield a subexponential algorithm for 3-SAT [Proceedings of STOC, 2012, pp. 145--162]. Our main result is based on establishing a normal form for nonnegative matrix factorization---which in turn allows us to exploit algebraic dependence among a large collection of linear transformations with variable entries. Additionally, we also demonstrate that nonnegative rank cannot be certified by even a very large submatrix of M, and this property also follows from the intuition gained from viewing nonnegative rank through the lens of systems of polynomial inequalities.National Science Foundation (U.S.) (Computing and Innovation Fellowship)National Science Foundation (U.S.) (grant DMS-0835373

    Computing approximate PSD factorizations

    Get PDF
    We give an algorithm for computing approximate PSD factorizations of nonnegative matrices. The running time of the algorithm is polynomial in the dimensions of the input matrix, but exponential in the PSD rank and the approximation error. The main ingredient is an exact factorization algorithm when the rows and columns of the factors are constrained to lie in a general polyhedron. This strictly generalizes nonnegative matrix factorizations which can be captured by letting this polyhedron to be the nonnegative orthant.Comment: 10 page

    Generalized Separable Nonnegative Matrix Factorization

    Full text link
    Nonnegative matrix factorization (NMF) is a linear dimensionality technique for nonnegative data with applications such as image analysis, text mining, audio source separation and hyperspectral unmixing. Given a data matrix MM and a factorization rank rr, NMF looks for a nonnegative matrix WW with rr columns and a nonnegative matrix HH with rr rows such that M≈WHM \approx WH. NMF is NP-hard to solve in general. However, it can be computed efficiently under the separability assumption which requires that the basis vectors appear as data points, that is, that there exists an index set K\mathcal{K} such that W=M(:,K)W = M(:,\mathcal{K}). In this paper, we generalize the separability assumption: We only require that for each rank-one factor W(:,k)H(k,:)W(:,k)H(k,:) for k=1,2,…,rk=1,2,\dots,r, either W(:,k)=M(:,j)W(:,k) = M(:,j) for some jj or H(k,:)=M(i,:)H(k,:) = M(i,:) for some ii. We refer to the corresponding problem as generalized separable NMF (GS-NMF). We discuss some properties of GS-NMF and propose a convex optimization model which we solve using a fast gradient method. We also propose a heuristic algorithm inspired by the successive projection algorithm. To verify the effectiveness of our methods, we compare them with several state-of-the-art separable NMF algorithms on synthetic, document and image data sets.Comment: 31 pages, 12 figures, 4 tables. We have added discussions about the identifiability of the model, we have modified the first synthetic experiment, we have clarified some aspects of the contributio

    Factoring nonnegative matrices with linear programs

    Get PDF
    This paper describes a new approach, based on linear programming, for computing nonnegative matrix factorizations (NMFs). The key idea is a data-driven model for the factorization where the most salient features in the data are used to express the remaining features. More precisely, given a data matrix X, the algorithm identifies a matrix C such that X approximately equals CX and some linear constraints. The constraints are chosen to ensure that the matrix C selects features; these features can then be used to find a low-rank NMF of X. A theoretical analysis demonstrates that this approach has guarantees similar to those of the recent NMF algorithm of Arora et al. (2012). In contrast with this earlier work, the proposed method extends to more general noise models and leads to efficient, scalable algorithms. Experiments with synthetic and real datasets provide evidence that the new approach is also superior in practice. An optimized C++ implementation can factor a multigigabyte matrix in a matter of minutes.Comment: 17 pages, 10 figures. Modified theorem statement for robust recovery conditions. Revised proof techniques to make arguments more elementary. Results on robustness when rows are duplicated have been superseded by arxiv.org/1211.668
    • …
    corecore