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Abstract
We give an algorithm for computing approximate PSD factorizations of nonnegative matrices.
The running time of the algorithm is polynomial in the dimensions of the input matrix, but
exponential in the PSD rank and the approximation error. The main ingredient is an exact
factorization algorithm when the rows and columns of the factors are constrained to lie in a
general polyhedron. This strictly generalizes nonnegative matrix factorizations which can be
captured by letting this polyhedron to be the nonnegative orthant.
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1 Introduction

Matrix factorization is a fundamental operation that has importance for diverse areas of
mathematics and engineering such as machine learning, communication complexity, polyhedral
combinatorics, statistical inference, and probability theory, to name a few. The problem can
be stated quite simply as follows:

Given two sequences of sets K = {Kd}d∈N and K′ = {K ′d}d∈N where Kd,K
′
d are

subsets of Rd for all d ∈ N, and a matrix M ∈ Rn×m, find a factorization M = UV

where U ∈ Rn×d and V ∈ Rd×m, and each row of U is in Kd and each column of V is
in K ′d.

Such a factorization is called a K,K′ factorization. The smallest d ∈ N such that such a
factorization exists is called the K,K′ rank. Most of the literature on this problem focuses
on the case when the matrix M is nonnegative. In this context, when Kd = K ′d = Rd+,
the factorization is called nonnegative factorization, and the corresponding rank is called
nonnegative rank. When Kd = K ′d are the cone of d× d PSD matrices, the factorization is
known as a PSD factorization and the corresponding rank is called the PSD rank. These
notions will be the object of study in this paper. A more general notion is that of cone
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2:2 Computing Approximate PSD Factorizations

factorizations, where K is a family of cones and K′ is the family of corresponding dual cones;
see [11].

One of the most elegant applications of such factorizations arises in combinatorial
optimization. A very common technique in approaching combinatorial optimization problems
is to formulate the problem as a linear programming problem. However, a naive formulation
of a problem may result in a polytope (the feasible region of the LP) with a large number
of facets (exponentially many in the size of the problem), making it intractable to actually
solve. One way around this is to try to express the polytope as the projection of a higher
dimensional convex set. In particular, suppose that it can be expressed as the projection
of either a higher dimensional polytope (LP), the feasible region of an SDP, or the feasible
region of a more general convex optimization problem. Furthermore suppose that the number
of “extra” dimensions is polynomial in the size of the original problem, and the description
of the higher-dimensional convex optimization problem is also polynomial in the size of the
original problem (i.e. there are not an exponential number of facets). Then we can efficiently
solve the higher-dimensional problem, which means we can efficiently solve the original LP,
even if its size makes solving it directly intractable.

It turns out that the smallest size of such a reformulation is a direct function of the
nonnegative rank (for LP reformulations), the PSD rank (for SDP reformulations), or more
general cone factorization ranks of the so-called slack matrix of the original LP formulation.
The actual factorization can be used to explicitly find the smallest reformulation. This line
of research started with a seminal paper by Yannakakis [24], and has recently seen a flurry
of research activity – see the surveys [15, 7] and [10, 9, 21, 6, 16, 22, 17, 5] for some of the
most recent breakthroughs.

In machine learning applications the actual factorization is perhaps more important
than the value of the rank, as this factorization is key to certain text mining, clustering,
imaging and bioinformatics applications. A key algorithmic question is computing such a
factorization. Unfortunately, this question is computationally challenging – even computing
the nonnegative rank was proved to be NP-hard by Vavasis [23].

A recent algorithmic breakthrough was achieved by Arora et al [1], where they showed
that computing nonnegative factorizations can be done in polynomial time (in the dimensions
of the input matrix) for the family of matrices with fixed (constant) nonnegative rank. The
running time of their algorithm was doubly exponential in the nonnegative rank, and this
was later improved to a singly exponential algorithm by Moitra [18], which he showed to be
nearly optimal under the Exponential Time Hypothesis. The analogous question for PSD
factorizations is largely open (the question is also posed in the survey [8]):

I Question 1. Let r ∈ N be a constant. Does there exist an algorithm which, given any
n×m nonnegative matrix M with PSD rank r, computes a PSD factorization of rank r in
time polynomial in n,m?

Our main result is a polynomial time algorithm to compute approximate factorizations of
matrices with fixed PSD rank. We consider the space Sr of r × r symmetric matrices, and
the cone of r × r PSD matrices in this space, denoted by Sr+. Given any matrix M ∈ Rn×m,
we use the notation ‖M‖∞ := maxi,j |Mij |.

More precisely, we prove:

I Theorem 2. There exists an algorithm which, given any ε > 0 and any n×m nonnegative
matrix M with PSD rank r, computes a factorization M = UV such that each row of U and
each column of V are in Sr+ such that

‖M − UV ‖∞ ≤ ε‖M‖∞
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and has runtime O((4mn)f1(ε,r)(2mn+ f2(ε, r))f3(ε,r)) + (m+n)(r3 + r2 log2 r log( 1
ε )), where

f1(ε, r) = r2(ra( 1
ε )
rb)r2+2r2

, f2(ε, r) = 4r2(ra( 1
ε )
rb)r2+1, and f3(ε, r) = 2r2(ra( 1

ε )
rb)r2 for

some universal constants a and b. Note that f1(ε, r), f2(ε, r) and f3(ε, r) are independent
of m and n, so the runtime becomes polynomial in the dimensions of M if r, ε are fixed
constants.

Approximate PSD factorizations can be useful for reformulation questions in combinatorial
optimization, where one seeks approximations of the original polyhedron using SDPs, as
opposed to an exact reformulation – see [12] for results along this direction. In particular,
approximate factorizations of the slack matrix of a polytope can sometimes be used to
compute “inner" and “outer" approximations of the polytope, each of which can then be
optimized over in order to give an approximation to the true optimal solution of the polytope.
However, in [12], these approximations are guaranteed only when the corresponding matrix
factorization error is calculated in certain induced matrix norms (in particular the ‖ · ‖1,2
and ‖ · ‖1,∞ norms). Consequently, it is unclear if the approximate factorizations generated
by Theorem 2 give similar results, primarily since our notion of an approximate factorization
involves the ‖ · ‖∞-norm rather than the appropriate induced matrix norms. Thus while our
results do not directly imply any new approximation algorithms, they do provide ideas on
how to go beyond nonnegative factorizations to PSD or more general conic factorizations, if
one admits approximate factorizations as opposed to exact ones.

1.1 Technical overview
Our algorithm for Theorem 2 is inspired by ideas behind the algorithm in Arora et al [1].
However, there are some important differences. Arora et al’s algorithm uses properties of the
nonnegative orthant that do not hold for the cone of PSD matrices. To overcome this difficulty,
we need to approximate the PSD cone by a polyhedral cone obtained by intersecting enough
tangent halfspaces. We then generalize Arora et al’s techniques to compute factorizations
inside a general polyhedron, as opposed to just the nonnegative orthant. The nonnegative
orthant is a very special polyhedron, and many of its special properties are utilized in the
algorithm of Arora et al. We have to use interesting techniques from polyhedral theory
(such as Fourier-Motzkin elimination) to extend these ideas to handle general polyhedra (see
Theorem 14). Finally, to bound the errors in the approximate factorization, we use some
technical results on rescaling PSD factorizations due to Briet et al [6] (Theorem 17).

1.2 Model of computation
We will present our algorithm from Theorem 2 in the real arithmetic model of computation
developed by Blum, Shub and Smale [4], thus ignoring questions of approximating irrational
computations by rational arithmetic. This is just for the ease of exposition. In Section 4.1,
we show that Theorem 2 can be proved by designing an algorithm that operates in the more
standard Turing machine model of computation.

2 Preliminaries

For any normed space (V, ‖·‖), we denote the distance between two subsets X,Y ⊆ V by
dist(X,Y ) := inf{‖x− y‖: x ∈ X, y ∈ Y }. A closed subset P of a normed space V is called
a closed cone if it is convex and λP ⊆ P for all λ ≥ 0. A cone is called a polyhedral cone if it
is the intersection of finitely many halfspaces. For any closed cone P in an inner product
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2:4 Computing Approximate PSD Factorizations

space (V, 〈·, ·〉) (closed with respect to the norm obtained from the inner product), the dual
cone will be denoted by

P ∗ = {v ∈ V : 〈v, y〉 ≥ 0 ∀y ∈ P}.

We recall a standard fact about dual cones:

I Fact 3. Let (V, 〈·, ·〉) be an inner product space with ‖·‖ denoting the norm on V induced
by the inner product. For any closed cone P ⊆ V , if x ∈ V such that dist(x, P ) = δ, then
there exists a vector a ∈ P ∗ with ‖a‖ = 1 such that the distance of x from the hyperplane
{y ∈ V : 〈a, y〉 = 0} is δ, i.e., 〈a, x〉 = −δ.

On the space Sr of r × r symmetric matrices, we consider the inner product 〈A,B〉 =∑
i,j AijBij .

I Fact 4. The PSD cone Sr+ is self-dual, i.e., (Sr+)∗ = Sr+.

I Definition 5. Let C be a subset of a normed space (V, ‖·‖). For ε > 0, Xε ⊆ C is called
an ε-covering for C with respect to the norm ‖·‖ if for every a ∈ C, there exists a′ ∈ Xε such
that ‖a− a′‖ < ε.

I Definition 6. For any closed cones P1 ⊆ P2 in a normed space (V, ‖·‖), we say P2 is an
ε-approximation of P1 with respect to ‖·‖ for some ε > 0, if for every p2 ∈ P2, there exists a
point p1 ∈ P1 such that ‖p2 − p1‖ ≤ ε‖p2‖.

I Theorem 7. Let C = {x ∈ Sr+ : ‖x‖2 = 1} be the spherical cap on the PSD cone. Let
ε > 0 and let Xε ⊆ C be any finite ε-covering for C with respect to some norm ‖·‖. Then the
polyhedral cone

P := {x ∈ Sr : 〈a′, x〉 ≥ 0 ∀a′ ∈ Xε}

is an ε-approximation for Sr+ with respect to ‖·‖.

Proof. It suffices to prove that for any x ∈ Sr such that dist(x,Sr+) > ε‖x‖, then x 6∈ P .
By Fact 3 and Fact 4, there exists a ∈ C such that 〈a, x〉 < −ε‖x‖. By definition of
ε-covering, there exists a′ ∈ Xε such that ‖a − a′‖ < ε. By Cauchy-Schwartz, we have
|〈a′, x〉−〈a, x〉| ≤ ‖a−a′‖‖x‖ < ε‖x‖. Combined with 〈a, x〉 < −ε‖x‖, this implies 〈a′, x〉 < 0.
Thus, by definition of P , x 6∈ P . J

I Remark. Since C is a compact set, there always exists a finite ε-covering of C for any
ε > 0. Rabani and Shpilka [20] give explicit constructions of small ε-coverings of the sphere
Sd−1 = {x ∈ Rd : ‖x‖2 = 1}, which will prove useful for us. In particular, their results imply
the following bound.

I Theorem 8. There exists a polyhedral ε-approximation of Sr+ with respect to the ‖ · ‖∞
norm of size O(raε−rb) for some universal constants a, b.

The following fact from linear algebra will be used.

I Proposition 9. Any linear transformation T : Rd → Rm can be expressed as T = A ◦ φ
where φ : Rd → ker(T )⊥ is the projection of Rd onto ker(T )⊥ and A : ker(T )⊥ → Im(T ) is
an invertible linear transformation.

This leads to the following observation about linear transformation of polyhedra.
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I Proposition 10. Let P ⊆ Rd be a polyhedron defined by p inequalities. Let T : Rd → Rm be
any linear transformation. Then T (P ) is a polyhedron defined by at most O(p2d) inequalities.

Proof. Let us make a change of coordinates such that ker(T )⊥ = Rd′ with d ≥ d′ ≥ 0 - this
does not change the number of inequalities required to describe P or T (P ). By Proposition 9,
T can be expressed as A ◦ φ where φ is the projection from Rd → Rd′ , and A is an invertible
transformation from Rd′ → Im(T ). So we just need to analyze the effect of φ and A on the
number of inequalities.

To analyze φ(P ), we note that the Fourier-Motzkin elimination process [25] implies that
projecting out a single variable can be done by squaring the number of inequalities. By
repeatedly applying this, we get that φ(P ) has at most p2d−d′ inequalities. Since A is an
invertible linear transformation, A(φ(P )) has the same number of inequalities as φ(P ). The
result follows. J

We list one final linear algebraic observation. Let dim(W ) denote the dimension of an
affine subspace W , and let aff(X) denote the affine hull of the columns of a matrix X (or
just a finite set of vectors X).

I Proposition 11. Let {m1, . . . ,mt} ⊆ Rm and {b1, . . . , bt} ⊆ Rd such that there exists
a linear transformation A : Rd → Rm satisfying mi = A(bi) for all i = 1, . . . , t. Further
suppose that dim(aff({m1, . . . ,mt})) = dim(aff({b1, . . . , bt})) = k and that m1, . . . ,mk+1
and b1, . . . , bk+1 are maximal affinely independent subsets, respectively. Then, for every
i > k + 1, if mi is expressed as an affine combination mi = λ1m1 + . . . + λk+1mk+1 with∑k+1
j=1 λj = 1, then bi = λ1b1 + . . .+ λk+1bk+1. In other words, bi is an affine combination

of b1, . . . , bk+1 with the same coefficients as in the expression for mi.

The following result about projecting onto the PSD cone will be used [14].

I Proposition 12. Let C be an r × r symmetric matrix with spectral decomposition UΛUT ,
where U is the matrix with the eigenvectors of C as columns, and Λ = Diag(λ1, . . . , λr)
is the diagonal matrix with eigenvalues of C on the diagonals. Then, the matrix C∗ =
U (Diag(max{0, λ1}, . . . ,max{0, λr}))UT is the closest matrix in Sr+ to C with respect to
the ‖ · ‖2 norm.

We also use the following deep result from real algebraic geometry and quantifier elimina-
tion.

I Theorem 13 ([2]). There is an algorithm that tests the feasibility of any system of s
polynomial equalities involving N variables with d as the maximum degree of any polynomial,
that runs in time (sd)O(N).

3 Factorizations from a polyhedron

Our main tool for proving Theorem 2 will be the following generalization of the algorithm
of Arora et al. [1], who proved it for the special case of P being the nonnegative cone. We
generalize this to an arbitrary polyhedron P .

I Theorem 14. Let M be an n ×m matrix with nonnegative entries, and let P be some
polyhedron in Rd described by p inequalities. If there exists a factorization M = UV such
that each row of U and each column of V is in P , then one can compute such a factorization
in time O((4mn)d(pd+2d

)(2mn + 4dpd+1)2pdd2), which is polynomial in m,n if d and p are
fixed.

APPROX/RANDOM’16



2:6 Computing Approximate PSD Factorizations

In order to prove this theorem, we first need a few useful lemmas. Let X be a p × q
matrix. For any subset C ⊆ {1, . . . q}, let XC denote the matrix formed by the subset of
columns indexed by C. Similarly, for any subset R ⊆ {1, . . . p}, let XR denote the matrix
formed by the rows indexed by R.

I Lemma 15. Let M be an n×m matrix with nonnegative entries. Let P be some polyhedron
in Rd described by p inequalities. Suppose there exists a factorization M = UV such that each
row of U and each column of V is in P . Then there exists a partition C1 ] C2 ] . . . ] Ck =
{1, . . . ,m}, a partition R1 ]R2 ] . . . ]R` = {1, . . . , n}, and matrices Ū ∈ Rn×d, V̄ ∈ Rd×m
such that the following properties all hold:
1. M = Ū V̄ .
2. Each row of Ū and each column of V̄ is in P . Moreover, there exist faces F1, . . . , Fk of P

such that for every j = 1, . . . , k, the columns of V̄ Cj all lie on Fj. Similarly, there exist
faces G1, . . . , G` such that for every i = 1, . . . , `, the rows of ŪRi all lie on Gi.

3. dim(aff(MCj )) = dim(aff(V̄ Cj )) for all j = 1, . . . , k.
4. dim(aff((MRi)T )) = dim(aff((ŪRi)T )) for all i = 1, . . . , `.
5. k, ` ≤ pd.

Proof. We use an idea from Arora et al. [1] to produce Ū , V̄ and the partitions with the
stated properties. Starting from U, V , we will first construct V̄ , and then use this to construct
Ū . Slightly more formally, we will first construct a partition C1 ]C2 ] . . .]Ck = {1, . . . ,m},
a matrix V̄ such that M = UV̄ , and exhibit faces F1, . . . , Fk such that columns of V̄ Cj are
contained in Fj for all j, and also condition 3 in the statement is satisfied. We will then
construct a partition R1 ]R2 ] . . . ]R` = {1, . . . , n}, a matrix Ū such that M = Ū V̄ , and
exhibit faces G1, . . . , G` such that rows of ŪRi are contained in Gi for all i, and condition 4
from the statement is satisfied. Condition 5 will then be verified.

For any p ∈ P , let Fp be the face of P of minimum dimension containing p. This induces
a partial ordering � on the points in P , where p1 � p2 if Fp1 ) Fp2 .

For every column vj of V , consider the set (vj +ker(U))∩P and define v̄j to be a minimal
element in this set according to this partial order. Note that for any p ∈ P , if there exists
u ∈ ker(U) \ {0} such that the line p+ λu, λ ∈ R lies in the affine hull of Fp, then one can
choose λ such that p+ λu is in a strict face of Fp. Thus, by the minimal choice of v̄j , we
have that (v̄j + ker(U)) ∩ aff(Fv̄j ) = v̄j for every j ∈ {1, . . . ,m}. We set V̄ to be the matrix
with columns v̄j . Note that M = UV̄ as desired, since Uv̄j = U(vj + xj) = Uvj for every
j ∈ {1, . . . ,m}, where xj is some vector in ker(U).

The partition C1 ] C2 ] . . . ] Ck of the columns of V̄ is obtained by grouping the
columns together based on the face of minimum dimension that they lie on. Thus, k ≤ pd
which is an upper bound on the number of faces of P . Moreover, these faces of minimum
dimension will form the faces F1, . . . , Fk in Condition 2. We now need to verify that
dim(aff(MCj )) = dim(aff(V̄ Cj )) for all j = 1, . . . , k. Fix some j and let the columns of MCj

be {m0,m1, . . . ,mh} and let the columns of V̄ Cj be v0, v1, . . . , vh. Let dim(aff(V̄ Cj )) = k, and
without loss of generality assume that v0, . . . , vk are affinely independent. SinceMCj = UV̄ Cj ,
we know that dim(aff(MCj )) ≤ dim(aff(V̄ Cj )). If the inequality is strict, then the columns
m0, . . . ,mk are affinely dependent, and thus there exist λ0, . . . , λk ∈ R not all zero such that
and λ0 +λ1 + . . .+λk = 0 and λ0m0 +λ1m1 + . . . , λkmk = 0. SinceMCj = UV̄ Cj , the vector
v = λ0v0 + λ1v1 + . . . , λkvk satisfies v ∈ ker(U) \ {0} (v 6= 0 because v1, . . . , vk are affinely
independent). Recall that Fj is the face of minimum dimension containing v0, v1, . . . , vh, we
find that v0 + λv, λ ∈ R lies in the affine hull of Fj . This would contradict the construction
of the columns of V̄ . Therefore, dim(aff(MCj )) = dim(aff(V̄ Cj )).
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In a similar manner, we can change the rows of U (keeping V̄ fixed) to obtain Ū so that
conditions 1 still holds, and there is a partition R1 ] R2 ] . . . ] R` = {1, . . . , n} and faces
G1, . . . , G` so that Conditions 2 and 4 are satisfied. Finally, as was the case with the column
partition, the upper bound on the total number of faces of P gives ` ≤ pd. This completes
the construction. J

Let X be a a set of points in Rd. We say a set of polyhedra P1, . . . , Pk is a polyhedral
covering of X if (P1 ∩ X) ∪ . . . ∪ (Pk ∩ X) = X – note that P1, . . . , Pk do not have to
be disjoint polyhedra. We say a partition X1 ] . . . ] Xk = X is induced by a polyhedral
covering if there exists a polyhedral covering P1, . . . , Pk of X such that X1 = P1 ∩X and
Xi = (Pi ∩ X) \ (X1 ∪ . . . ∪ Xi−1) for i = 2, . . . , k. A (k1, k2)-polyhedral partition of X
is a partition induced by a polyhedral covering of X with at most k1 polyhedra and each
polyhedron is described by at most k2 inequalities.

I Lemma 16. Let k1, k2 be fixed natural numbers and let X be a set of points in Rd. The
number of (k1, k2)-polyhedral partitions is at most O((2dmd)k1k2) and one can enumerate
these partitions in time O((2dmd)k1k2), where m = |X|.

Proof. Let us first count the number of subsets of X of the form P ∩ X where P is a
polyhedron with at most k2 inequalities. As observed in Arora et al [1], this can be reduced
to counting the number of subsets of the form H ∩X where H is a halfspace. The number of
such subsets is O(2dmd) and can be enumerated in the same amount of time (as was shown
in Arora et al [1] by a simple iterative procedure). To choose a subset of the form P ∩X
where P is a polyhedron with at most k2 inequalities, one simply needs to iteratively choose
k2 subsets given by halfspace intersections. Thus, there are O((2dmd)k2) such subsets and
these can be enumerated in this iterative fashion.

To finally get partitions induced by polyhedral coverings, one needs to iteratively choose
k1 subsets of the form P ∩X where P is a polyhedron with at most k2 inequalities. The
result follows. J

Using these tools, we can now prove Theorem 14.

Proof of Theorem 14. By Lemma 15, there exists a partition C1]C2]. . .]Ck = {1, . . . ,m},
a partition R1 ] R2 ] . . . ] R` = {1, . . . , n}, and matrices Ū ∈ Rn×d, V̄ ∈ Rd×m such that
conditions 1− 5 in Lemma 15 hold. Our algorithm will find these partitions, as well as the
matrices Ū and V̄ . By conditions 1 and 2 of Lemma 15, these matrices form the desired
factorization of M .

Let F1, . . . , Fk, G1, . . . , G` be the faces of P referred to in Condition 2 of Lemma 15.
For any fixed j ∈ {1, . . . , k}, since M{s} = Ū V̄ {s} for every s ∈ Cj , we have {M{s} : s ∈
Cj} ⊆ Ū(Fj) by Condition 2 from Lemma 15. Invoking Proposition 10, we obtain that
Ū(Fj) is described using at most p2d inequalities. By Lemma 15, k is bounded by pd.
Therefore, MC1 , . . . ,MCk is a (pd, p2d)-polyhedral partition of {M1, . . . ,Mm} using the
polyhedra Ū(F1), . . . , Ū(Fk). Similarly, MR1 , . . . ,MR`

is a (pd, p2d)-polyhedral partition of
{M1, . . . ,Mn} using the the polyhedra V̄ T (G1), . . . , V̄ T (G`).

Lemma 16 implies that we can enumerate all possible (pd, p2d)-polyhedral partitions of
{M1, . . . ,Mm} in time O((2dmd)pd+2d

). Similarly, one can enumerate all possible partitions
(pd, p2d)-polyhedral partitions of {M1, . . . ,Mn} in time O((2dnd)pd+2d

).
Condition 3 from Lemma 15 and Proposition 11 imply that for each j ∈ {1, . . . , k}, there

exist dim(aff(MCj )) + 1 ≤ d+ 1 columns of V̄ Cj , such that every other column in V̄ Cj can
be expressed as affine combinations of these columns. Moreover, the coefficients in these

APPROX/RANDOM’16



2:8 Computing Approximate PSD Factorizations

affine combinations can be computed from the columns of MCj . Similarly, Condition 4 from
Lemma 15 and Proposition 11 imply that for every i = 1, . . . , `, the rows of ŪRi

can be
expressed as known affine combinations of dim(aff(MRj

)) + 1 ≤ d+ 1 rows of ŪRi
.

We first make a guess for the partitions by enumerating all possible (pd, p2d)-polyhedral
partitions C1, . . . , Ck of the columns of M and all possible (pd, p2d)-polyhedral partitions
R1, . . . , R` of the rows of M . For each choice of such partitions, introduce variables for the
entries of the dim(aff(MCj )) + 1 special columns of V̄ Cj , j = 1, . . . , k, and dim(aff(MRj

)) +
1 special rows of ŪRi

, i = 1, . . . , ` which would correspond to the appropriate affinely
independent columns in MCj and rows in MRi respectively. We now need to ensure that
M = Ū V̄ . For this we set up a system of mn quadratic constraints Mij = 〈Ūi, V̄ j〉 for each
i = 1, . . . , n and j = 1, . . . ,m, where the entries of Ūi and V̄ j are expressed in terms of the
variables the dim(aff(MCj )) + 1 special columns of V̄ Cj , and dim(aff(MRj

)) + 1 special rows
of ŪRi

as discussed above. Notice that this system has only O((k + `)d2) variables. We
finally also impose the condition that these special columns are in P , which corresponds to
(k+ `)dp more linear inequalities in these variables. We finally invoke Theorem 13 to test the
feasibility of such a system. This process is then repeated for all possible (pd, p2d)-polyhedral
partitions C1, . . . , Ck of the columns of M and (pd, p2d)-polyhedral partitions R1, . . . , R` of
the rows of M , until we find one that satisfies all the conditions in Lemma 15. J

4 Proof of Theorem 2

For any square matrix X ∈ Rr×r, we use ‖X‖sp := maxy∈Rr\{0}
‖Xy‖2
‖y‖2

to denote the spectral
norm of X. The algorithm depends on this key result (paraphrased here) from [6].

I Theorem 17. Let M be an n × m matrix with nonnegative entries. If M has a PSD
factorization M = UV such that the rows of U and columns of V are in Sr+, then there exists
a PSD factorization M = Ū V̄ such that the rows of Ū and the columns of V̄ have spectral
norm bounded by

√
r‖M‖∞.

We outline the steps of the algorithm in Theorem 2. Let f(r) be such that for every matrix
X ∈ Sr, ‖X‖∞ ≤ f(r)‖X‖sp. Such an f(r) must exist because all norms are equivalent
on a Euclidean space, i.e., their values are the same upto a factor depending only on the
dimension of the space.

1. Given M , let ∆ = ‖M‖∞. Construct a polyhedral ε-approximation of Sr+ with respect
to the ‖ · ‖∞ norm on Sr using Theorem 8. Let P be the polyhedron formed by the
intersection of this polyhedral approximation with the cube {x ∈ Sr : ‖x‖∞ ≤ f(r)

√
r∆}.

2. By Theorem 17 and the assumption that M has PSD rank r, we know there exists a
factorization M = Ū V̄ such that the rows of Ū and columns of V̄ are in the PSD cone,
and their spectral norm is at most

√
r∆. Therefore, for every row u of Ū , we have

‖u‖∞ ≤ f(r)
√
r∆ and similarly for the columns of V̄ . This implies that the rows of Ū

and columns of V̄ are in P . Since Ū , V̄ exist, we can employ Theorem 14 to construct a
factorization M = U ′V ′ such that the rows of U ′ and the columns of V ′ are in P . Note
that the algorithm of Theorem 14 may not produce a PSD factorization. To obtain an
approximate PSD factorization, we construct matrices U and V by projecting each row
of U ′ to the nearest point in the PSD cone (according to the ‖ · ‖∞ norm), and similarly
for the columns of V ′. This can be done in polynomial time by invoking Proposition 12.
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This concludes the description of the algorithm. The running time claimed by Theorem 2
is tedious but straightforward to verify. It remains to prove that

‖M − UV ‖∞ ≤ ε‖M‖∞.

Our first step will be to use the fact that we projected from an ε-approximation to the PSD
cone. In particular, we know that ‖V ′j − V j‖∞ ≤ ε‖V ′j‖∞ for each j ∈ {1, . . . ,m}, and
similarly ‖U ′i − Ui‖∞ ≤ ε‖U ′j‖∞ for each i ∈ {1, . . . , n}. This clearly implies that

‖V ′ − V ‖∞ ≤ ε‖V ′‖∞ and ‖U ′ − U‖∞ ≤ ε‖U ′‖∞. (1)

Now we can analyze the approximation of our factorization:

‖M − UV ‖∞ = ‖U ′V ′ − UV ‖∞
≤ ‖U ′V ′ − U ′V ‖∞ + ‖U ′V − UV ‖∞
≤ r‖U ′‖∞‖V ′ − V ‖∞ + r‖U ′ − U‖∞‖V ‖∞
≤ r‖U ′‖∞(ε‖V ′‖∞) + rε‖U ′‖∞‖V ‖∞

(2)

where the first equality is from the fact thatM = U ′V ′, the first inequality is from the triangle
inequality, and the third is from (1). The second inequality follows from the observation that
for any matrices A ∈ Rn×r, B ∈ Rr×m, ‖AB‖∞ ≤ r‖A‖∞‖B‖∞.

Since ‖V ‖∞ ≤ (1 + ε)‖V ′‖∞ because of (1), we obtain ‖M − UV ‖∞ ≤ 3εr‖U ′‖∞‖V ′‖∞.
Since each row u of U ′ is in P , we have ‖u‖∞ ≤ f(r)

√
r∆. Therefore, ‖U ′‖∞ ≤ f(r)

√
r∆.

Similarly, ‖V ′‖∞ ≤ f(r)
√
r∆. Hence, ‖M − UV ‖∞ ≤ 3εr‖U ′‖∞‖V ′‖∞ ≤ 3f(r)r2ε∆. By

redefining ε appropriately (in particular, letting ε′ be the previous ε and letting ε = 3f(r)fε′),
we get that

‖M − UV ‖∞ ≤ ε‖M‖∞

as desired.

4.1 Computing on a Turing Machine
As mentioned in the introduction, the algorithm described above works in the real arithmetic
model of computation. However, this was only for ease of exposition. We now show how to
remove this assumption and work in the more standard Turing machine model of computation.

The assumption of real arithmetic was used in two places. First, it was used when
invoking Theorem 13 to solve a system of polynomial inequalities in the proof of Theorem 14.
The second time it was used was for computing the spectral decompositions in Proposition 12
while projecting to the PSD cone in Step 2 above.

The first problem can be resolved by using a result of Grigor’ev and Vorobjov [13] which
states that one can compute rational approximations to solutions of polynomial systems
with integer coefficients within δ accuracy for any rational δ > 0, in time that is polynomial
in the parameters log( 1

δ ), maximum bit length of the coefficients, and (sd)N2 , where s is
the number of inequalities, d is the maximum degree, and N is the number of variables
(See “Remark” at the end of page 2 in [13]). This implies that one can find rational
approximations for the rows and columns of U ′ and V ′ in Step 2 above, with the guarantee
that ‖M − U ′V ′‖∞ ≤ O(δ). Thus, in (2), the first line would be replaced by the inequality
‖M −UV ‖∞ ≤ ‖U ′V ′ −UV ‖∞ +O(δ), and this extra error term of O(δ) will carry through
in all the subsequent inequalities in (2).

APPROX/RANDOM’16
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Further, although these rational approximations for the rows of U ′ and the columns of
V ′ may not be in the polytope P defined in Step 1 above, they will be within O(δ) distance
of P .

The problem of computing spectral decompositions to within any desired accuracy was
shown to be possible in time polynomial in the size of the matrix and log( 1

δ ), where δ > 0
is the desired accuracy (under any matrix norm, and since for us the dimensions of these
matrices are constants, i.e., r × r, the choice of the norm also does not matter) [19]. This
simply means that instead of projecting in to the closest point to the PSD cone, we instead
project to some approximation of the closest point. However, this error can also be controlled.
Note that the approximating point will also be in the PSD cone (it might just not be the
closest one).

Thus, by keeping track of these additional error terms and defining the error parameters
appropriately based on the given ε > 0, we can still keep the guarantee ‖M−UV ‖∞ ≤ ε‖M‖∞.

5 Open Questions

Question 1 remains the outstanding open question in the line of research on factorization
algorithms with polynomial time guarantees. Another interesting direction would be generalize
Theorem 2 to approximation guarantees with other norms. For example, the induced
norms ‖M‖1,2 := maxx∈Rm

‖Mx‖2
‖x‖1

and ‖M‖∞,2 := maxx∈Rm
‖Mx‖2
‖x‖∞ were used in [12]. The

authors show that approximate factorization with respect to these norms give rise to small
SDP reformulations whose projections approximate a given polytope, where the geometric
approximation is tightly determined by the approximation factor in the matrix factorization.

It would also be interesting to resolve the following question:

Let r ∈ N and ε > 0 be fixed constants. LetM be the family of nonnegative matrices
such that for every M ∈ M, there exists another nonnegative matrix M such that
‖M −M‖∞ ≤ ε‖M‖∞ and M admits a rank r PSD factorization.
Does there exists an algorithm which, given any nonnegative matrix M ∈M, can find
matrices U and V such that each row of U and each column of V are in Sr+ such that

‖M − UV ‖∞ ≤ O(ε)‖M‖∞,

and has runtime polynomial in the dimensions of M? In other words: if the input
matrix M is close to a matrix with small PSD rank, can we find a low PSD-rank
factorization that is a good approximation to M?

Approximate low-rank nonnnegative factorizations of matrices with high nonnegative
rank have been extensively studied – see [3] for a survey of the diverse applications, and [1] for
a recent algorithm with provable guarantees on the complexity. The corresponding question
for PSD factorizations is of similar interest.
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