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Abstract. Here, we give an algorithm for deciding if the nonnegative rank of a matrix M of

dimension m × n is at most r which runs in time (nm)O(r2). This is the first exact algorithm that
runs in time singly exponential in r. This algorithm (and earlier algorithms) are built on methods for
finding a solution to a system of polynomial inequalities (if one exists). Notably, the best algorithms
for this task run in time exponential in the number of variables but polynomial in all of the other
parameters (the number of inequalities and the maximum degree). Hence, these algorithms motivate
natural algebraic questions whose solution have immediate algorithmic implications: How many
variables do we need to represent the decision problem, and does M have nonnegative rank at most
r? A naive formulation uses nr + mr variables and yields an algorithm that is exponential in n
and m even for constant r. Arora et al. [Proceedings of STOC, 2012, pp. 145–162] recently reduced
the number of variables to 2r22r , and here we exponentially reduce the number of variables to
2r2 and this yields our main algorithm. In fact, the algorithm that we obtain is nearly optimal
(under the exponential time hypothesis) since an algorithm that runs in time (nm)o(r) would yield
a subexponential algorithm for 3-SAT [Proceedings of STOC, 2012, pp. 145–162]. Our main result is
based on establishing a normal form for nonnegative matrix factorization—which in turn allows us to
exploit algebraic dependence among a large collection of linear transformations with variable entries.
Additionally, we also demonstrate that nonnegative rank cannot be certified by even a very large
submatrix of M , and this property also follows from the intuition gained from viewing nonnegative
rank through the lens of systems of polynomial inequalities.
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1. Introduction.

1.1. Background. The nonnegative rank of a matrix is a fundamental param-
eter that arises throughout algorithms and complexity and admits many equivalent
formulations. In particular, given a nonnegative1 matrix M of dimension m× n, its
nonnegative rank is the smallest r for which

• M can be written as the product of nonnegative matrices A and W which
have dimension m× r and r × n, respectively;
• M can be written as the sum of r nonnegative rank one matrices,
• there are r nonnegative vectors v1, v2, . . . , vr (of length m) such that the conic
hull of {v1, v2, . . . , vr} contains all columns in M .

Throughout this paper, we will denote the nonnegative rank by rank+(M) and will
refer to a factorization M = AW where A and W are nonnegative and have dimen-
sion m × r and r × n, respectively, as a nonnegative matrix factorization of inner-
dimension r.

∗Received by the editors October 6, 2014; accepted for publication (in revised form) October 26,
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1We will refer to a matrix that is entrywise nonnegative as a “nonnegative matrix.”
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NONNEGATIVE RANK 157

Some of the most compelling applications of nonnegative rank are in machine
learning [20, 26, 27, 2], statistics [34], combinatorics [45], and communication com-
plexity [5, 28]. In machine learning, the benefit of requiring a matrix factorization
M = AW to be nonnegative is that this factorization can then be interpreted prob-
abilistically. A representative application comes from the domain of topic modeling
[20], where M is chosen to be a so-called term-by-document matrix: the entry in
row i, column j is the frequency of occurrence of the ith word in the jth document.
And computing a nonnegative matrix factorization of inner-dimension r is akin to
finding a collection of r topics (which are each distributions on words) so that each
document can be expressed as a convex combination of these r topics. Nonnegative
matrix factorization has found applications throughout machine learning, from topic
modeling [20, 2, 3, 4] to information retrieval [43] to image segmentation [26, 27] and
collaborative filtering [35]. Even this is far from an exhaustive list. We note that
of particular interest in these applications are instances of this problem in which the
target nonnegative rank r is small.

In combinatorial optimization, one is often interested in expressing a polytope P
as the projection of a higher-dimensional polytopeQ which (hopefully) has much fewer
facets. The minimum number of facets needed is called the extension complexity of P ,
and there is a rich body of literature on this subject. Yannakakis established a striking
connection between extension complexity and nonnegative rank: Given the polytope
P , one constructs the “slack matrix”: the entry in row i, column j is how slack the
ith vertex is against the jth constraint. Yannakakis proved that the nonnegative rank
of the slack matrix is exactly equal to the extension complexity of P [45]. Fiorini
et al. [14] recently used this connection and results from communication complexity
to prove a remarkable lower bound, that the traveling salesman polytope has no
polynomial size extended formulation. This area has seen a considerable amount
of recent progress with tools from discrepancy [8, 39], information complexity [10],
common information [9] and harmonic analysis [9] being used to lower bound the
nonnegative rank of particular families of slack matrices.

In communication complexity, the famous log rank conjecture of Lovasz and Saks
[28] asks if the log of the rank of the communication matrix and the deterministic
communication complexity are polynomially related. In fact, an equivalent formula-
tion of this problem (that follows from [5]) is that the log rank conjecture asks if the
log of the rank and the log of the nonnegative rank of a Boolean matrix are polyno-
mially related. Of crucial importance here is that the matrix in question be Boolean.
For a general matrix, there is no nontrivial relationship since there are examples in
which the rank is three and yet the nonnegative rank is Ω(

√
n) [15]. Also in complex-

ity theory, Nisan used nonnegative rank to prove lower bounds for noncommutative
models of computation [33].

We note that nonnegative matrix factorization has also been applied to problems
in biology, economics [19], and chemometrics [24] to model all sorts of processes,
ranging from stimulation in the visual cortex to the dynamics of marriage. In fact,
a historical curiosity is that nonnegative rank was first introduced in chemometrics,
under the name of self-modeling curve resolution.

1.2. Systems of polynomial inequalities. The focus of this paper is the fol-
lowing.

Question 1. What is the complexity of computing the nonnegative rank?
A priori it is not even clear that there is an algorithm that runs in any finite

amount of time. But indeed, Cohen and Rothblum [12] observed that the decision

D
ow

nl
oa

de
d 

06
/0

6/
16

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

158 ANKUR MOITRA

question of whether or not rank+(M) ≤ r can be equivalently formulated as a system
of O(mn) polynomial inequalities with mr + nr total variables: we can treat each
entry in A and each entry in W as a variable, and the constraint that this be a valid
nonnegative matrix factorization is exactly that A and W be nonnegative and that
M = AW . The latter is a set of mn degree two constraints. It is easy to see that this
system of polynomial inequalities has a solution if and only if rank+(M) ≤ r.

Moreover, whether or not a system of polynomial inequalities has a solution is
decidable. This is a quite nontrivial statement. The first algorithm is due to Tarski
and Seidenberg [42, 40], and there have since been a long line of improvements to
this decision procedure. The best known algorithm is due to Renegar [37], and the
running time of finding a solution to a system of p polynomial inequalities f1, f2, . . . , fp
with k variables x1, x2, . . . , xk and maximum degree D is roughly (Dp)O(k). An
important note is that Renegar’s algorithm works in slightly more generality (and we
will take advantage of this fact): one can also specify an arbitrary Boolean function
P : {−1, 0, 1}p → {0, 1} that takes the sign pattern of the set of polynomials and
returns a Boolean value. This in turn defines a set of feasible solutions as follows: We
will be interested in

⋃
π∈{−1,0,+1}ks.t.P(π)=1

{
x ∈ R

k s.t. ∀j sgn(fj(x1, x2, . . . , xk)) = πj

}
.

In particular, the feasible solutions are all choices of values for the variables
x1, x2, . . . , xk so that the resulting sign pattern sgn(f1), sgn(f2), . . . , sgn(fp) of the
polynomials satisfies the Boolean function P. Moreover, deciding whether this set has
a solution can be solved in roughly the same amount of time (provided the Boolean
function can be evaluated efficiently).

So (appealing to decision procedures for a system of polynomial inequalities) there
is an algorithm for computing the nonnegative rank of a matrix that runs in a finite
amount of time. Note that if the target nonnegative rank r is small (say, three), this
algorithm still runs in time exponential in m and n. And the question of whether or
not there is a faster algorithm (in particular, one which runs in polynomial time for
any constant r) was still open. Vavasis proved that nonnegative rank is NP-hard to
compute [44], but this only rules out an exact algorithm that runs in time polynomial
in n, m, and r (if P �= NP ).

The crucial observation that the reader should keep in mind throughout this paper
is that the main bottleneck in finding a solution to a system of polynomial inequalities
is the number of variables. Renegar’s algorithm [37] runs in time polynomial in the
number of polynomials (p) and the maximum degree (D) but runs in time exponential
in the number of variables (k). In a technical sense, the number of variables plays
an analogous role to the VC-dimension in learning theory. (This connection can be
made explicit by drawing an analogy between the Milnor–Thom and Warren bounds
and the Sauer–Shelah lemma. See, e.g., [1]).

Cohen and Rothblum [12] give a reduction from nonnegative rank to finding a
solution to a system of polynomial inequalities that has mr + nr variables, and a
natural goal is to try to use fewer variables in this reduction. Using a different
approach, Gillis gave an algorithm for deciding if rank+(M) ≤ 3 in polynomial time
[16]. Arora et al. [2] do exactly this and give a reduction to a system with only
f(r) = 2r22r variables. This yields an exact algorithm for deciding if rank+(M) ≤ r

that runs in time (nm)2r
22r which is doubly exponential in r but runs in polynomial

time algorithm for any fixed r. Furthermore Arora et al. [2] demonstrate that an
exact algorithm for deciding if rank+(M) ≤ r that runs in time (nm)o(r) would yield
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a subexponential time algorithm for 3-SAT. In summary, there is an exact algorithm
for deciding if rank+(M) ≤ r that runs in polynomial time for any r = O(1), and any
algorithm must depend (at least) exponentially on r. However, the algorithm in [2]
runs in time doubly exponential in r, and perhaps we could still hope for an algorithm
that runs in time singly exponential in r. Here, we give such an algorithm; we do this
by reducing the number of variables exponentially from 2r22r to 2r2.

And perhaps the main message in this paper is that systems of polynomial in-
equalities with even just a small number of variables can be remarkably expressive! We
believe that this theme may find other applications: Perhaps there are other problems
for which one would like to design an algorithm based on solving some appropriately
chosen system of polynomial inequalities. Then in this case, reducing the number of
variables can drastically improve the running time of an algorithm. Indeed, maybe
this complexity measure deserves to be studied in its own right.

Meta Question 1. Given a decision problem, how many variables are needed
to encode its answer as a system of polynomial inequalities?

In particular, we want that the decision problem is a YES instance if and only if
the corresponding system of polynomial inequalities has a solution.

One of the main points of the paper is that asking how many variables are needed
to represent a decision problem is a basic question, can have surprisingly efficient rep-
resentations, and can even lead to nearly optimal algorithms. In addition to being a
basic mathematical problem in its own right, it is also at least superficially related to
other algebraic measures of complexity that have been used in theoretical computer
science and algebraic geometry. For example, in the sum-of-squares proof system, one
starts with a collection of axioms that are themselves polynomial relations and studies
the minimal degree needed to prove or refute various other statements [36, 23]. In
another direction, a fundamental result in algebraic geometry is Mnev’s universality
theorem, which can be seen as a way to measure algebraic complexity (of oriented
matroids) by studying conditions under which they can represent arbitrary semialge-
braic sets [30]. In fact, this too has applications in theoretical computer science and
was used by Shor to resolve the complexity of the stretchability problem [41].

1.3. Our results. We now state our main results: Let M be am×n nonnegative
matrix and let L denote the maximum bit complexity of any coefficient in M . We
give the following algorithm. (Here, c is a universal constant.)

Theorem 1.1. There is a poly(n,m,L)(r4r+1mn)cr
2

time algorithm for decid-
ing if the nonnegative rank of M is at most r. Additionally, given δ > 0 (and if

rank+(M) ≤ r), the algorithm runs in time at most poly(n,m,L, log 1
δ )(r4

r+1mn)cr
2

and returns factors Ã and W̃ that are entrywise close (within an additive δ) to A and
W (respectively) that are a nonnegative matrix factorization of M of inner-dimension
at most r. Furthermore, the entries of Ã and W̃ have rational coordinates with nu-
merators and denominators bounded in bit length by O(L(r4r+1mn)cr

2

+ log 1
δ ).

This is the first algorithm that runs in singly exponential time as a function of r
and in fact is an exponential improvement over the previously best known algorithm
due to Arora et al. [2]. Moreover, notice that the algorithm in [2] is faster than
the one in [12] only if r = O(log(m + n)), whereas our algorithm is in fact faster
for any r = o((mn)1/3). Our algorithm is nearly optimal (under the exponential
time hypothesis), since an exact algorithm that runs in time (nm)o(r) would yield a
subexponential time algorithm for 3-SAT [2].

We note that [2] provides an (nm)cr
2

time algorithm for the special case in which
the matrix M not only has nonnegative rank at most r but, furthermore, the matrix
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A can be assumed to be full rank. (This is called “simplicial factorization.”) How-
ever, a simplicial factorization turns out to be much more restrictive than a general
nonnegative matrix factorization. In fact, Hrubes [21] gives an explicit example of
an n× n nonnegative matrix M whose nonnegative rank is Θ(logn) even though the
minimum inner-dimension of any simplicial factorization of it is n. Thus, one should
be careful about the distinction between these two problems. It is true that in many
applications in machine learning, it is a priori natural to assume that A is full rank;
in many other applications such as in extended formulations, imposing this artificially
as a constraint can drastically change the nature of the problem.

Our techniques and a comparison. In order to explain our techniques, it
makes sense to first explain the approach of Arora et al. [2]. The starting point in
earlier work is to observe that the rows of A and the columns of W can be obtained
as an appropriate linear transformation of the rows and columns of M , respectively.
However, when A is not full rank, we may need many such linear transformations,
one for each maximal linearly independent set of its columns. Thus, there could be as
many as

(
r

r/2

)
such linear transformations. Even so, the major complication is that

when given a list of linear transformations to apply to the columns of M to obtain the
columns of W , there may be more than one viable option. One of these candidates is
the true column of W , but if we select the wrong one (even if it is nonnegative) and
insert it into W , there is no guarantee that there is still a compatible, nonnegative A
that satisfies M = AW . So the major issue is how to choose.

This is always handled through a structure theorem. The approach in Arora et
al. [2] is substantially more complicated and is based on the notion of a proper chain
and a simplicial partition, which we explain next. A proper chain is a sequence of
valid nonnegative factorizations M = AW , M = AW ′, M = A′W ′. The idea is that
if A were fixed, we could use a simple rule for which linear transformation to apply
to columns of M to obtain columns of W ′. This is how W ′ is constructed—given A,
for each column Mi choose Wi so that it is nonnegative and satisfies Mi = AWi, and
if there is more than one choice, choose the one whose support is lexicographically
first. We can then update A to A′ in the same manner, so that we choose (A′)j

so that it is nonnegative and satisfies (A′)jW ′ = M j , and again among the viable
options we choose the one whose support is lexicographically first. However, after we
update A to A′, the choices for W ′ are not necessarily lexicographically first for A′

because our choices were based on A. So the structure theorem needs to account for
the fact that the rule for how to tie break among linear transformations depends on
some unspecified matrix A. One can then classify all such choice functions—which
are called simplicial partitions—and brute force search over them, and then ask if any
of them yields a system of polynomial constraints that is feasible.

Here, we alternately update A and W while maintaining the invariant that M =
AW is a valid nonnegative matrix factorization, until the choices for W ′ are lexico-
graphically first based on A and the choices for A are lexicographically first based on
W . This can take exponentially many steps to converge, but it does and the impor-
tant point for us is that this stronger normal form exists so when we are looking for a
nonnegative matrix factorization, we can without loss of generality assume that this
is the one we are looking for. This allows us to remove the use of simplicial partitions
altogether, which is one of the main bottlenecks in the previous algorithm because
searching over all simplicial partitions requires doubly exponential (in r) time.

However, there is still one major obstacle remaining to overcome, which is the
number of variables. Recall that if A is not full rank, then there could be as many as
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(
r

r/2

)
maximal linearly independent sets of columns, each of which yields a different

linear transformation. In fact, we need all of these to recover the columns of W
from the columns of M . (For more details, see the discussion on the cross-polytope
at the end of section 2.3). Despite the fact that we need exponentially (in r) many
linear transformations, these linear transformations are related to each other through
the entries of A—or, more precisely, through AU , where U is any maximal set of
linearly independent rows. We can then use Cramer’s rule to express all of the entries
of the linear transformations using a common set of 2r2 variables, through ratios of
polynomials. This is the final step that allows us to reduce the number of variables in
our representation from exponential in r to quadratic in r and obtain nearly optimal
algorithms for nonnegative matrix factorization.

We also consider another basic question about the nonnegative rank of a matrix.
Question 2. Can the nonnegative rank of a matrix M be certified by a small

submatrix?
Indeed—in the case of the rank—a matrix M has rank at least r if and only if

there is an r× r submatrix of M that has rank r. This property plays a crucial role in
many applications [17], and it is natural to wonder if the nonnegative rank admits any
similar characterization. As another motivation, often we are only given a subset of
the entries of the matrix M (for example, in the Netflix problem), and we would like
to use these entries to infer properties about M . Yet, the nonnegative rank behaves
quite differently than the rank in this regard.

Theorem 1.2. For any r ∈ N, there is a 3rn×3rn nonnegative matrix which has
nonnegative rank at least 4r and yet for any < n rows, the corresponding submatrix
has nonnegative rank at most 3r.

So even the submatrices consisting of a constant fraction of the rows in M do
not determine the nonnegative rank of M even within a constant factor. This result,
too, can be thought of in the language of systems of polynomial inequalities: The
basic principle at play is that even though the nonnegative rank can be equivalently
characterized by a system of polynomial inequalities with only 2r2 variables, there
are systems of polynomial inequalities that are together infeasible and yet every large
subset of the constraints is feasible. This is in stark contrast to the case of linear in-
equalities, for which, if the system is infeasible (and is in dimension d) there is a subset
of just d linear inequalities that is infeasible (i.e., there is a size d obstruction) [29].

We remark that there is also considerable interest in computing and proving lower
bounds for a related quantity called the semidefinite rank [18, 14]. This parameter
characterizes semidefinite representability in much the same way that nonnegative
rank captures representation as a linear program. Recently, Lee, Raghavendra, and
Steurer [25] building on techniques in [11] gave the first exponential lower bounds for
general semidefinite programs, but there are still many open questions in this area
about both proving quantitatively stronger lower bounds and proving lower bounds
for approximation versions of these representability questions. In another direction,
it is not known whether there is an algorithm to decide if the semidefinite rank of
a nonnegative matrix M is at most r that runs in polynomial time for r = O(1)
[13]. Our approach crucially uses the fact that the solution to a linear program is a
rational function of the input parameters, but this is not true in the case of semidefinite
programs [32] and is a major obstacle to generalizing the algorithms in this paper.

2. Computing the nonnegative rank.

2.1. Stability (a normal form). Throughout this paper, let M denote an
entrywise nonnegative matrix of dimension m×n. We will also let Mi denote the ith

D
ow

nl
oa

de
d 

06
/0

6/
16

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

162 ANKUR MOITRA

column of M and M j denote the jth row. Given a subset U ⊆ [n], we will let MU

denote the submatrix consisting of columns of M from the set U . (And, similarly,
MV is a submatrix of rows of M .)

Definition 2.1. rank+(M) is the smallest r such that M can be written as
M = AW where A and W are nonnegative and have dimension m × r and r × n
respectively.

Additionally, we will call M = AW a nonnegative matrix factorization of inner-
dimension r.

Definition 2.2. Let cone(A) = {∑i αiAi|∀i : αi ≥ 0} be the conic hull of
columns in A.

Note. Given A, there is a nonnegative matrix W such that M = AW if and only
if each column Mi of M is contained in cone(A).

Definition 2.3. Given A and a vector v ∈ R
m (recall A is dimension m × r),

we will call a subset S of columns of A admissible if v ∈ cone(AS).
We will make use of this definition below, where we will introduce a normal form

for nonnegative matrix factorization and show that it always exists. This normal form
will also make use of the lexicographic ordering on subsets of columns of A. However,
we caution that the definition we will use differs from the standard definition in how
it compares sets of different sizes.

Definition 2.4. Given two sets S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} of
the same size so that s1 ≤ s2 ≤ · · · ≤ sk and t1 ≤ t2 ≤ · · · ≤ tk, we say that S is
lexicographically before T if there is an i ∈ [k] and sj ≤ tj for all j = 1, 2, . . . , i − 1
and si < ti. Moreover, if S and T have different sizes, and |S| < |T |, then we define
S to be lexicographically before T .

Let M = AW be a nonnegative matrix factorization.
Definition 2.5. For each column Mi, let Si be the lexicographically first admis-

sible subset (of columns of A) for Mi. Similarly, for each row M j, let Tj be the lexico-
graphically first admissible subset (of rows of W ) for M j. We call M = AW stable if

1. for each i, the support of Wi is Si,
2. and for each j, the support of Aj is Tj.

Next, we show that a nonnegative matrix factorization of inner-dimension r can
always be made stable (while preserving nonnegativity and the inner-dimension).

Lemma 2.6. If M = AW is a nonnegative matrix factorization of inner-
dimension r, then there is an Ã and W̃ such that

1. M = ÃW̃ , Ã and W̃ are nonnegative and have inner-dimension r, and
2. M = ÃW̃ is stable.

Proof. The natural approach to prove this lemma is, if M = AW is not stable,
update columns in W or rows in A. The only subtle point is that if we update A and
W at the same time to Ã and W̃ , we may not have M = ÃW̃ . So the approach is to
alternate between a W -updating phase and an A-updating phase.

In a W -updating phase, for each column Mi let Si be the lexicographically first
subset of columns of A that is admissible for Mi. If Si is lexicographically (strictly)
earlier than the support of Wi, we find a vector W̃i that is nonnegative, supported
in Si, and satisfies Mi = AW̃i. If not, we set W̃i = Wi. In either case, we have that
Mi = AW̃i and hence M = AW̃ . At the end of this phase, we overwrite W with
W̃ . The A-updating phase is defined analogously, and throughout this procedure we
maintain the invariant that M = AW and A and W are nonnegative and have inner-
dimension r. Moreover, the support of columns of W and rows of A are monotonically
decreasing according to the lexicographical ordering, so this procedure terminates in
a finite number of steps.
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2.2. Few entries determine A and W . Throughout this section, letM = AW
be a stable nonnegative matrix factorization. The goal in this section is to demonstrate
that (given M), only a few entries in A and W are needed to determine the remaining
entries. This is only a property of stable factorizations and is not guaranteed to hold
for general factorizations.

Let rank(A) = s and let U ⊆ [m] be a set of s linearly independent rows in A.
Furthermore, let S1, S2, . . . , Sp ⊆ [r] be the (full) list of sets of s linearly independent
columns of AU (in lexicographic order). Note that p ≤ (

r
s

) ≤ 2r.
Definition 2.7. The ensemble of A (at U) is a list of linear transformations:

B1, B2, . . . , Bp where for each i, Bi is an r× s matrix that is zero on all rows outside
the set Si and restricted to rows in Si is (AU

Si
)−1.

Note that each submatrix AU
Si

is indeed invertible: rank(A) = s and U is a set
of s linearly independent rows so a set Si of columns of A is linearly independent
if and only if these vectors restricted to U are also linearly independent. The idea
behind this definition is that if a vector x is supported on the set Si, then taking just
the entries of Ax corresponding to U , we can recover x = BiA

Ux, and Bi is just a
zero-padding of (AU

Si
)−1 to make this work.

The main goal in this section is to show the following.
Lemma 2.8. For each column Mi, among the set of vectors S = {B1M

U
i , B2M

U
i ,

. . . , BpM
U
i }, Wi is the unique vector with lexicographically minimal support among

all nonnegative vectors in S.
We will break this lemma up into two parts.
Claim 2.9. Wi is contained in the set S.
Proof. Let Ri be the support of Wi. Then Ri must correspond to a linearly

independent set of columns of A—otherwise, we could find a nonnegative W̃i whose
support is a strict subset of Ri such that AW̃i = Mi, but this would violate the
condition of stability.

Because the sets of linearly independent columns of A are a matroid, there is a
set Si′ of s linearly independent columns of A for which Ri ⊆ Si′ . Hence,

Bi′M
U
i = Bi′(AWi)

U = Bi′A
UWi = v.

However, Bi′ is zero on rows outside the set Si′ , and restricting Bi′A
U to rows and

columns in Si′ is the s × s identity matrix. Since the support of Wi is contained in
Si′ , we have Wi = v.

We note a corollary of this lemma that will be useful later.
Corollary 2.10. The support of Wi corresponds to a linearly independent set

of columns in A.
Next, we prove the second part needed for the main result in this section.
Claim 2.11. For each vector Bi′M

U
i , ABi′M

U
i = Mi.

Proof. Let v = ABi′M
U
i . We prove this lemma in two parts: first, we prove that

vU = MU
i , and then we prove the full lemma from this. Since Bi′ is zero on rows

outside the set Si′ , we have

ABi′ = ASi′B
Si′
i′ = ASi′ (A

U
Si′ )

−1.

Hence, vU = AU
Si′

(AU
Si′

)−1MU
i = MU

i . Consider a j outside the set U . By the choice

of U , the row Aj can be expressed as a linear combination of rows in A in the set U :

Aj =
∑
j′∈U

αj,j′A
j′ .
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Since AWi = Mi, we have M j
i = AjWi =

∑
j′∈U αj,j′A

j′Wi =
∑

j′∈U αj,j′M
j′
i , and

hence

vj = AjBi′M
U
i =

∑
j′∈U

αj,j′A
j′Bi′M

U
i

=
∑
j′∈U

αj,j′v
j′ =

∑
j′∈U

αj,j′M
j′
i = M j

i .

Now we can prove the main lemma in this section.
Proof. We have already shown (Claim 2.9) that Wi occurs in the set S. Consider

any other nonnegative vector Bi′M
U
i = v. We need to show that the support of v is

lexicographically later than the support of Wi.
First, we claim that if v �= Wi then the support of Wi is not the same as the

support of v. Suppose not—i.e., v �= Wi and yet the support of v and of Wi are
identical. (Let this set be R.) Indeed, R must correspond to a linearly independent
set of columns of A (Corollary 2.10). Hence, we cannot have A(v −Wi) = �0 (using
Claim 2.11) with v −Wi �= �0 and support of v −Wi contained in R.

So the support of Wi and v are not identical, and one of these must be lexico-
graphically earlier. Suppose (for contradiction) that the support of v is earlier. We
know (Claim 2.9) that the support of Wi is an admissible set of columns of A for Mi.
This contradicts stability (because we could update Wi to v), and so we can conclude
that the support of Wi is lexicographically earlier.

Let rank(W ) = t and let V be a set of t linearly independent columns of W .
Then we can define an ensemble C1, C2, . . . , Cq for W at V analogously as we did for
A. Similarly, we have q ≤ (

r
t

)
and for all j, among the set

T =
{
M j

V C1,M
j
V C2, . . . ,M

j
V Cq

}

Aj is the vector with lexicographically minimal support among all nonnegative vectors
in T. (This follows from the above proof by interchanging the roles of A and W .)

2.3. A semialgebraic set, take 1. Our goal is to encode the question of
whether or not rank+(M) ≤ r as a nonemptiness problem for a semialgebraic set
with a small number of variables. Recall that Renegar’s algorithm allows us to spec-
ify an arbitrary Boolean function P on the signs of the polynomials, and as long as
we can efficiently evaluate P we will be able to use Renegar’s algorithm to determine
whether this system has a solution. Our first attempt will be to choose the entries
in B1, B2, . . . , Bp and C1, C2, . . . , Cq as the variables. Our first goal is to construct a
set of polynomial constraints (using the variables) so that setting B1, B2, . . . , Bp and
C1, C2, . . . , Cq to the ensembles of a stable factorization M = AW is a valid solution.
We then show (conversely) that any valid setting of the variables in fact yields a
nonnegative matrix factorization with inner-dimension r.

Suppose we are given the sets U and V and the ensembles B1, B2, . . . , Bp and
C1, C2, . . . , Cq.

Definition 2.12. Let first(S) applied to a collection of vectors output the vector
with lexicographically minimal support among all nonnegative vectors in S.

This function can output FAIL if there is no nonnegative vector in S.
Claim 2.13. Set

Wi ← first({B1M
U
i , B2M

U
i , . . . , BpM

U
i }),(2.1)

Aj ← first({M j
V C1,M

j
V C2, . . . ,M

j
V Cq}).(2.2)
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There is an explicit Boolean function P that determines if for all i and j: (1) Wi ≥ �0,
(2) Aj ≥ �0, and (3) AjWi = M j

i . Furthermore, P is a function of sign constraints on
the polynomials:

1. Bi′M
U
i (for all i, i′),

2. M j
V Cj′ (for all j, j′), and

3. M j
V Cj′Bi′M

U
i −M j

i (for all i, i′, j, j′).
This claim is immediate, but we include a description of the Boolean function P

for completeness
Proof. The Boolean function P will be an AND over subfunctions Pi,j defined for

each i and j: Pi,j will compute the index i′ and j′ so that Bi′M
U
i and M j

V Cj′ are lexi-

cographically earliest among nonnegative vectors in the sets S = {B1M
U
i , B2M

U
i , . . . ,

BpM
U
i } and T = {M j

V C1,M
j
V C2, . . . ,M

j
V Cq}, respectively. This can be computed

from only the signs of entries in the vectors in these sets.
Then Pi,j will check that for this i′ and j′, that M j

V Cj′Bi′M
U
i = M j

i . If there is
no nonnegative vector in either S or T, or there are two or more nonnegative vectors
tied for lexicographically earliest support (among only nonnegative vectors), then Pi,j

will output FAIL.
Lemma 2.14. P will output PASS when {Bi′}i′ and {Cj′}j′ are chosen as the

ensembles of a stable factorization M = AW .
Proof. This follows immediately from Lemma 2.8. However, note that Lemma 2.8

establishes uniqueness (i.e., the vector with lexicographically earliest support among
all nonnegative vectors is unique), and hence each Pi,j will not prematurely output
FAIL for these choices of {Bi′}i′ and {Cj′}j′ .

Next, we prove the converse direction.
Lemma 2.15. If P outputs PASS, then A and W (as defined in (2.1) and (2.2))

are a nonnegative matrix factorization of inner-dimension r.
Proof. We have that Wi and Aj are nonnegative (otherwise, P would have output

FAIL) and P explicitly checks that AjWi = M j
i and hence M = AW . Note that Bi′

and Cj′ are r×s and t×r dimensional, so M = AW does indeed have inner-dimension
r.

Combining Lemma 2.14 and Lemma 2.15, we have the following.
Theorem 2.16. P outputs PASS for some choice of s, t, U, V, p, and q and some

setting of the variables B1, B2, . . . , Bp and C1, C2, . . . , Cq if and only if rank+(M) ≤
r.

This leads to a natural approach for computing the nonnegative rank:
1. Guess s = rank(A), t = rank(W ) (for some stable factorization

M = AW)

2. Guess U and V
3. Guess p ≤ (

r
s

)
and q ≤ (

r
t

)
4. Define a semi-algebraic set where the entries of B1, B2, . . . , Bp

and C1, C2, . . . , Cq are variables (using the Boolean function P in

Claim 2.13)

5. Run an algorithm for deciding if the semi-algebraic set is

non-empty (e.g., [37])

Currently, the best algorithms for deciding if a semialgebraic set is nonempty run
in time (

# polynomials×D
)O(k)

,

where D is the maximum degree and k is the number of variables. The main drawback
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of the above approach is that the number of variables is large: There are rsp+rtq vari-
ables, and indeed p and q can be exponential in r. For example, if we take the columns
of A to be vertices of the cross-polytope (in r/2 dimensions), then we do in fact need
exponentially many simplices (one corresponding to each linear transformation Bi′ ) if
we want their union to cover the convex hull of the cross-polytope and nothing else.
This follows because the cross-polytope has exponentially many facets but a simplex
in r dimensions only has r + 1 facets, and each facet of the cross-polytope must be
covered by some facet of one of the simplices.

Hence, the running time of the above algorithm will be doubly exponential in r.
However, we will be able to reduce the number of variables in this semialgebraic set
to polynomial in r. The definition of stability is somewhat delicate, but this is what
allows us to get an exponential reduction in the number of variables.

2.4. A semialgebraic set, take 2. Here, we reduce the number of variables
in the semialgebraic set exponentially by exploiting algebraic dependence among the
matrices in the ensembles. Consider the ensemble: B1, B2, . . . , Bp, where for each i,
there is a linearly independent set Si of s columns of A and (Bi)

Si = (AU
Si
)−1. Recall

Cramer’s rule as follows.
Lemma 2.17 (Cramer). Let R be an s × s invertible matrix. Then (R−1)ji =

det(R−i
−j)/det(R), where R−i

−j is the matrix R with the ith row and the jth column
removed.

The key idea is that if we consider the polynomial constraints in Claim 2.13, the
variables are the entries of Bi′ and there are just too many variables. But we can
exploit the algebraic dependencies between the entries of Bi′ in the true solution we
are looking for to reduce the number of variables. For example, consider Bi′M

U
i which

is a vector whose entries are linear functions of the variables in Bi′ . Then the Boolean
function P in Claim 2.13 is itself a function of the signs of the entries of this vector
(and of the signs of other polynomials in the system of constraints). However, if we
are interested in the signs of entries of this vector, some are zero just due to padding
and the others that are nonzero are of the form (AU

Si′
)−1MU

i . But we can express
the entries of the inverse as ratios of polynomials in the new variables corresponding
to entries in AU using Cramer’s rule above. We can then clear the denominator and
take the signs of actual polynomials and infer signs of the ratios of polynomials, and
in this way we can express the system of polynomial constraints given in Claim 2.13
for our target solution equivalently as a Boolean function of signs of degree at most s2

polynomials in the entries of AU . Similarly, in Claim 2.13 we have terms of the form

M j
V Cj′Bi′M

U
i −M j

i .

This is a matrix whose entries are quadratic functions of the variables in Bi′ and Cj′ .
Again, for our target solution we can express this as

∑
�∈Tj′∩Si′

(
M j

V (W
Tj′
V )−1

)
�

(
(AU

Si′ )
−1MU

i

)�

−M j
i .

And now we can apply Cramer’s rule again to express the entries of the inverse as
ratios of polynomials and clearing the denominator. In this way, the sign of any entry
in M j

V Cj′Bi′M
U
i − M j

i can be expressed through the signs of degree at most 2r2

polynomials in the entries of AU and WV . Applying the transformations to the set
of constraints defined in Claim 2.13, we immediately get a semialgebraic set that has
rs + rt variables and has r(p + q) + (p + q) + mnpq polynomials of degree at most
2r2.
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Note that Lemma 2.15 still implies that if P outputs PASS, rank+(M) ≤ r and
a nonnegative matrix factorization of inner-dimension r can be computed from the
settings of the variables for the valid point in the semialgebraic set. And Lemma 2.8
still implies that this semialgebraic set is nonempty if rank+(M) ≤ r (since, moreover,
Lemma 2.6 implies that there is a stable factorization). Hence, the semialgebraic set
has a solution if and only if rank+(M) ≤ r.

We can now use this reduction and known algorithms for solving systems of
polynomial inequalities (as described in section 1.2) to give a nearly optimal algorithm
for deciding if M has nonnegative rank at most r. Additionally, if rank+(M) ≤ r,
we can also compute the corresponding nonnegative factors A and W to within an
additive δ (at the expense of an extra factor log 1

δ in the running time). In [37],
Renegar gave the first algorithm for deciding if a system of polynomial inequalities
has a solution that runs in time exponential in the number of variables. We note that
in [38], Renegar extended this algorithm to also return a δ-approximate solution to an
algebraic formula, and this is the algorithm that we will use to actually compute the
factors A and W . We also note that these algorithms only assume access to an oracle
to the Boolean function P, and our function P is computable in polynomial time. Let
L denote the maximum bit complexity of any coefficient in M . Then applying the
algorithms in [37, 38, 6] with our reduction, we obtain the following.

Theorem 2.18. There is a poly(n,m,L)(r4r+1mn)cr
2

time algorithm for de-
ciding if the nonnegative rank of M is at most r. Additionally, given δ > 0 (and

if rank+(M) ≤ r), the algorithm runs in time poly(n,m,L, log 1
δ )(r4

r+1mn)cr
2

and

returns factors Ã and W̃ that are entrywise close (within an additive δ) to A and W
(respectively) that are a nonnegative matrix factorization of M of inner-dimension at
most r. Furthermore, the entries of Ã and W̃ have rational coordinates with numer-
ators and denominators bounded in bit length by O(L(r4r+1mn)cr

2

+ log 1
δ ).

Alternatively, in the Blum–Shub–Smale (BSS) model [7], one can instead use the
algorithm in [37, 6] to decide if rank+(M) ≤ r and the running time of this algorithm

is poly(n,m) + (r4r+1mn)cr
2

.
We emphasize that the above algorithm is based on answering a purely algebraic

question: How many variables are needed (in a system of polynomial inequalities)
to encode the question whether M has nonnegative rank at most r? We obtain an
exponential improvement on the number of variables, over the results in [2], and
this coupled with algorithms for computing a solution to a system of polynomial
inequalities has an immediate algorithmic implication. The algorithm we obtain here
is in fact nearly optimal under the exponential time hypothesis of Impagliazzo and
Paturi [22], since Arora et al. [2] showed that an algorithm that decides if rank+(M) ≤
r in (nm)o(r) time would imply a subexponential time algorithm for 3-SAT.

3. Fragile instances of nonnegative rank. An important property of the
rank of a matrix is that if a given matrix M has rank r, there is an r × r submatrix
of M that also has rank r. Hence, rank admits a small certificate that serves as proof
that a matrix does indeed have rank at least r, and this fact plays a crucial role in
many applications.

Here, we give highly fragile instances of nonnegative rank: There is a (nonnega-
tive) matrix N of dimension n× n with rank+(N) = 4r, yet for any submatrix N ′ of
at most n

3r columns of N , rank+(N ′) ≤ 3r. To put this result in context, consider a
system of linear inequalities in d dimensions that is infeasible. A basic result in dis-
crete geometry [29] is that there is a subset of at most d+ 1 of the linear inequalities
that is infeasible. In section 2.4, we gave a system of polynomial inequalities in 2r2
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dimensions that has a solution if and only if rank+(M) ≤ r. One might hope that
this system is infeasible if and only if there is a small subset of the inequalities that
alone is infeasible and that this would yield a subset of (say) the columns of M that
“proves” that rank+(M) > r. Yet this is not the case, and systems of polynomial in-
equalities do not have the “Helly property” [29]. (Indeed, their individual constraints
do not necessarily correspond to convex regions.) We will proceed by constructing a
lower-dimensional fragile instance M and then using it to construct a larger, block
diagonal matrix N .

To give fragile instances of nonnegative rank, we will make use of a series of
reductions of Vavasis [44] and a particular gadget in Arora et al. [2]. In fact, we
make use of a crucial property of the reduction in [44] from nonnegative rank to the
intermediate simplex problem—in a sense, that rows of M are mapped to points and
columns of M are mapped to constraints when reducing to the intermediate simplex
problem. We will only be interested in the intermediate simplex problem in two
dimensions.

Definition 3.1. An instance of the intermediate polygon problem is a polygon
P ⊂ R

2 and a set S ⊂ P of |S| = n points. The goal is to find a triangle T with
S ⊂ T ⊂ P , in which case we call this a YES instance and otherwise call it a NO
instance.

Our goal is to construct an explicit instance of this problem that is a NO instance
and yet restricting to any set S′ ⊂ S of at most n

3 points is a YES instance, and
we accomplish this latter task by noticing that a particular gadget used in [2] (with
a slight modification) has exactly this property. We will then be able to use this
instance of the intermediate simplex problem as a gadget to construct fragile instances
of nonnegative rank.

We will begin with some simple geometric lemmas and definitions.
Definition 3.2. Let Cd = {(x, y)|x2 + y2 ≤ d}, and we will write C for C1. Let

o denote the origin.
Definition 3.3. Let E be the set of all equilateral triangles T ⊂ C where the

vertices of T are on the boundary of C.
In our arguments, we will also make use of the (largest) inner circle c that is

contained in all triangles in E. Equivalently, this circle is the intersection of all
triangles in E.

Definition 3.4. Let c = ∩T∈ET = Cd where d is defined as follows: (for an
arbitrary T ∈ E), d is the minimum distance from the boundary of T to the origin.

In particular, c = C1/4, although we will not need this.
In our instance of the intermediate polygon problem, the inner polygon will be

formed as an intersection of n triangles T each in the set E. The common intersection
of these triangles will contain c, and next we prove that in fact any triangle (contained
in C) that contains c must in fact be equilateral. This will help us reason about what
sorts of triangles can make our instance a YES instance. The following two lemmas
are proved in [2], but we include the proofs here for completeness.

Lemma 3.5 (see [2]). Any arbitrary triangle T with c ⊂ T ⊂ C must be in the
set E.

Proof. Consider a triangle T with c ⊂ T ⊂ C. Then let e1, e2, and e3 be the three
edges of T and let θ1, θ2, and θ3 be the viewing angle from the origin o, namely, θi is
the angle formed by 〈ai, o, bi〉, where ai and bi are the endpoints of ei.

Since o ∈ T , we have that θ1 + θ2 + θ3 = 2π. Consider an edge ei. We will prove,
by contradiction, that ei ∩ c must contain exactly one point (i.e., ei must be tangent
to the circle c). Suppose not—since c ⊂ T , we must have that ei ∩ c = ∅. Then let

D
ow

nl
oa

de
d 

06
/0

6/
16

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONNEGATIVE RANK 169

� be the line parallel to ei that is tangent to c. Let e′i be the intersection of � with
C. The viewing angle θ′i of e′i is strictly larger than θi, yet the intersection of any
line � tangent to c with C has viewing angle exactly 2π

3 , and hence we conclude that
θ1 + θ2 + θ3 < 2π, which is a contradiction.

So each ei is tangent to c, and in fact we can use a similar argument to con-
clude that each ei must be exactly the intersection of a line � tangent to c with C.
(Otherwise, again we would have that θ1 + θ2 + θ3 < 2π.)

Hence, we conclude that each edge of T has the same length, and each endpoint
is on the boundary of C so T ∈ E.

Throughout the remainder of this section, consider any finite set T1, T2, . . . , Tn ∈
E of equilateral triangles, and let S be the vertices of ∩ni=1Ti.

Lemma 3.6 (see [2]). Let T be a triangle with S ⊂ T ⊂ C. Then T ∈
{T1, T2, . . . , Tn}.

Proof. Clearly, we have that conv(S) ⊂ T since T is convex, and we also have
that c ⊂ conv(S) = ∩ni=1Ti. So by Lemma 3.5, we can conclude that T must be in E.
Suppose that T /∈ {T1, T2, . . . , Tn}.

Let {p1, p2, p3} = T ∩ c (i.e., these are the three points on the boundary of T
closest to the origin). Similarly, for each Ti let {pi1, pi2, pi3} = Ti ∩ c. Then {p1, p2, p3}
is a rotation (by < 2π

3 ) of {pi1, pi2, pi3}, and hence {p1, p2, p3} are each strictly in the
interior of Ti.

Hence, {p1, p2, p3} are on the boundary of conv(S) ∩ T but not on the boundary
of conv(S), so T cannot contain conv(S).

Lemma 3.7. For each edge ej of a triangle Ti, |ej ∩ S| = 2 and, further-
more, for each s ∈ S, s intersects the edges of exactly two (distinct) triangles in
{T1, T2, . . . , Tn}.

Proof. Each edge of conv(S) is by definition a subsegment of some unique edge
ej of some triangle in {T1, T2, . . . , Tn}. All we need to show is that to each edge
ej (of some triangle in {T1, T2, . . . , Tn}) we can find an edge of conv(S) which is a
subsegment of ej:

Let pj be the closest point on ej to the origin. As we argued in Lemma 3.6, for all
other triangles, pj is strictly in the interior. So the ray from the origin to pj hits the
segment ej first (out of all edges of all triangles in E). Hence, pj is on the boundary
of conv(S), but only one edge (namely ej) contains pj so the edge of conv(S) that
contains pj is a subsegment of ej , as desired.

Corollary 3.8. |S| = 3n.
As we noted, the gadget that we use here is a slight modification of the one in

[2]—and the modification that we need involves rescaling.
Definition 3.9. For each triangle T ∈ E, define T (1−ε) as the scaling down of

T such that the vertices of T (1−ε) are on the boundary of C1−ε.
This rescaling is precisely what ensures that the original instance is a NO in-

stance, but as we will see, if ε is sufficiently small, then every small subset of S is a
YES instance. Note that for now the outer bounding region is not a polygon but a
circle. We will work with this for the time being and fix it later by restricting to a
polygon inside of C1−ε.

Definition 3.10. Let Si be the subset of S that is in T
(1−ε)
i .

Claim 3.11. If ε is sufficiently small, then Si = S − (boundary(Ti) ∩ S).
Proof. Recall that conv(S) = ∩ni=1Ti. Consider an edge ej of Ti. Using Lemma 3.7,

we have |ej ∩ S| = 2. Let H1 and H2 be the hyperplanes whose boundary contains

ej and e
(1−ε)
j , respectively. Then we can choose ε small enough such that the re-
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gion strictly between H1 and H2 does not contain any points in S, in which case
Si = S − Ti ∩ S.

So consider the following instance of the intermediate polygon problem:

• Let P = conv(∪iT (1−ε)
i ),

• and let Q = ∩ni=1Ti.
Moreover, P is specified by its edges, and S is a set of points so we choose it to be
the vertices of Q.

Claim 3.12. (P, S) is a NO instance.

Proof. P ⊂ C1−ε by the definition of T
(1−ε)
i , and using Lemma 3.5, any triangle

T contained in C that contains S must be in the set E; and since any triangle in E
has its vertices on the boundary of C, we conclude that T is not contained in C1−ε

and hence (P, S) is indeed unsatisfiable.
Lemma 3.13. For any S′ ⊂ S with |S′| < n/2, (P, S′) is a YES instance.
Proof. Using Lemma 3.7, each s ∈ S intersects exactly two edges of triangles in

{T1, T2, . . . , Tn}, so if |S′| < n/2, there must be a triangle Ti for which Ti ∩ S′ = ∅.
Consider T

(1−ε)
i : Using Claim 3.11, we conclude that T

(1−ε)
i ∩S′ = S′−Ti∩S′ =

S′. And we have that T
(1−ε)
i ⊂ C1−ε, so (P, S′) is indeed satisfiable.

We use the following lemma from Vavasis.
Lemma 3.14 (see [44]). Let rank(M) = r, and let M = UV , where U and V

have r columns and rows, respectively. Then M has rank+(M) = r if and only if
there is an invertible r × r matrix Q such that UQ−1 and QV are both nonnegative.

Vavasis gives a reduction from nonnegative rank to the intermediate simplex prob-
lem [44], but here we give a slight modification of this reduction that will make our
exposition easier.

Consider the plane F = {(x, y, z)|x + y + z = 1}. Affinely map P to this plane
so that P is contained in the nonnegative orthant (scale down P , if need be), and let
the conic hull of vectors in P and the origin be denoted by the cone C.

Let C = {�v|Av ≥ 0} and set the rows of U to be the vertices of F ∩ C and let
V = AT . Note that the vertices of F ∩ C are just the three-dimensional coordinates
corresponding to the vertices of P . Note that UV is a nonnegative matrix, since each
vertex of F ∩ C is contained in the cone C.

Lemma 3.15. There is an invertible r× r matrix Q such that UQ−1 and QV are
both nonnegative if and only if (P, S) is a YES instance.

Proof. Suppose (P, S) is a YES instance. Let the rows of Q be the three-
dimensional coordinates of the vertices of the triangle T (i.e., these are the vectors on
the plane F ). These points are in the cone C, so QV is nonnegative. Furthermore,
S ⊂ T so each row of U is in the convex hull of rows of Q and UQ−1 is nonnegative.

Conversely, consider an invertible Q for which UQ−1 and QV are both nonneg-
ative. For each row in Q, let pi be the intersection of the ray through the origin
and the row in Q with F . pi ∈ C, so the associated two-dimensional point is in P .
Furthermore, each row of U is in the conic hull of {p1, p2, p3}, and each pi and each
row in U has nonnegative entries and the sum of the entries is one. Hence, each pi and
each row in U has unit �1 norm. So each row of U is in the convex hull of {p1, p2, p3},
and so the associated two-dimensional triangle contains S.

Note that in this reduction, rows of M = UV are mapped one-to-one to points in
S and columns of M are mapped one-to-one to facets in P . Hence, (U, V ) is a NO
instance, but any set of < n rows of U is a YES instance.

So M = UV is a nonnegative matrix of dimension 3n× 3n with nonnegative rank
≥ 4 and yet any submatrix of < n rows has nonnegative rank ≤ 3. We can boost this
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construction as follows. Let N be a 3rn × 3rn matrix which is block diagonal, and
has M along the diagonal.

Claim 3.16. rank+(N) = rank+(M).
Proof. Let M (1),M (2), . . . ,M (r) be the copies of M along the diagonal. Consider

a nonnegative matrix factorization N = AW of minimum inner-dimension. We can

write N =
∑rank+(N)

i=1 AiW
T
i . Then each rank one matrix AiW

T
i must have its

support entirely contained in some M (j). And for any M (j), the set of i where
the support of AiW

T
i is contained the support of M (j) yields a nonnegative matrix

factorization for M (j). This implies the claim.
Using this claim, we have the following.
Theorem 3.17. For any r ∈ N, there is a 3rn × 3rn nonnegative matrix N

which has nonnegative rank at least 4r and yet for any < n rows, the corresponding
submatrix has nonnegative rank at most 3r.

An interesting open question is to characterize the family of matrices for which
nonnegative rank can be certified by a small submatrix, since in many applications is
quite natural to assume that the input matrices satisfy these conditions.

Discussion. The natural open question is to close the remaining algorithmic gap
between the upper and lower bounds for computing the nonnegative rank. In fact, we
believe that it is the lower bound that can be improved.

Open Question 1. Does computing the nonnegative rank require time (nm)o(r
2)

under the exponential time hypothesis [22]?
In particular, the construction in Arora et al. [2] uses only low-dimensional gad-

gets, and in the target factorization AU has only O(1) nonzeros in each row. Thus,
the approach we presented here would be able to use O(r) variables instead of O(r2).
However we believe that it should be possible to construct more powerful gadgets in
higher dimensions beyond merely constructing disjoint low-dimensional gadgets and
stitching them together, and this could in principle lead to better lower bounds.
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