12,042 research outputs found

    Efficient option pricing with transaction costs

    Get PDF
    A fast numerical algorithm is developed to price European options with proportional transaction costs using the utility-maximization framework of Davis (1997). This approach allows option prices to be computed by solving the investor’s basic portfolio selection problem without insertion of the option payoff into the terminal value function. The properties of the value function can then be used to drastically reduce the number of operations needed to locate the boundaries of the no-transaction region, which leads to very efficient option valuation. The optimization problem is solved numerically for the case of exponential utility, and comparisons with approximately replicating strategies reveal tight bounds for option prices even as transaction costs become large. The computational technique involves a discrete-time Markov chain approximation to a continuous-time singular stochastic optimal control problem. A general definition of an option hedging strategy in this framework is developed. This involves calculating the perturbation to the optimal portfolio strategy when an option trade is executed

    A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs

    Full text link
    This is the author’s version of a work that was accepted for publication in Applied Soft Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Soft Computing, Vol 36 (2015) DOI 10.1016/j.asoc.2015.06.053A memetic approach that combines a genetic algorithm (GA) and quadratic programming is used to address the problem of optimal portfolio selection with cardinality constraints and piecewise linear transaction costs. The framework used is an extension of the standard Markowitz mean–variance model that incorporates realistic constraints, such as upper and lower bounds for investment in individual assets and/or groups of assets, and minimum trading restrictions. The inclusion of constraints that limit the number of assets in the final portfolio and piecewise linear transaction costs transforms the selection of optimal portfolios into a mixed-integer quadratic problem, which cannot be solved by standard optimization techniques. We propose to use a genetic algorithm in which the candidate portfolios are encoded using a set representation to handle the combinatorial aspect of the optimization problem. Besides specifying which assets are included in the portfolio, this representation includes attributes that encode the trading operation (sell/hold/buy) performed when the portfolio is rebalanced. The results of this hybrid method are benchmarked against a range of investment strategies (passive management, the equally weighted portfolio, the minimum variance portfolio, optimal portfolios without cardinality constraints, ignoring transaction costs or obtained with L1 regularization) using publicly available data. The transaction costs and the cardinality constraints provide regularization mechanisms that generally improve the out-of-sample performance of the selected portfolios

    Sparse and stable Markowitz portfolios

    Get PDF
    We consider the problem of portfolio selection within the classical Markowitz meanvariance optimizing framework, which has served as the basis for modern portfolio theory for more than 50 years. Efforts to translate this theoretical foundation into a viable portfolio construction algorithm have been plagued by technical difficulties stemming from the instability of the original optimization problem with respect to the available data. Often, instabilities of this type disappear when a regularizing constraint or penalty term is incorporated in the optimization procedure. This approach seems not to have been used in portfolio design until very recently. To provide such a stabilization, we propose to add to the Markowitz objective function a penalty which is proportional to the sum of the absolute values of the portfolio weights. This penalty stabilizes the optimization problem, automatically encourages sparse portfolios, and facilitates an effective treatment of transaction costs. We implement our methodology using as our securities two sets of portfolios constructed by Fama and French: the 48 industry portfolios and 100 portfolios formed on size and book-to-market. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the naĂŻve portfolio comprising equal investments in each available asset. In addition to their excellent performance, these portfolios have only a small number of active positions, a desirable feature for small investors, for whom the fixed overhead portion of the transaction cost is not negligible. JEL Classification: G11, C00Penalized Regression, Portfolio Choice, Sparse Portfolio

    An ADMM Algorithm for a Class of Total Variation Regularized Estimation Problems

    Full text link
    We present an alternating augmented Lagrangian method for convex optimization problems where the cost function is the sum of two terms, one that is separable in the variable blocks, and a second that is separable in the difference between consecutive variable blocks. Examples of such problems include Fused Lasso estimation, total variation denoising, and multi-period portfolio optimization with transaction costs. In each iteration of our method, the first step involves separately optimizing over each variable block, which can be carried out in parallel. The second step is not separable in the variables, but can be carried out very efficiently. We apply the algorithm to segmentation of data based on changes inmean (l_1 mean filtering) or changes in variance (l_1 variance filtering). In a numerical example, we show that our implementation is around 10000 times faster compared with the generic optimization solver SDPT3

    Multi-Period Trading via Convex Optimization

    Full text link
    We consider a basic model of multi-period trading, which can be used to evaluate the performance of a trading strategy. We describe a framework for single-period optimization, where the trades in each period are found by solving a convex optimization problem that trades off expected return, risk, transaction cost and holding cost such as the borrowing cost for shorting assets. We then describe a multi-period version of the trading method, where optimization is used to plan a sequence of trades, with only the first one executed, using estimates of future quantities that are unknown when the trades are chosen. The single-period method traces back to Markowitz; the multi-period methods trace back to model predictive control. Our contribution is to describe the single-period and multi-period methods in one simple framework, giving a clear description of the development and the approximations made. In this paper we do not address a critical component in a trading algorithm, the predictions or forecasts of future quantities. The methods we describe in this paper can be thought of as good ways to exploit predictions, no matter how they are made. We have also developed a companion open-source software library that implements many of the ideas and methods described in the paper

    A recursive algorithm for multivariate risk measures and a set-valued Bellman's principle

    Full text link
    A method for calculating multi-portfolio time consistent multivariate risk measures in discrete time is presented. Market models for dd assets with transaction costs or illiquidity and possible trading constraints are considered on a finite probability space. The set of capital requirements at each time and state is calculated recursively backwards in time along the event tree. We motivate why the proposed procedure can be seen as a set-valued Bellman's principle, that might be of independent interest within the growing field of set optimization. We give conditions under which the backwards calculation of the sets reduces to solving a sequence of linear, respectively convex vector optimization problems. Numerical examples are given and include superhedging under illiquidity, the set-valued entropic risk measure, and the multi-portfolio time consistent version of the relaxed worst case risk measure and of the set-valued average value at risk.Comment: 25 pages, 5 figure
    • 

    corecore