35,438 research outputs found

    Decentralized Motion Planning with Collision Avoidance for a Team of UAVs under High Level Goals

    Full text link
    This paper addresses the motion planning problem for a team of aerial agents under high level goals. We propose a hybrid control strategy that guarantees the accomplishment of each agent's local goal specification, which is given as a temporal logic formula, while guaranteeing inter-agent collision avoidance. In particular, by defining 3-D spheres that bound the agents' volume, we extend previous work on decentralized navigation functions and propose control laws that navigate the agents among predefined regions of interest of the workspace while avoiding collision with each other. This allows us to abstract the motion of the agents as finite transition systems and, by employing standard formal verification techniques, to derive a high-level control algorithm that satisfies the agents' specifications. Simulation and experimental results with quadrotors verify the validity of the proposed method.Comment: Submitted to the IEEE International Conference on Robotics and Automation (ICRA), Singapore, 201

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Plan Synthesis for Knowledge and Action Bases

    Get PDF
    We study plan synthesis for a variant of Knowledge and Action Bases (KABs), a rich, dynamic framework, where states are description logic (DL) knowledge bases (KBs) whose extensional part is manipulated by actions that possibly introduce new objects from an infinite domain. We show that plan existence over KABs is undecidable even under severe restrictions. We then focus on state-bounded KABs, a class for which plan existence is decidable, and provide sound and complete plan synthesis algorithms, which combine techniques based on standard planning, DL query answering, and finite-state abstraction. All results hold for any DL with decidable query answering. We finally show that for lightweight DLs, plan synthesis can be compiled into standard ADL planning
    corecore