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Abstract

We study plan synthesis for a variant of Knowl-
edge and Action Bases (KABs), a rich, dynamic
framework, where states are description logic (DL)
knowledge bases (KBs) whose extensional part is
manipulated by actions that possibly introduce new
objects from an infinite domain. We show that plan
existence over KABs is undecidable even under se-
vere restrictions. We then focus on state-bounded
KABs, a class for which plan existence is decid-
able, and provide sound and complete plan synthe-
sis algorithms, which combine techniques based on
standard planning, DL query answering, and finite-
state abstraction. All results hold for any DL with
decidable query answering. We finally show that
for lightweight DLs, plan synthesis can be com-
piled into standard ADL planning.

1 Introduction

Recently, there has been an increasing interest in formalisms
that integrate static structural knowledge, as expressed, e.g.,
in description logics (DLs) [Baader et al., 2003], with action-
based mechanisms, to capture a domain’s evolution over time.
Combining these two aspects into a single logical system
is known to be difficult and easily leading to undecidabil-
ity, even for simple forms of inference about system dy-
namics, when the logics used are rather limited [Wolter and
Zakharyaschev, 1999; Gabbay er al., 2003]. To overcome
these restrictions, a recent line of work by Bagheri Hariri
et al. [2013b] has introduced Knowledge and Action Bases
(KABSs). Such systems rely on Levesque’s functional ap-
proach [Levesque, 1984] to operate over a full-fledged DL
knowledge base (KB), by means of actions: actions evolve the
system by querying the current state using logical inference
(ASK operation), and then using the derived facts to assert
new knowledge in the resulting state (TELL operation).
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A prominent feature of KABs is that actions allow one to
incorporate into the KB external input provided by fresh ob-
jects taken from an infinite domain. This gives rise, in general,
to an infinite-state system, in which reasoning is undecidable.
Nevertheless, decidability of verification of first-order tem-
poral properties has been obtained for KABs that are state-
bounded [Bagheri Hariri et al., 2013a; 20141, i.e., in which
the number of objects in each single state is bounded a-priori,
but is unbounded along single runs, and in the whole system.

Here, we study the problem of planning, specifically plan
existence and synthesis [Ghallab er al., 2004; Cimatti et al.,
2008], for knowledge-intensive dynamic systems over infi-
nite domains. For doing so we consider a variation of KABs,
termed Explicit-Input KABs (eKABs), more suited for our
purposes, in which the input-related information for an ac-
tion is made explicit in its signature, and not hidden in its
conditional effects. In fact, eKABs can be considered as a
concrete instantiation of the more abstract framework of De-
scription Logic-based Dynamic Systems (DLDS) [Calvanese
et al., 2013b], and inherit its possibility of abstracting away
the specific DL formalism used to capture the underlying KB.

We show that, in line with previous work on planning in
rich settings [Erol ef al., 1995], plan existence is undecidable
even for severely restricted eKABs. We prove decidability in
PSPACE data complexity of such problem, for state-bounded
eKABs, by combining techniques based on standard plan-
ning, DL query answering, and finite-state abstractions for
DLDSs. Our work is similar in spirit to the one by Hoffmann
et al. [2009], as combining a rich knowledge-based setting
with the possibility of incorporating external input. However,
to the best of our knowledge, our setting is the first one where
planning is decidable without severe restrictions, in particular
on how the external input is handled. We present a sound and
complete algorithm, returning plans that represent templates
for the original synthesis problem, defined over an infinite do-
main. We then concentrate on eKABs based on lightweight
DLs of the DL-Lite family [Calvanese et al., 2007b; 2009]
and show that, in this case, plan synthesis can also be tackled
by compilation into standard ADL, which can then be pro-
cessed by any off-the-shelf ADL planner [Pednault, 1994].

2 Description Logic Knowledge Bases

Let A be a countably infinite universe of objects, acting as
standard names [Levesque and Lakemeyer, 2001]. A (DL)
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knowledge base (KB) (T, A) consists of a TBox T, captur-
ing the intensional knowledge on the domain of interest, and
an ABox A, capturing the extensional knowledge: T is a fi-
nite set of universal, first-order (FO) assertions based on con-
cepts (unary predicates) and roles (binary relations); A is a
finite set of assertions, or facts, i.e., atomic formulas N (d)
and P(d,d’), with N a concept name, P a role name, and
d,d € A. By ADOM(A) we denote the set of objects oc-
curring in A. For details on DLs, we refer to [Baader et al.,
2003]. To maintain a clear separation between the intensional
and the extensional levels, we disallow nominals (concepts
interpreted as singletons) in 7.

We adopt the standard FO semantics for DL KBs. When
(T, A) is satisfiable, i.e., admits at least one model, we also
say that A is T-consistent. A KB (T, A) logically implies an
ABox assertion «, written (T, A) = «, if every model of
(T, A) is also a model of a. Two ABoxes A; and A, are
logically equivalent modulo renaming wrt. a TBox T, if they
imply the same assertions, up to object renaming. When this
holds, we write A; %}TL As, where h denotes the bijection that
renames the objects occurring in A; into those in A,.

We use queries to extract information from a KB. A union
of conjunctive queries (UCQ) q over a KB (T, A) is a FO for-
mula \/, -, .,, 3vi.conj;(Z,y;), where conj;(Z, ;) is a con-
junction of equality assertions and atoms mentioning con-
cept/role names of 7T, with variables from & U ¢; and ob-
jects as terms. A boolean UCQ is one without free variables.
By ANS(gq, T, A) we denote the set of (certain) answers of a
query g over a KB (T, A), consisting of all the substitutions
0 of ¢’s free variables with objects from ADOM(A), s.t. g6
holds in every model of (T, A). We also consider the EQL-
Lite extension of UCQs [Calvanese et al., 2007al, referred to
as ECQs. The language of ECQs over a TBox T is:'

Q == g | Q| Q1AQ: | 2.0,

where ¢ is a UCQ. The certain answers ANS(Q, T, A) of an
ECQ Q over (T, A) are obtained by first computing, for each
atomic ECQ [g], the certain answers of g, and then composing
the obtained answers through the FO constructs in ), with ex-
istential variables ranging over ADOM(A). Hence [q] acts as a
minimal knowledge operator, and negation and quantification
applied over UCQs are interpreted epistemically [Calvanese
et al., 2007al. Under this semantics, ECQs are generic, in the
sense of genericity in databases [Abiteboul et al., 1995]: a
query evaluated over two logically equivalent ABoxes returns
the same answer, modulo object renaming.

As customary, we consider DLs for which query answer-
ing (and hence the standard reasoning tasks of KB satisfia-
bility and logical implication) is decidable. In our examples,
we use ALCOTH [Baader et al., 2003]. We also consider
lightweight DLs of the DL-Lite family, in particular DL-Lite 4
[Calvanese et al., 2009], for which checking KB satisfiabil-
ity and answering ECQs over a KB are both FO-rewritable
[Calvanese et al., 2007a; 2009]. The latter means that every
ECQ @ expressed over a DL-Lite , TBox T can be effectively
rewritten into a FO query rew(Q,T) s.t., for every ABox A,
the certain answers ANS(Q, T, A) can be computed by evalu-

'We consider ECQs that are domain-independent and (T, A)-
range restricted [Calvanese er al., 2007al.

ating rew(Q, T) over A seen as a database under the closed-
world assumption. Also, T-consistency of A can be checked
by evaluating over A an ECQ QL .., (depending on T only).

3 Explicit-input Knowledge and Action Bases

We define Explicit-input Knowledge and Action Bases (eK-
ABs) parametrically wrt a DL £. An £L-eKAB K is a tuple
(C,Co, T, Ay, A, T), where:

e C C A is the (possibly infinite) object domain of IC;

Co C Cis a finite set of distinguished objects;,

e T is an L-TBox;

e Ay isan L-ABox all of whose objects belong to Cy;
e A is a finite set of parametric actions;

e [ is a finite set of condition-action rules.

When the specific DL L is irrelevant, we omit it.

A parametric action « has the form a(p) : {e1,...,en},
where: a is the action’s name, p are the input parameters, and
{e1, ..., ey} is the finite set of conditional effects. Each effect
e; has the form ; ~~ add F", del F,, where:

e (; is the effect condition, i.e., an ECQ over T', whose
terms can be action parameters p’ (acting as variables),
additional free variables Z;, or objects from Cy;

e F;" and F, are two sets of atoms over the vocabulary
of T', with terms from p'U Z; U Cy.

Given an action « and a substitution § assigning objects of C
to p, af denotes the action instance of « obtained by assign-
ing values to p according to . We write «(p) to explicitly
name the input parameters of «. The ABox resulting from the
application of an action instance a6 on an ABox A, denoted
pO(af, A, T), is the ABox (A \ A_,) U AL, where:

af’
+ + .
o Ay = Uie{l,...,n} UaEANS(QiQ,T,A) Firo;

o Ao =Uicq,..ny Useans@ior,a) Fi 0

Importantly, a6 is applicable to A only if DO(ad, A, T) is
consistent with 7'.

A condition-action rule (CA rule) ~y,, for an action « has
the form Q. (%) — «(p), where Q, is an ECQ mentioning
only objects from Cy and whose free variables & come from
p. We assume that each action « in A has exactly one corre-
sponding condition-action rule ,, in I' (multiple rules can be
combined into a single disjunctive rule). The ECQ @, is used
to constrain the set of action instances potentially applicable
to a certain Abox A. Specifically, let 6 be a parameter sub-
stitution for P, and let 0[Z] denote the parameter substitution
obtained by projecting 6 on Z. Then, 6 is a K-legal parameter
substitution in A for a, if:

e 0:p—C;
o 0[] € ANS(Qu. T, A);
e DO(ab, A, T) is T-consistent.

When this is the case, af is a K-legal action instance in A.
Any variable in '\ Z is also referred to as an external in-
put parameter of o. Note that, when present, such parameters



are not constrained by @), and can be assigned to any object,
including fresh ones not occurring in ADOM(A).

The semantics of eKABs is defined in terms of transition
systems (TSs) with states and transitions labeled by ABoxes
and action instances, respectively [Calvanese et al., 2013b].
ATS Yisatuple (C,T, %, sg, abox,—), where:

e ( is the object domain;

e T'is a TBox;

e 3 is a (possibly infinite) set of states;
e sp € X is the initial state;

e aboz is the labeling function, mapping states from ¥ into
T-consistent ABoxes with terms from C only;

e — C X x L x X isalabeled transition relation, with L
the (possibly infinite) set of labels.

We write s - s’ as a shortcut for (s,1,8") € —.
An eKAB K = (C,Cy, T, Ag, A, T) generates a TS T =
(C,T,%, so, abox,—), where:
e aboz is the identity function;
e 5o = Ao;
e — C Y x Lx x X is alabelled transition relation with
L the set of all possible action instances;

e 3 and — are defined by mutual induction as the smallest
sets s.t. if A € X, then for every KC-legal action instance

af in A, we have that DO(af, A,T) € ¥ and A o,
po(ab, A, T).
In general, Tk is infinite, if C is so.
Example 1. An eKAB K = (C,Cy, T, Ao, A,T) is used to
support decision making in a company, where employees

work on tasks. C contains infinitely many objects. T is ex-
pressed in ALCQTH, and contains the following axioms:

e FEng T Emp and Tech T Emp (engineers and techni-
cians are employees);

e JhasTask™ T Emp and FhasTask T Task (hasTask
role links employees to tasks),

e similar axioms can be used to express that worksIn links
employees to company branches;

e Emp C (= 1 worksIn) (employees work in exactly one
one branch);

e hasResp C (< 1 Emp) and hasResp T hasTask™ (a
task may have at most one responsible, among the em-
ployees associated to the task);

e JhasResp~ T —Tech (technicians are not task respon-
sible).

As for the dynamic aspects, to model that a new engineer
can be hired in a branch provided that the planning agent
does not know whether there already exists an engineer there,
K contains the rule

Branch(b)A—[3x. Eng(x) AworksIn(z, b)] — HireEng(x,b)
where:

HireEng(e, b) : {true ~~ add { Eng(e), worksIn(e,b)}}

A similar action HireTech(t,b) can be used to hire a techni-
cian. Rule

Task(t) A Emp(e) — MakeResp(t, )

states that an employee can be made responsible of a task,
where

MakeResp(r. ) : {hasResp(t, p) ~ del{hasResp(t,p)} }

true ~~ add{hasResp(t,e)}

removes the previous task responsible, if any, and makes the
selected employee the new responsible. Finally, rule

Emp(e) — Anon(e)
models that an employee can be anonymized, where action
Anon(e) : {worksIn(e,b) ~ del{worksIn(e,b)}}

models anonymization by removing the explicit information
on the branch to which the selected employee belongs.

Note that there is a complex interplay between the TBox
and the dynamic component of K. E.g., the last TBox axioms
forbids to hire a technician and make it responsible for a
task. However, notice that this is not explicitly forbidden in
the condition-action rule that defines the (potential) applica-
bility of the MakeResp action. m

4 eKAB planning

Let K be an eKAB and Tk its generated TS. A plan for K is
a finite sequence m = a1 61 - - - v, 0, of action instances over
L. The plan 7 is executable on I if there exists a (unique)

run p = Ag b A ozba, . nbn A, of K. We call p
the run induced by m, and A,, the final state of p. An eKAB
planning problem is a pair (K, G), with K an eKAB and G,
the goal, a boolean ECQ mentioning only objects from Cy. A
plan 7 for K achieves G, if ANS(G, A,,, T) = true, for A,
the final state of the run induced by .

Example 2. Given the eKAB in Example 1, a goal G could
express the intention to have an engineer and a technician
working for a given task t, provided that, for privacy reasons,
it is not known to the planning agent whether the two work in
the same branch. Formally:

Jey, ea. Tech(e1) A Eng(es)
A hasTask(e1,t) A hasTask(ez, t)
A =[Fb.worksIn(ey, b) A worksIn(ez,b)]

where negation is in fact interpreted epistemically, in accor-
dance with the semantics of ECQs. m

We first consider plan existence, i.e., the problem of check-
ing whether, for a planning problem (K, G), an executable
plan 7 for KC exists that achieves G.

Theorem 4.1. Let L be a DL for which answering ECQs”
is in CONP in data complexity. Then plan existence for L-
eKABs with a finite object domain is decidable in PSPACE in
the size of the object domain.

*For a significant class of DLs, UCQ-query answering is known
to be in CONP in data complexity [Glimm et al., 2008; Ortiz et
al., 2008; Calvanese et al., 2013a]. ECQs inherit this result, since
they simply combine the certain answers returned by the embedded
UCQs with the evaluation of the FO operators present in the query.



When the object domain is infinite, plan existence is un-
decidable even by considering severely limited eKABs. The
following result is similar in spirit to the undecidability re-
sult by Erol ef al. [1995] in the classical planning setting but
with an infinite object domain. Also, a similar result was pre-
sented in [ZarrieB and ClaBen, 2015], in a knowledge-based
setting that is radically different from ours, since in their case
the TBox is considered only in the initial state, while subse-
quent states may violate its assertions. This makes the proof
technique significantly more complex in our case.

Theorem 4.2. Plan existence for eKABs with an infinite ob-
Jject domain is undecidable, even if the goal is a ground CQ,
and the input eKAB has: (i) an empty TBox; (ii) actions/rules
employing UCQs only.

We next attack undecidability by focusing on infinite-
domain eKABs that are state-bounded [Bagheri Hariri et al.,
2013a; Calvanese et al., 2013b; Belardinelli et al., 2014].
Specifically, an eKAB K is b-bounded if its generated TS
YT = (T,%, sg, abox,—) is s.t. for every state s € X, we
have |[ADOM (aboz(s))| < b, that is, every state (or ABox) of
Tk contains at most b distinct objects. Note that a b-bounded
eKAB still has, in general, infinitely many states. Indeed,
from an infinite C, one can obtain infinitely many distinct
ABoxes, each containing a bounded number of objects.

For state-bounded eKABs, we have the following result,
which follows from the verification results by Calvanese
et al. [2013b]. The result implies that, for state-bounded
eKABs, checking plan existence is not more difficult than
in the standard setting of propositional planning [Bylander,
1994].

Theorem 4.3. Plan existence over state b-bounded eKABs is
decidable in PSPACE in the bound b.

We observe that while boundedness is undecidable in gen-
eral (by reduction to checking whether a Turing Machine
uses a bounded number of cells on a given input), checking
whether an eKAB is bounded for a given bound is decidable,
as proven in [De Giacomo et al., 2014], although in the Situ-
ation Calculus framework.

5 Plan Synthesis

We now consider plan synthesis for eKABs. We first intro-
duce a technique based on classical planning [Brachman and
Levesque, 2003]. A classical planning domain is a triple
D = (S, A, p), where S is a finite set of states, A is a finite
set of actions, and p : S x A — S is a transition function.
Domain states are propositional assignments, and actions are
operators that change them, according to p. A classical plan-
ning problem is a triple P = (D, so, G), where D is a plan-
ning domain, sg € S is the initial state, and G C S is a set
of goal states. A solution to P is a finite sequence of actions,
called plan, that takes D from s to a goal state, as a result of
the changes made by the sequence of actions.

A problem P induces a labelled graph G = (N, E'), where

N = S and E contains a (labelled) edge s — s iff s =
p(s,a). Essentially, planning algorithms amount to searching
(in an effective way) a path in G from s to a goal state.

Algorithm 1 Forward planning algorithm schema

1: function FINDPLAN(Prob)

2: input: A planning problem Prob

3: output: A plan that solves Prob, or fail if there is no solution
4: V=0 > Global set of visited states
5.
6
7

: return FWSEARCH(Prob,INITIALSTATE(Prob),e)
: function FWSEARCH(Prob, s, )
: input: A planning problem Prob, the current state s, and the
sequence 7 of actions that led to s
8: output: A plan that solves Prob, or fail if there is no solution
9: if s € V then return fail > Loop!

10: V=V U{s}

11: if HOLDS(GOAL(Prob), s) then return 7
12:  forall {a,s’) € SUCCESSORS(Prob, s) do
13: 7, := FWSEARCH(Prob, s’, 7 - a)

14: if 7, # fail then return =,

15: return fail

Algorithm 1 shows the schema of a basic algorithm that
synthesizes a plan through a forward search on the in-
duced graph. The auxiliary functions INITIALSTATE(Prob),
GOAL(Prob), HOLDS(G, s), and SUCCESSORS(Prob, s) are
self-explicative. Note that the schema above abstracts from
the specific interpretation of states, that is, it is applicable
no matter how states and actions are represented, once the
functions above are instantiated on the case at hand. For in-
stance, for a classical planning problem P = (D, s, G)
with D = (S, A, p), we have INITIALSTATE(P) = so,
GOAL(P) = G, HOLDS(G,s) = true iff s € G, and
SUCCESSORS(P, s) = {(a,s") | s' = p(s,a)}.

Next, we show how this schema can be lifted to handle
plan synthesis for eKABs. The lifting we propose results in
an algorithm that is correct, i.e., it

(i) terminates,
(ii) preserves plan existence, and

(iii) produces proper plans, i.e., if it does not fail, the re-
turned result corresponds to a proper solution to the in-
put planning problem.

We stress that while we present the lifting on Algorithm 1,
the same approach applies to any other, possibly optimized,
algorithm. Indeed, the lifting strategy is agnostic wrt how the
search space is traversed.

5.1 Plan Synthesis for eKABs

We consider the two classes of eKABs for which decidability
of plan existence has been established in Section 4.

eKABs with Finite Domain. This case differs from classical
planning in that eKABs have ABoxes as states, and they pro-
vide an implicit representation of successor states in terms
of actions and condition-action rules. The former aspect re-
quires to replace propositional entailment with ECQ query
answering when checking whether the goal has been reached.
The latter requires to use DO to compute a state’s successors.
Specifically, given an eKAB planning problem £ = (K, G),
where K = (C,Co, T, Ao, A, T), with finite C, Algorithm 1
can be instantiated as follows:

e INITIALSTATE(E) = Aop;



Algorithm 2 Plan synthesis for state-bounded eKABs.
1: function FINDPLAN-EKABSB(E, b)
2: input: An eKAB planning problem £ = (K, G), where K =
(C,Co, T, Ag, A, T is b-bounded and C is infinite
3: output: A plan that solves &, or fail if there is no solution
4: n := maxz{k | there is & € A with k parameters}

.5 Jaccce
5: ick Cs.t. ¢ ~—
P {|C|:b+n+|Co|
6:  K:=(C,Co,T, Ao, A,T)
7: return FINDPLAN-EKABFD((K, G))

> Abstract dom.

e GOAL(E) =G,
e HOLDS(E, A) = ANS(G, T, A);

e SUCCESSORS(E, A) returns the set of pairs (o, A'),
where

- a €A,
— 6 1is a K-legal parameter substitution in A for «, and
- A" =po(ab, A, T).
We call the resulting algorithm FINDPLAN-EKABFD. By
this instantiation, the search space of FINDPLAN-EKABFD

is exactly Tk, which is finite, so being the eKAB domain.
Thus, we have:

Theorem 5.1. FINDPLAN-EKABFD is correct.

Plan Synthesis for State-Bounded eKABs. We now con-
sider state-bounded eKABs over infinite object domains.
In this case, the search space is potentially infinite, thus
FINDPLAN-EKABFD is not readily applicable, as termina-
tion is not guaranteed. To tackle this problem, instead of vis-
iting the original, infinite, search space, we work on a finite-
state abstraction of the eKAB. We first argue that the execu-
tion semantics of eKABs has two properties:

e it is driven by ECQ-query answering, which is generic
(cf. Section 2);

e all allowed configurations of external input parameters
are considered when applying an action.

These imply that eKABs are generic DLDSs in the sense
of Calvanese et al. [2013b], which, together with state-
boundedness, allows us to apply the same abstraction tech-
nique used by Calvanese et al. [2013b]. In particular, reacha-
bility is preserved if the infinite-state TS induced by the input
eKAB is shrunk into a finite-state TS over a finite, but suf-
ficiently large, object domain. We leverage this technique as
the core of the FINDPLAN-EKABSB procedure shown in Al-
gorithm 2, which reduces the original planning problem over
an infinite search space to a classical planning problem.

It can be checked that all correctness conditions are satis-
fied: (i) is a consequence of Theorem 5.1; (ii) holds because
the finite-state abstraction preserves reachability; (iii) holds
because the search space of the finite-state abstraction is con-
tained into that of the original eKAB. Thus, we have:

Theorem 5.2. FINDPLAN-EKABSB is correct.

Example 3. Consider again the eKAB K in Example 1, to-
gether with goal G in Example 2. Notice that IC is state-
bounded, as the only way to increase the number of objects

present in the system is by hiring someone, but the num-
ber of hirings is in turn bounded by the number of company
branches (which is fixed once and for all in the initial state).
Now assume that the initial state indicates the known exis-
tence of a main and a subsidiary branch for the company, as
well as the fact that task t has an assigned technician from
the main branch:

Ay = {Branch(main), Branch(sub), Tech(123),
worksIn(123,main), hasTask(123,t)}

A possible plan leading from Ay to a state where G holds is
m1 = HireEng(452, sub) MakeResp(t, 452)

This plan achieves G by hiring an engineer in a different
branch from that of 123, with whom the engineer shares task
t. Observe, again, the interplay between the actions and the
TBox: while no action explicitly indicates that 452 has task t,
this is implicitly obtained from the fact that such an engineer
is made responsible for t.

Another, quite interesting plan achieving G is:

7o = HireEng(521, main) MakeResp(t, 521) Anon(521)

In this case, an engineer is hired in the same branch of techni-
cian 123, and made responsible for task t. These two actions
do not suffice to achieve G, since the planning agent knows
that the two employees work in the same branch. This knowl-
edge is somehow “retracted” by anonymizing the hired en-
gineer: after the execution of Anon(521), the planning agent
still knows that 521 must work in some branch (this is en-
forced by a dedicated TBox axiom), but does not know which
one, thus satisfying also the (epistemic) negative part of the
goal. L]

5.2 Plan Templates and Online Instantiation
FINDPLAN-EKABSB returns plans with ground actions men-

tioning only objects in C, as those in C \ C are not used in K.
Such plans can be regarded as templates from which we can
obtain regular plans for K. This is a consequence of generic-
ity, which yields that a plan keeps achieving a goal even under
consistent renaming of the objects it mentions.

To formalize this intuition, we recast the notion of equality
commitment [Calvanese et al., 2013b] in this setting. Let B
be a set of objects, and I a set of external input parameters.
An equality commitment (EC) H over a finite set S C BUI is
a partition {H, ..., H,} of S s.t. each H; contains at most
one object from B. A substitution 6 : I — B is compatible
with H if:

e for every pair of parameters i1,i2 € I, we have that

1160 = 120 iff 41 and i, belong to the same H;

e whenever H; contains an object d € B, then 76 = d for
every i € Hj.

Intuitively, 6 is compatible with H if it maps parameters from
the same class into the same object, and parameters from dif-
ferent classes into distinct objects. Finally, given a finite set
B’ C B and a substitution # : I — B, fix an ordering
O = (dy,...,dy,) over the set B.,, = B’ U1IM(0) of the
objects that are either mentioned in B’ or assigned to I by 6.
The EC H induced by 6 over B’ (under O) is the partition
H={Hy,...,H,},st, forje{l,...,n}:



Algorithm 3 Online instantiation of a plan template.

1: procedure ONLINEEXEC(KC, )
2: input: An eKAB K = (C,Co,T, Ao, A,T), and a plan 7 =
0101 e aQO

3: Ao = Ao > old, effective state
4: A, = Ag > current, effective state
5: h:Co — Cos.t. h(d) = dforeachd € Cy > cur. bijection
6: fork € {1,...,m} do
7: H := eq. commitment induced by 6; over ADOM(A)
8: pick 0, that is compatible with h(H) > Agent choice
9: Alo = DO(ai9k7 Ao, T)
10: AL == Dpo(a;by, An, T)
11: hrn : Co UADOM(A,) — Co U ADOM(A,) s.t.

hn(d) =d, for d € Cy
12 hn(d) = h(d), ford € ADOM(A},) N ADOM(A,)

hn(05(7)) = 6,(7), for 7 parameter of oy,

s.t. 0 (i) ¢ ADOM(A,)

13: hi=hy, Ao := A5, An = A},

e [ contains d; iff d; € B, i.e., objects mentioned by 6
but not present in B’ are discarded;

e H; contains ¢ € DOM(#) iff (i) = d;, i.e., all parame-
ters mapped to the same, j-th object are included in the
j-th equivalence class.

Example 4. Let B = {dl...,d5}, B = {dl,dg,dg,},
I = {i1,...,i4}, and 6 : I — B, st: 0(i;) =
dl,e(ig) = 9(23) = d5,9(i4) = d4. The EC induced
by 0 over B U {dy4,ds} is H = {Hi,...,Hs}, where:
Hy = {di,i1},Hy = {do}, H3 = {ds}, Hy = {isa},H5 =
{i2,13}. Notice that H; C B. n

We can now state the following key result.

Lemma 5.3. Let K = (C,Cy, T, Ao, A, T") be an eKAB, and
Ay, A} ABoxes over T, s.t. Ay = Al for some object re-
naming h. Let (P, Z) be an action in A with external input
parameters i, and 0 a K-legal substitution in Ay for o. Let H
be the equality commitment induced by 6 over ADOM(A1),
and H' = h(H) the equality commitment obtained from H
by renaming each d € ADOM (A1) as h(d) € ADOM(Az). If
0’ is a parameter substitution for p and fcompatible with H',
then:
o 0 is a K-legal parameter for o in A;
e DO(af, Ay, T) =" po(al, A}, T), where W' extends
h as follows: for every parameter i of « s.t. 0(i) ¢
ADOM( A1), we have b/ (0(i)) = 6'(i).

Intuitively, Lemma 5.3 states that, modulo object renam-
ing consistent with a parameter substitution that induces the
same equality commitment, the same action can be applied
to two logically equivalent ABoxes. Furthermore, such ac-
tion induces the same update, modulo renaming of the objects
mentioned in the two ABoxes and the involved parameters. In
Algorithm 3, we exploit this result to build, in an online fash-
ion, a plan for IC starting from one for K. This provides the
freedom of dynamically choosing which actual objects to use
when actions are executed, provided that the choice induces
the same equality commitment induced by the parameter sub-
stitution in the original plan. By Lemma 5.3, we obtain:

Theorem 5.4. Let £ = (K,G) be an eKAB planning prob-
lem. If 7 is a plan that achieves G, then ONLINEEXEC(IC, )
is guaranteed to achieve G for each possible choice.
Example 5. Consider plan 75 of Example 3. This plan can
be lifted online by the planning agent as follows: when hir-
ing the engineer, the planning agent can freely inject a fresh
employee identifier in place of 521, provided that the chosen
identifier is then consistently used in the subsequent actions.
In other words, Ty acts as a footprint for the infinite family of
plans of the form
HireEng(Id,main) MakeResp(t, Id) Anon(Id)

where Id is selected on-the-fly when the planning agent ex-
ecutes HireEng, and is s.t. it is different from all the objects
present in Ag (this reconstructs the same equality commit-
ment as in the case of 521). All such infinite plans are guar-
anteed to achieve G. =

6 Plan Synthesis for Lightweight e KABs

We consider plan synthesis for state-bounded eKABs over the
lightweight DL DL-Lite 4 [Calvanese et al., 2009], and devise
a technique based on compilation into ADL planning [Ped-
nault, 1994; Drescher and Thielscher, 2008].

6.1 ADL Planning

An ADL planning problem is a tuple (C,Co, F, A, p,v),
where:

o ( is a finite object domain;
e Cy C C is the set of initial objects;

e F is a finite set of fluents, i.e., predicates whose exten-
sion can vary over time;

e A is a finite set of ADL operators;,

e (o is the initial state, i.e., a conjunction of ground literals
using predicates in F and objects in Cp; and

e 1) is the goal description, i.e., a closed FO formula using
predicates in F and objects in Co.

Each ADL operator in A is a tuple (N, Z, p(Z), (%)), where:
e N is the name;
e variables 7 are the parameters;

p(Z) is the precondition, i.e., a FO formula over F, and
whose terms are quantified variables, objects in Cp, and
parameters Z;

(&) is the effect, i.e., the universal closure of a FO con-
junction built from admissible components, inductively
defined as follows:

— Fluent literals over F and whose terms are vari-
ables, objects in Cy, or parameters in &, are admis-
sible.

— If ¢1(¢1) and ¢2(y3) are admissible, then ¢1 (1) A
¢2(7>) and Vi .¢1 (1) are also admissible.

— Let ¢1(#1) be a FO formula over F, whose terms
are quantified variables, objects in Cy, variables
Y1, or parameters Z. If ¢2(¢2) is admissible and
does not contain any occurrence of — nor V, then
$1(71) — ¢2(y2) is also admissible. This is used
to tackle so-called ADL conditional effects.



6.2 Translation Procedure

We now define a syntactic, modular translation procedure
LEKAB2ADL that takes as input a DL-Lite 4-eKAB plan-
ning problem £ = (K,G) with K = (C,Co, T, Ao, A, T),
and produces a corresponding ADL planning problem Px =
<CK7607-FK7AK7§0K7¢G>-

Object domain. As in Section 5, if C is finite, so is Cx. If
instead C is infinite but /C is b-bounded, we fix Cx: to contain
Co plus n + b objects from C.

Fluents. Fx is obtained by encoding concept and role names
in T into corresponding unary and binary fluents. It also con-
tains two special nullary fluents: ChkCons, distinguishing
normal execution modality from check consistency modality
of Px, and Error, marking when the consistency check fails.

Operators. Ax is obtained by transforming every action in
A, with its condition-action rule in I', into an ADL operator:
each action’s effect produces a conditional effect in the ADL
operator, and the condition-action rule its precondition.

Since in ADL, FO formulae are directly evaluated over FO
structures (without ontological reasoning), we have to suit-
ably consider the contribution of 7T'. Indeed (cf. Section 3), T’
is used both during query answering and to check whether the
ABox resulting from an action instance is 7-consistent. We
tackle both problems by relying on DL-Lite 4’s FO rewritabil-
ity of both ECQs and T'-consistency checks (cf. Section 2). To
embed such checks into ADL, we force Ax to alternate be-
tween two phases: the normal execution modality, where a
“normal” ADL operator is applied, mirroring the execution
of an action instance of /C; and the check consistency modal-
ity, where a special ADL operator checks if the obtained state
is T-consistent. Alternation is realized by toggling the fluent
ChkCons, and activating Error when the consistency check
fails, thus blocking operator application.

Technically, consider an action a = a(p) : {e1,...,e,} in
A and its corresponding condition-action rule Q. (Z) — a(p)
inT. Let Z = p’\ #. We produce a corresponding ADL oper-
ator (a, P, pa (D), £a(P))- Its precondition p, (p) corresponds
to the FO formula rew(Qq (%), T) A =ChkCons A —FError,
which leaves the external input parameters Z’ unconstrained.
The operator effect €, (p) is the FO conjunction of the trans-
lationof ey, . . ., e,,. Each e; = Q;(p, Z;) ~> add F;",del F,
generates the following conjunct:
rew(Qi(p, T:), T) H/\Pj(ﬁ ;) /\/\ﬁPk(ﬁ7 @) A ChkCons

P (p,@)€EF;  Pi(p,a:)EF,
Finally, the special ADL operator used to check T-
consistency is (check, D, pehk, Echk), Where pepr =
ChkCons just checks whether the check flag is on, while
ecnk takes care of toggling the check flag, as well as of
triggering the error flag if an inconsistency is detected:
genk = ChkCons A (QL .. — Error)

unsat

Initial state specification. i is by constructing the con-
junction of all facts contained in Ao: ic = Ap, (5)e 4, £i(0).

Goal description. The goal description ¢ is obtained from

goal G in & as Y = rew(G,T) A -ChkCons A\ ~Error.
The two-fold contribution of T is taken care of, as in the

operators, by rewriting G (via rew(G,T)) and ensuring that

the ending state is T-consistent (by requiring the absence of
the consistency check and error flags in ¥¢).

We close by considering the following algorithm, called
FINDPLAN-LEKABADL:

1. take as input a DL-Lite ,-eKAB planning problem &;

2. translate £ into an ADL planning problem using
LEKAB2ADL;

3. invoke an off-the-shelf ADL planner;
4. if the planner returns fail, return fail as well;

5. if the planner returns a plan 7, filter away all check op-
erators from 7, and return it as a result.

Theorem 6.1. FINDPLAN-LEKABADL is correct.

7 Conclusion

We have studied plan synthesis over eKABs, rich dynamic
systems operating over a full-fledged DL KB. We have shown
that checking plan existence is undecidable even under se-
vere restrictions on the eKAB of interest. Nonetheless, we
have demonstrated that, under the state-boundedness assump-
tion for eKABs, plan existence is PSPACE in data complex-
ity. In this setting, we have presented sound, complete and
terminating algorithms for plan synthesis. We have then stud-
ied plan synthesis in the case where the eKAB is equipped
with a lightweight DL of the DL-Lite family. In particular, we
have proposed a technique to compile plan synthesis for state-
bounded, lightweight eKABs into standard ADL planning.

To test the feasibility of our proposal for knowledge-
intensive planning, we ran a preliminary empirical evaluation
of the framework of Section 6. We considered a DL-Lite 4-
eKAB over the domain of Example 1, translated it into ADL,
and fed it as input via PDDL to an off-the-shelf planner (we
used FastDownward®). We varied the difficulty by increasing
the bound on the object domain, thus affecting the number of
ground atoms for the planner. With 9 domain elements, result-
ing in ~2 000 atoms, a plan was found in under 1s. For 30 el-
ements (~300 000 atoms) a plan was found in 120s, while for
35 elements (~1200000 atoms) the planner timed out. Al-
though preliminary, we consider these results positive, given
the complexity of the setting and the absence of optimiza-
tions, which we left for future work. In this respect, a promis-
ing line of research is to combine our approach with that of
[Fan et al., 2012]. There, the authors study a knowledge-
intensive variant of Golog operating over an infinite object
domain, and where incomplete knowledge is captured using
proper KBs instead of DLs. In particular, they propose a semi-
decidable technique to handle progression and query evalua-
tion. In spite of the key differences between that approach and
ours, their approach is reminiscent to the abstraction tech-
nique we adopt towards decidability. We intend to leverage
this similarity with the aim of understanding if, and how, the
optimization strategies proposed in [Fan et al., 2012] can be
lifted to our setting.

3http://www.fast-downward.org/
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