
Plan Synthesis for Knowledge and Action Bases∗

Diego Calvanese, Marco Montali, Fabio Patrizi
Free Univ. of Bozen-Bolzano, Italy
lastname@inf.unibz.it

Michele Stawowy
IMT Lucca, Italy

michele.stawowy@imtlucca.it

Abstract

We study plan synthesis for a variant of Knowl-
edge and Action Bases (KABs), a rich, dynamic
framework, where states are description logic (DL)
knowledge bases (KBs) whose extensional part is
manipulated by actions that possibly introduce new
objects from an infinite domain. We show that plan
existence over KABs is undecidable even under se-
vere restrictions. We then focus on state-bounded
KABs, a class for which plan existence is decid-
able, and provide sound and complete plan synthe-
sis algorithms, which combine techniques based on
standard planning, DL query answering, and finite-
state abstraction. All results hold for any DL with
decidable query answering. We finally show that
for lightweight DLs, plan synthesis can be com-
piled into standard ADL planning.

1 Introduction
Recently, there has been an increasing interest in formalisms
that integrate static structural knowledge, as expressed, e.g.,
in description logics (DLs) [Baader et al., 2003], with action-
based mechanisms, to capture a domain’s evolution over time.
Combining these two aspects into a single logical system
is known to be difficult and easily leading to undecidabil-
ity, even for simple forms of inference about system dy-
namics, when the logics used are rather limited [Wolter and
Zakharyaschev, 1999; Gabbay et al., 2003]. To overcome
these restrictions, a recent line of work by Bagheri Hariri
et al. [2013b] has introduced Knowledge and Action Bases
(KABs). Such systems rely on Levesque’s functional ap-
proach [Levesque, 1984] to operate over a full-fledged DL
knowledge base (KB), by means of actions: actions evolve the
system by querying the current state using logical inference
(ASK operation), and then using the derived facts to assert
new knowledge in the resulting state (TELL operation).

∗We acknowledge the support of: Rip. Diritto allo Studio, Uni-
versità e Ricerca Scientifica of Prov. Autonoma di Bolzano–Alto
Adige, project VERISYNCOPATED; the EU FP7 large-scale in-
tegrating project Optique (FP7-IP-318338); and the UniBZ CRC
projects KENDO and OnProm.

A prominent feature of KABs is that actions allow one to
incorporate into the KB external input provided by fresh ob-
jects taken from an infinite domain. This gives rise, in general,
to an infinite-state system, in which reasoning is undecidable.
Nevertheless, decidability of verification of first-order tem-
poral properties has been obtained for KABs that are state-
bounded [Bagheri Hariri et al., 2013a; 2014], i.e., in which
the number of objects in each single state is bounded a-priori,
but is unbounded along single runs, and in the whole system.

Here, we study the problem of planning, specifically plan
existence and synthesis [Ghallab et al., 2004; Cimatti et al.,
2008], for knowledge-intensive dynamic systems over infi-
nite domains. For doing so we consider a variation of KABs,
termed Explicit-Input KABs (eKABs), more suited for our
purposes, in which the input-related information for an ac-
tion is made explicit in its signature, and not hidden in its
conditional effects. In fact, eKABs can be considered as a
concrete instantiation of the more abstract framework of De-
scription Logic-based Dynamic Systems (DLDS) [Calvanese
et al., 2013b], and inherit its possibility of abstracting away
the specific DL formalism used to capture the underlying KB.

We show that, in line with previous work on planning in
rich settings [Erol et al., 1995], plan existence is undecidable
even for severely restricted eKABs. We prove decidability in
PSPACE data complexity of such problem, for state-bounded
eKABs, by combining techniques based on standard plan-
ning, DL query answering, and finite-state abstractions for
DLDSs. Our work is similar in spirit to the one by Hoffmann
et al. [2009], as combining a rich knowledge-based setting
with the possibility of incorporating external input. However,
to the best of our knowledge, our setting is the first one where
planning is decidable without severe restrictions, in particular
on how the external input is handled. We present a sound and
complete algorithm, returning plans that represent templates
for the original synthesis problem, defined over an infinite do-
main. We then concentrate on eKABs based on lightweight
DLs of the DL-Lite family [Calvanese et al., 2007b; 2009]
and show that, in this case, plan synthesis can also be tackled
by compilation into standard ADL, which can then be pro-
cessed by any off-the-shelf ADL planner [Pednault, 1994].

2 Description Logic Knowledge Bases
Let ∆ be a countably infinite universe of objects, acting as
standard names [Levesque and Lakemeyer, 2001]. A (DL)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/74321647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

knowledge base (KB) 〈T,A〉 consists of a TBox T , captur-
ing the intensional knowledge on the domain of interest, and
an ABox A, capturing the extensional knowledge: T is a fi-
nite set of universal, first-order (FO) assertions based on con-
cepts (unary predicates) and roles (binary relations); A is a
finite set of assertions, or facts, i.e., atomic formulas N(d)
and P (d, d′), with N a concept name, P a role name, and
d, d′ ∈ ∆. By ADOM(A) we denote the set of objects oc-
curring in A. For details on DLs, we refer to [Baader et al.,
2003]. To maintain a clear separation between the intensional
and the extensional levels, we disallow nominals (concepts
interpreted as singletons) in T .

We adopt the standard FO semantics for DL KBs. When
〈T,A〉 is satisfiable, i.e., admits at least one model, we also
say that A is T -consistent. A KB 〈T,A〉 logically implies an
ABox assertion α, written 〈T,A〉 |= α, if every model of
〈T,A〉 is also a model of α. Two ABoxes A1 and A2 are
logically equivalent modulo renaming wrt. a TBox T , if they
imply the same assertions, up to object renaming. When this
holds, we writeA1

∼=h
T A2, where h denotes the bijection that

renames the objects occurring in A1 into those in A2.
We use queries to extract information from a KB. A union

of conjunctive queries (UCQ) q over a KB 〈T,A〉 is a FO for-
mula

∨
1≤i≤n ∃~yi.conj i(~x, ~yi), where conj i(~x, ~yi) is a con-

junction of equality assertions and atoms mentioning con-
cept/role names of T , with variables from ~x ∪ ~yi and ob-
jects as terms. A boolean UCQ is one without free variables.
By ANS(q, T,A) we denote the set of (certain) answers of a
query q over a KB 〈T,A〉, consisting of all the substitutions
θ of q’s free variables with objects from ADOM(A), s.t. qθ
holds in every model of 〈T,A〉. We also consider the EQL-
Lite extension of UCQs [Calvanese et al., 2007a], referred to
as ECQs. The language of ECQs over a TBox T is:1

Q ::= [q] | ¬Q | Q1 ∧Q2 | ∃x.Q,
where q is a UCQ. The certain answers ANS(Q,T,A) of an
ECQ Q over 〈T,A〉 are obtained by first computing, for each
atomic ECQ [q], the certain answers of q, and then composing
the obtained answers through the FO constructs inQ, with ex-
istential variables ranging over ADOM(A). Hence [q] acts as a
minimal knowledge operator, and negation and quantification
applied over UCQs are interpreted epistemically [Calvanese
et al., 2007a]. Under this semantics, ECQs are generic, in the
sense of genericity in databases [Abiteboul et al., 1995]: a
query evaluated over two logically equivalent ABoxes returns
the same answer, modulo object renaming.

As customary, we consider DLs for which query answer-
ing (and hence the standard reasoning tasks of KB satisfia-
bility and logical implication) is decidable. In our examples,
we use ALCQIH [Baader et al., 2003]. We also consider
lightweight DLs of the DL-Lite family, in particular DL-LiteA
[Calvanese et al., 2009], for which checking KB satisfiabil-
ity and answering ECQs over a KB are both FO-rewritable
[Calvanese et al., 2007a; 2009]. The latter means that every
ECQQ expressed over a DL-LiteA TBox T can be effectively
rewritten into a FO query rew(Q,T) s.t., for every ABox A,
the certain answers ANS(Q,T,A) can be computed by evalu-

1We consider ECQs that are domain-independent and 〈T,A〉-
range restricted [Calvanese et al., 2007a].

ating rew(Q,T) over A seen as a database under the closed-
world assumption. Also, T -consistency of A can be checked
by evaluating over A an ECQ QTunsat (depending on T only).

3 Explicit-input Knowledge and Action Bases
We define Explicit-input Knowledge and Action Bases (eK-
ABs) parametrically wrt a DL L. An L-eKAB K is a tuple
〈C, C0, T, A0,Λ,Γ〉, where:

• C ⊆ ∆ is the (possibly infinite) object domain of K;

• C0 ⊂ C is a finite set of distinguished objects;

• T is an L-TBox;

• A0 is an L-ABox all of whose objects belong to C0;

• Λ is a finite set of parametric actions;

• Γ is a finite set of condition-action rules.

When the specific DL L is irrelevant, we omit it.
A parametric action α has the form a(~p) : {e1, . . . , en},

where: a is the action’s name, ~p are the input parameters, and
{e1, . . . , en} is the finite set of conditional effects. Each effect
ei has the form Qi add F+

i ,del F−i , where:

• Qi is the effect condition, i.e., an ECQ over T , whose
terms can be action parameters ~p (acting as variables),
additional free variables ~xi, or objects from C0;

• F+
i and F−i are two sets of atoms over the vocabulary

of T , with terms from ~p ∪ ~xi ∪ C0.

Given an action α and a substitution θ assigning objects of C
to ~p, αθ denotes the action instance of α obtained by assign-
ing values to ~p according to θ. We write α(~p) to explicitly
name the input parameters of α. The ABox resulting from the
application of an action instance αθ on an ABox A, denoted
DO(αθ,A, T), is the ABox (A \A−αθ) ∪A

+
αθ, where:

• A+
αθ =

⋃
i∈{1,...,n}

⋃
σ∈ANS(Qiθ,T,A) F

+
i σ;

• A−αθ =
⋃
i∈{1,...,n}

⋃
σ∈ANS(Qiθ,T,A) F

−
i σ.

Importantly, αθ is applicable to A only if DO(αθ,A, T) is
consistent with T .

A condition-action rule (CA rule) γα for an action α has
the form Qα(~x) 7→ α(~p), where Qα is an ECQ mentioning
only objects from C0 and whose free variables ~x come from
~p. We assume that each action α in Λ has exactly one corre-
sponding condition-action rule γα in Γ (multiple rules can be
combined into a single disjunctive rule). The ECQQα is used
to constrain the set of action instances potentially applicable
to a certain Abox A. Specifically, let θ be a parameter sub-
stitution for ~p, and let θ[~x] denote the parameter substitution
obtained by projecting θ on ~x. Then, θ is aK-legal parameter
substitution in A for α, if:

• θ : ~p→ C;

• θ[~x] ∈ ANS(Qα, T, A);

• DO(αθ,A, T) is T -consistent.

When this is the case, αθ is a K-legal action instance in A.
Any variable in ~p \ ~x is also referred to as an external in-
put parameter of α. Note that, when present, such parameters

are not constrained by Qα and can be assigned to any object,
including fresh ones not occurring in ADOM(A).

The semantics of eKABs is defined in terms of transition
systems (TSs) with states and transitions labeled by ABoxes
and action instances, respectively [Calvanese et al., 2013b].
A TS Υ is a tuple 〈C, T,Σ, s0, abox ,→〉, where:
• C is the object domain;
• T is a TBox;
• Σ is a (possibly infinite) set of states;
• s0 ∈ Σ is the initial state;
• abox is the labeling function, mapping states from Σ into
T -consistent ABoxes with terms from C only;
• → ⊆ Σ× L× Σ is a labeled transition relation, with L

the (possibly infinite) set of labels.

We write s l−→ s′ as a shortcut for 〈s, l, s′〉 ∈ →.
An eKAB K = 〈C, C0, T, A0,Λ,Γ〉 generates a TS ΥK =

〈C, T,Σ, s0, abox ,→〉, where:
• abox is the identity function;
• s0 = A0;
• → ⊆ Σ × LK × Σ is a labelled transition relation with
LK the set of all possible action instances;
• Σ and→ are defined by mutual induction as the smallest

sets s.t. if A ∈ Σ, then for every K-legal action instance
αθ in A, we have that DO(αθ,A, T) ∈ Σ and A αθ−−→
DO(αθ,A, T).

In general, ΥK is infinite, if C is so.
Example 1. An eKAB K = 〈C, C0, T, A0,Λ,Γ〉 is used to
support decision making in a company, where employees
work on tasks. C contains infinitely many objects. T is ex-
pressed in ALCQIH, and contains the following axioms:
• Eng v Emp and Tech v Emp (engineers and techni-

cians are employees);
• ∃hasTask− v Emp and ∃hasTask v Task (hasTask

role links employees to tasks),
• similar axioms can be used to express that worksIn links

employees to company branches;
• Emp v (= 1worksIn) (employees work in exactly one

one branch);
• hasResp v (≤ 1Emp) and hasResp v hasTask− (a

task may have at most one responsible, among the em-
ployees associated to the task);
• ∃hasResp− v ¬Tech (technicians are not task respon-

sible).
As for the dynamic aspects, to model that a new engineer

can be hired in a branch provided that the planning agent
does not know whether there already exists an engineer there,
K contains the rule

Branch(b)∧¬[∃x.Eng(x)∧worksIn(x, b)] 7→ HireEng(x, b)

where:

HireEng(e, b) : {true add {Eng(e),worksIn(e, b)}}

A similar action HireTech(t, b) can be used to hire a techni-
cian. Rule

Task(t) ∧ Emp(e) 7→ MakeResp(t, e)

states that an employee can be made responsible of a task,
where

MakeResp(t, e) :

{
hasResp(t, p) del{hasResp(t, p)}

true add{hasResp(t, e)}

}
removes the previous task responsible, if any, and makes the
selected employee the new responsible. Finally, rule

Emp(e) 7→ Anon(e)

models that an employee can be anonymized, where action

Anon(e) : {worksIn(e, b) del{worksIn(e, b)}}
models anonymization by removing the explicit information
on the branch to which the selected employee belongs.

Note that there is a complex interplay between the TBox
and the dynamic component of K. E.g., the last TBox axioms
forbids to hire a technician and make it responsible for a
task. However, notice that this is not explicitly forbidden in
the condition-action rule that defines the (potential) applica-
bility of the MakeResp action.

4 eKAB planning
Let K be an eKAB and ΥK its generated TS. A plan for K is
a finite sequence π = α1θ1 · · ·αnθn of action instances over
LK. The plan π is executable on K if there exists a (unique)
run ρ = A0

α1θ1−−−→ A1
α2θ2−−−→ · · · αnθn−−−→ An of K. We call ρ

the run induced by π, and An the final state of ρ. An eKAB
planning problem is a pair 〈K, G〉, with K an eKAB and G,
the goal, a boolean ECQ mentioning only objects from C0. A
plan π for K achieves G, if ANS(G,An, T) = true, for An
the final state of the run induced by π.
Example 2. Given the eKAB in Example 1, a goal G could
express the intention to have an engineer and a technician
working for a given task t, provided that, for privacy reasons,
it is not known to the planning agent whether the two work in
the same branch. Formally:

∃e1, e2.Tech(e1) ∧ Eng(e2)
∧ hasTask(e1, t) ∧ hasTask(e2, t)
∧ ¬[∃b.worksIn(e1, b) ∧ worksIn(e2, b)]

where negation is in fact interpreted epistemically, in accor-
dance with the semantics of ECQs.

We first consider plan existence, i.e., the problem of check-
ing whether, for a planning problem 〈K, G〉, an executable
plan π for K exists that achieves G.
Theorem 4.1. Let L be a DL for which answering ECQs2

is in CONP in data complexity. Then plan existence for L-
eKABs with a finite object domain is decidable in PSPACE in
the size of the object domain.

2For a significant class of DLs, UCQ-query answering is known
to be in CONP in data complexity [Glimm et al., 2008; Ortiz et
al., 2008; Calvanese et al., 2013a]. ECQs inherit this result, since
they simply combine the certain answers returned by the embedded
UCQs with the evaluation of the FO operators present in the query.

When the object domain is infinite, plan existence is un-
decidable even by considering severely limited eKABs. The
following result is similar in spirit to the undecidability re-
sult by Erol et al. [1995] in the classical planning setting but
with an infinite object domain. Also, a similar result was pre-
sented in [Zarrieß and Claßen, 2015], in a knowledge-based
setting that is radically different from ours, since in their case
the TBox is considered only in the initial state, while subse-
quent states may violate its assertions. This makes the proof
technique significantly more complex in our case.

Theorem 4.2. Plan existence for eKABs with an infinite ob-
ject domain is undecidable, even if the goal is a ground CQ,
and the input eKAB has: (i) an empty TBox; (ii) actions/rules
employing UCQs only.

We next attack undecidability by focusing on infinite-
domain eKABs that are state-bounded [Bagheri Hariri et al.,
2013a; Calvanese et al., 2013b; Belardinelli et al., 2014].
Specifically, an eKAB K is b-bounded if its generated TS
ΥK = 〈T,Σ, s0, abox ,→〉 is s.t. for every state s ∈ Σ, we
have |ADOM(abox (s))| ≤ b, that is, every state (or ABox) of
ΥK contains at most b distinct objects. Note that a b-bounded
eKAB still has, in general, infinitely many states. Indeed,
from an infinite C, one can obtain infinitely many distinct
ABoxes, each containing a bounded number of objects.

For state-bounded eKABs, we have the following result,
which follows from the verification results by Calvanese
et al. [2013b]. The result implies that, for state-bounded
eKABs, checking plan existence is not more difficult than
in the standard setting of propositional planning [Bylander,
1994].

Theorem 4.3. Plan existence over state b-bounded eKABs is
decidable in PSPACE in the bound b.

We observe that while boundedness is undecidable in gen-
eral (by reduction to checking whether a Turing Machine
uses a bounded number of cells on a given input), checking
whether an eKAB is bounded for a given bound is decidable,
as proven in [De Giacomo et al., 2014], although in the Situ-
ation Calculus framework.

5 Plan Synthesis
We now consider plan synthesis for eKABs. We first intro-
duce a technique based on classical planning [Brachman and
Levesque, 2003]. A classical planning domain is a triple
D = 〈S,A, ρ〉, where S is a finite set of states, A is a finite
set of actions, and ρ : S × A → S is a transition function.
Domain states are propositional assignments, and actions are
operators that change them, according to ρ. A classical plan-
ning problem is a triple P = 〈D, s0, G〉, where D is a plan-
ning domain, s0 ∈ S is the initial state, and G ⊆ S is a set
of goal states. A solution to P is a finite sequence of actions,
called plan, that takes D from s0 to a goal state, as a result of
the changes made by the sequence of actions.

A problem P induces a labelled graph G = 〈N,E〉, where
N = S and E contains a (labelled) edge s a→ s′ iff s′ =
ρ(s, a). Essentially, planning algorithms amount to searching
(in an effective way) a path in G from s0 to a goal state.

Algorithm 1 Forward planning algorithm schema
1: function FINDPLAN(Prob)
2: input: A planning problem Prob
3: output: A plan that solves Prob, or fail if there is no solution
4: V := ∅ . Global set of visited states
5: return FWSEARCH(Prob,INITIALSTATE(Prob),ε)
6: function FWSEARCH(Prob, s, π)
7: input: A planning problem Prob, the current state s , and the

sequence π of actions that led to s
8: output: A plan that solves Prob, or fail if there is no solution
9: if s ∈ V then return fail . Loop!

10: V := V ∪ {s}
11: if HOLDS(GOAL(Prob), s) then return π
12: for all 〈a, s ′〉 ∈ SUCCESSORS(Prob, s) do
13: πn := FWSEARCH(Prob, s ′, π · a)
14: if πn 6= fail then return πn

15: return fail

Algorithm 1 shows the schema of a basic algorithm that
synthesizes a plan through a forward search on the in-
duced graph. The auxiliary functions INITIALSTATE(Prob),
GOAL(Prob), HOLDS(G, s), and SUCCESSORS(Prob, s) are
self-explicative. Note that the schema above abstracts from
the specific interpretation of states, that is, it is applicable
no matter how states and actions are represented, once the
functions above are instantiated on the case at hand. For in-
stance, for a classical planning problem P = 〈D, s0, G〉
with D = 〈S,A, ρ〉, we have INITIALSTATE(P) = s0,
GOAL(P) = G, HOLDS(G, s) = true iff s ∈ G, and
SUCCESSORS(P, s) = {〈a, s′〉 | s′ = ρ(s, a)}.

Next, we show how this schema can be lifted to handle
plan synthesis for eKABs. The lifting we propose results in
an algorithm that is correct, i.e., it

(i) terminates,
(ii) preserves plan existence, and

(iii) produces proper plans, i.e., if it does not fail, the re-
turned result corresponds to a proper solution to the in-
put planning problem.

We stress that while we present the lifting on Algorithm 1,
the same approach applies to any other, possibly optimized,
algorithm. Indeed, the lifting strategy is agnostic wrt how the
search space is traversed.

5.1 Plan Synthesis for eKABs
We consider the two classes of eKABs for which decidability
of plan existence has been established in Section 4.
eKABs with Finite Domain. This case differs from classical
planning in that eKABs have ABoxes as states, and they pro-
vide an implicit representation of successor states in terms
of actions and condition-action rules. The former aspect re-
quires to replace propositional entailment with ECQ query
answering when checking whether the goal has been reached.
The latter requires to use DO to compute a state’s successors.
Specifically, given an eKAB planning problem E = 〈K, G〉,
where K = 〈C, C0, T, A0,Λ,Γ〉, with finite C, Algorithm 1
can be instantiated as follows:
• INITIALSTATE(E) = A0;

Algorithm 2 Plan synthesis for state-bounded eKABs.
1: function FINDPLAN-EKABSB(E , b)
2: input: An eKAB planning problem E = 〈K, G〉, where K =
〈C, C0, T, A0,Λ,Γ〉 is b-bounded and C is infinite

3: output: A plan that solves E , or fail if there is no solution
4: n := max{k | there is α ∈ Λ with k parameters}

5: pick Ĉ s.t.

{
C0 ⊆ Ĉ ⊂ C
|Ĉ| = b+ n+ |C0|

. Abstract dom.

6: K̂ := 〈Ĉ, C0, T, A0,Λ,Γ〉
7: return FINDPLAN-EKABFD(〈K̂, G〉)

• GOAL(E) = G;
• HOLDS(E , A) = ANS(G,T,A);
• SUCCESSORS(E , A) returns the set of pairs 〈αθ,A′〉,

where
– α ∈ Λ,
– θ is aK-legal parameter substitution inA for α, and
– A′ = DO(αθ,A, T).

We call the resulting algorithm FINDPLAN-EKABFD. By
this instantiation, the search space of FINDPLAN-EKABFD
is exactly ΥK, which is finite, so being the eKAB domain.
Thus, we have:
Theorem 5.1. FINDPLAN-EKABFD is correct.

Plan Synthesis for State-Bounded eKABs. We now con-
sider state-bounded eKABs over infinite object domains.
In this case, the search space is potentially infinite, thus
FINDPLAN-EKABFD is not readily applicable, as termina-
tion is not guaranteed. To tackle this problem, instead of vis-
iting the original, infinite, search space, we work on a finite-
state abstraction of the eKAB. We first argue that the execu-
tion semantics of eKABs has two properties:
• it is driven by ECQ-query answering, which is generic

(cf. Section 2);
• all allowed configurations of external input parameters

are considered when applying an action.
These imply that eKABs are generic DLDSs in the sense
of Calvanese et al. [2013b], which, together with state-
boundedness, allows us to apply the same abstraction tech-
nique used by Calvanese et al. [2013b]. In particular, reacha-
bility is preserved if the infinite-state TS induced by the input
eKAB is shrunk into a finite-state TS over a finite, but suf-
ficiently large, object domain. We leverage this technique as
the core of the FINDPLAN-EKABSB procedure shown in Al-
gorithm 2, which reduces the original planning problem over
an infinite search space to a classical planning problem.

It can be checked that all correctness conditions are satis-
fied: (i) is a consequence of Theorem 5.1; (ii) holds because
the finite-state abstraction preserves reachability; (iii) holds
because the search space of the finite-state abstraction is con-
tained into that of the original eKAB. Thus, we have:
Theorem 5.2. FINDPLAN-EKABSB is correct.
Example 3. Consider again the eKAB K in Example 1, to-
gether with goal G in Example 2. Notice that K is state-
bounded, as the only way to increase the number of objects

present in the system is by hiring someone, but the num-
ber of hirings is in turn bounded by the number of company
branches (which is fixed once and for all in the initial state).
Now assume that the initial state indicates the known exis-
tence of a main and a subsidiary branch for the company, as
well as the fact that task t has an assigned technician from
the main branch:

A0 = {Branch(main),Branch(sub),Tech(123),
worksIn(123, main), hasTask(123, t)}

A possible plan leading from A0 to a state where G holds is

π1 = HireEng(452, sub) MakeResp(t, 452)

This plan achieves G by hiring an engineer in a different
branch from that of 123, with whom the engineer shares task
t. Observe, again, the interplay between the actions and the
TBox: while no action explicitly indicates that 452 has task t,
this is implicitly obtained from the fact that such an engineer
is made responsible for t.

Another, quite interesting plan achieving G is:

π2 = HireEng(521, main) MakeResp(t, 521) Anon(521)

In this case, an engineer is hired in the same branch of techni-
cian 123, and made responsible for task t. These two actions
do not suffice to achieve G, since the planning agent knows
that the two employees work in the same branch. This knowl-
edge is somehow “retracted” by anonymizing the hired en-
gineer: after the execution of Anon(521), the planning agent
still knows that 521 must work in some branch (this is en-
forced by a dedicated TBox axiom), but does not know which
one, thus satisfying also the (epistemic) negative part of the
goal.

5.2 Plan Templates and Online Instantiation
FINDPLAN-EKABSB returns plans with ground actions men-
tioning only objects in Ĉ, as those in C \ Ĉ are not used in K̂.
Such plans can be regarded as templates from which we can
obtain regular plans for K. This is a consequence of generic-
ity, which yields that a plan keeps achieving a goal even under
consistent renaming of the objects it mentions.

To formalize this intuition, we recast the notion of equality
commitment [Calvanese et al., 2013b] in this setting. Let B
be a set of objects, and I a set of external input parameters.
An equality commitment (EC)H over a finite set S ⊆ B∪I is
a partition {H1, . . . ,Hn} of S s.t. each Hj contains at most
one object from B. A substitution θ : I → B is compatible
with H if:
• for every pair of parameters i1, i2 ∈ I , we have that
i1θ = i2θ iff i1 and i2 belong to the same Hj ;
• whenever Hj contains an object d ∈ B, then iθ = d for

every i ∈ Hj .
Intuitively, θ is compatible withH if it maps parameters from
the same class into the same object, and parameters from dif-
ferent classes into distinct objects. Finally, given a finite set
B′ ⊂ B and a substitution θ : I → B, fix an ordering
O = 〈d1, . . . , dn〉 over the set Bcur = B′ ∪ IM(θ) of the
objects that are either mentioned in B′ or assigned to I by θ.
The EC H induced by θ over B′ (under O) is the partition
H = {H1, . . . ,Hn}, s.t., for j ∈ {1, . . . , n}:

Algorithm 3 Online instantiation of a plan template.
1: procedure ONLINEEXEC(K, π)
2: input: An eKAB K = 〈C, C0, T, A0,Λ,Γ〉, and a plan π =
α1θ1 · · ·αmθm

3: Ao := A0 . old, effective state
4: An := A0 . current, effective state
5: h : C0 → C0 s.t. h(d) = d for each d ∈ C0 . cur. bijection
6: for k ∈ {1, . . . ,m} do
7: H := eq. commitment induced by θi over ADOM(A)
8: pick θ′k that is compatible with h(H) . Agent choice
9: A′o := DO(αiθk, Ao, T)

10: A′n := DO(αiθ
′
k, An, T)

11: hn : C0 ∪ ADOM(Ao)→ C0 ∪ ADOM(An) s.t.

12:

hn(d) = d, for d ∈ C0
hn(d) = h(d), for d ∈ ADOM(A′o) ∩ ADOM(Ao)
hn(θk(i)) = θ′k(i), for i parameter of αk

s.t. θk(i) /∈ ADOM(Ao)
13: h := hn, Ao := A′o, An := A′n

• Hj contains dj iff dj ∈ B′, i.e., objects mentioned by θ
but not present in B′ are discarded;

• Hj contains i ∈ DOM(θ) iff θ(i) = dj , i.e., all parame-
ters mapped to the same, j-th object are included in the
j-th equivalence class.

Example 4. Let B = {d1 . . . , d5}, B′ = {d1, d2, d3},
I = {i1, . . . , i4}, and θ : I → B, s.t.: θ(i1) =
d1, θ(i2) = θ(i3) = d5, θ(i4) = d4. The EC induced
by θ over B ∪ {d4, d5} is H = {H1, . . . ,H5}, where:
H1 = {d1, i1}, H2 = {d2}, H3 = {d3}, H4 = {i4}, H5 =
{i2, i3}. Notice that Hi ⊆ B.

We can now state the following key result.

Lemma 5.3. Let K = 〈C, C0, T, A0,Λ,Γ〉 be an eKAB, and
A1, A

′
1 ABoxes over T , s.t. A1

∼=h
T A′1 for some object re-

naming h. Let α(~p,~i) be an action in Λ with external input
parameters~i, and θ a K-legal substitution in A1 for α. Let H
be the equality commitment induced by θ over ADOM(A1),
and H ′ = h(H) the equality commitment obtained from H
by renaming each d ∈ ADOM(A1) as h(d) ∈ ADOM(A2). If
θ′ is a parameter substitution for ~p and~i compatible with H ′,
then:
• θ′ is a K-legal parameter for α in A′1;
• DO(αθ,A1, T) ∼=h′

T DO(αθ′, A′1, T), where h′ extends
h as follows: for every parameter i of α s.t. θ(i) 6∈
ADOM(A1), we have h′(θ(i)) = θ′(i).

Intuitively, Lemma 5.3 states that, modulo object renam-
ing consistent with a parameter substitution that induces the
same equality commitment, the same action can be applied
to two logically equivalent ABoxes. Furthermore, such ac-
tion induces the same update, modulo renaming of the objects
mentioned in the two ABoxes and the involved parameters. In
Algorithm 3, we exploit this result to build, in an online fash-
ion, a plan for K starting from one for K̂. This provides the
freedom of dynamically choosing which actual objects to use
when actions are executed, provided that the choice induces
the same equality commitment induced by the parameter sub-
stitution in the original plan. By Lemma 5.3, we obtain:

Theorem 5.4. Let E = 〈K, G〉 be an eKAB planning prob-
lem. If π is a plan that achieves G, then ONLINEEXEC(K, π)
is guaranteed to achieve G for each possible choice.
Example 5. Consider plan π2 of Example 3. This plan can
be lifted online by the planning agent as follows: when hir-
ing the engineer, the planning agent can freely inject a fresh
employee identifier in place of 521, provided that the chosen
identifier is then consistently used in the subsequent actions.
In other words, π2 acts as a footprint for the infinite family of
plans of the form

HireEng(Id , main) MakeResp(t, Id) Anon(Id)

where Id is selected on-the-fly when the planning agent ex-
ecutes HireEng, and is s.t. it is different from all the objects
present in A0 (this reconstructs the same equality commit-
ment as in the case of 521). All such infinite plans are guar-
anteed to achieve G.

6 Plan Synthesis for Lightweight eKABs
We consider plan synthesis for state-bounded eKABs over the
lightweight DL DL-LiteA [Calvanese et al., 2009], and devise
a technique based on compilation into ADL planning [Ped-
nault, 1994; Drescher and Thielscher, 2008].

6.1 ADL Planning
An ADL planning problem is a tuple 〈C, C0,F ,A, ϕ, ψ〉,
where:
• C is a finite object domain;
• C0 ⊆ C is the set of initial objects;
• F is a finite set of fluents, i.e., predicates whose exten-

sion can vary over time;
• A is a finite set of ADL operators;
• ϕ is the initial state, i.e., a conjunction of ground literals

using predicates in F and objects in C0; and
• ψ is the goal description, i.e., a closed FO formula using

predicates in F and objects in C0.
Each ADL operator in A is a tuple 〈N, ~x, ρ(~x), ε(~x)〉, where:
• N is the name;
• variables ~x are the parameters;
• ρ(~x) is the precondition, i.e., a FO formula over F , and

whose terms are quantified variables, objects in C0, and
parameters ~x;
• ε(~x) is the effect, i.e., the universal closure of a FO con-

junction built from admissible components, inductively
defined as follows:

– Fluent literals over F and whose terms are vari-
ables, objects in C0, or parameters in ~x, are admis-
sible.

– If φ1(~y1) and φ2(~y2) are admissible, then φ1(~y1)∧
φ2(~y2) and ∀~y1.φ1(~y1) are also admissible.

– Let φ1(~y1) be a FO formula over F , whose terms
are quantified variables, objects in C0, variables
~y1, or parameters ~x. If φ2(~y2) is admissible and
does not contain any occurrence of → nor ∀, then
φ1(~y1) → φ2(~y2) is also admissible. This is used
to tackle so-called ADL conditional effects.

6.2 Translation Procedure
We now define a syntactic, modular translation procedure
LEKAB2ADL that takes as input a DL-LiteA-eKAB plan-
ning problem E = 〈K, G〉 with K = 〈C, C0, T, A0,Λ,Γ〉,
and produces a corresponding ADL planning problem PK =
〈CK, C0,FK,AK, ϕK, ψG〉.
Object domain. As in Section 5, if C is finite, so is CK. If
instead C is infinite but K is b-bounded, we fix CK to contain
C0 plus n+ b objects from C.
Fluents. FK is obtained by encoding concept and role names
in T into corresponding unary and binary fluents. It also con-
tains two special nullary fluents: ChkCons , distinguishing
normal execution modality from check consistency modality
of PK, and Error , marking when the consistency check fails.
Operators. AK is obtained by transforming every action in
Λ, with its condition-action rule in Γ, into an ADL operator:
each action’s effect produces a conditional effect in the ADL
operator, and the condition-action rule its precondition.

Since in ADL, FO formulae are directly evaluated over FO
structures (without ontological reasoning), we have to suit-
ably consider the contribution of T . Indeed (cf. Section 3), T
is used both during query answering and to check whether the
ABox resulting from an action instance is T -consistent. We
tackle both problems by relying on DL-LiteA’s FO rewritabil-
ity of both ECQs and T -consistency checks (cf. Section 2). To
embed such checks into ADL, we force AK to alternate be-
tween two phases: the normal execution modality, where a
“normal” ADL operator is applied, mirroring the execution
of an action instance of K; and the check consistency modal-
ity, where a special ADL operator checks if the obtained state
is T -consistent. Alternation is realized by toggling the fluent
ChkCons , and activating Error when the consistency check
fails, thus blocking operator application.

Technically, consider an action α = a(~p) : {e1, . . . , en} in
Λ and its corresponding condition-action ruleQα(~x) 7→ a(~p)
in Γ. Let ~z = ~p \ ~x. We produce a corresponding ADL oper-
ator 〈a, ~p, ρα(~p), εα(~p)〉. Its precondition ρα(~p) corresponds
to the FO formula rew(Qα(~x), T) ∧ ¬ChkCons ∧ ¬Error ,
which leaves the external input parameters ~z unconstrained.
The operator effect εα(~p) is the FO conjunction of the trans-
lation of e1, . . . , en. Each ei = Qi(~p, ~xi) add F+

i ,del F−i
generates the following conjunct:

rew(Qi(~p, ~xi), T)→
∧

Pj(~p, ~xi)∈F+
i

Pj(~p, ~xi) ∧
∧

Pk(~p, ~xi)∈F−i

¬Pk(~p, ~xi) ∧ ChkCons

Finally, the special ADL operator used to check T -
consistency is 〈check , ∅, ρchk, εchk〉, where ρchk =
ChkCons just checks whether the check flag is on, while
εchk takes care of toggling the check flag, as well as of
triggering the error flag if an inconsistency is detected:

εchk = ¬ChkCons ∧ (QTunsat → Error)

Initial state specification. ϕK is by constructing the con-
junction of all facts contained inA0: ϕK =

∧
Pi(~o)∈A0

Pi(~o).

Goal description. The goal description ψG is obtained from
goal G in E as ψG = rew(G,T) ∧ ¬ChkCons ∧ ¬Error .

The two-fold contribution of T is taken care of, as in the
operators, by rewriting G (via rew(G,T)) and ensuring that

the ending state is T -consistent (by requiring the absence of
the consistency check and error flags in ψG).

We close by considering the following algorithm, called
FINDPLAN-LEKABADL:

1. take as input a DL-LiteA-eKAB planning problem E ;
2. translate E into an ADL planning problem using

LEKAB2ADL;
3. invoke an off-the-shelf ADL planner;
4. if the planner returns fail, return fail as well;
5. if the planner returns a plan π, filter away all check op-

erators from π, and return it as a result.
Theorem 6.1. FINDPLAN-LEKABADL is correct.

7 Conclusion
We have studied plan synthesis over eKABs, rich dynamic
systems operating over a full-fledged DL KB. We have shown
that checking plan existence is undecidable even under se-
vere restrictions on the eKAB of interest. Nonetheless, we
have demonstrated that, under the state-boundedness assump-
tion for eKABs, plan existence is PSPACE in data complex-
ity. In this setting, we have presented sound, complete and
terminating algorithms for plan synthesis. We have then stud-
ied plan synthesis in the case where the eKAB is equipped
with a lightweight DL of the DL-Lite family. In particular, we
have proposed a technique to compile plan synthesis for state-
bounded, lightweight eKABs into standard ADL planning.

To test the feasibility of our proposal for knowledge-
intensive planning, we ran a preliminary empirical evaluation
of the framework of Section 6. We considered a DL-LiteA-
eKAB over the domain of Example 1, translated it into ADL,
and fed it as input via PDDL to an off-the-shelf planner (we
used FastDownward3). We varied the difficulty by increasing
the bound on the object domain, thus affecting the number of
ground atoms for the planner. With 9 domain elements, result-
ing in ∼2 000 atoms, a plan was found in under 1s. For 30 el-
ements (∼300 000 atoms) a plan was found in 120s, while for
35 elements (∼1 200 000 atoms) the planner timed out. Al-
though preliminary, we consider these results positive, given
the complexity of the setting and the absence of optimiza-
tions, which we left for future work. In this respect, a promis-
ing line of research is to combine our approach with that of
[Fan et al., 2012]. There, the authors study a knowledge-
intensive variant of Golog operating over an infinite object
domain, and where incomplete knowledge is captured using
proper KBs instead of DLs. In particular, they propose a semi-
decidable technique to handle progression and query evalua-
tion. In spite of the key differences between that approach and
ours, their approach is reminiscent to the abstraction tech-
nique we adopt towards decidability. We intend to leverage
this similarity with the aim of understanding if, and how, the
optimization strategies proposed in [Fan et al., 2012] can be
lifted to our setting.

3http://www.fast-downward.org/

References
[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and Victor

Vianu. Foundations of Databases. Addison Wesley Publ. Co.,
1995.

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deborah
McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press, 2003.

[Bagheri Hariri et al., 2013a] Babak Bagheri Hariri, Diego Cal-
vanese, Giuseppe De Giacomo, Alin Deutsch, and Marco Mon-
tali. Verification of relational data-centric dynamic systems with
external services. In Proc. of PODS 2013, pages 163–174, 2013.

[Bagheri Hariri et al., 2013b] Babak Bagheri Hariri, Diego Cal-
vanese, Marco Montali, Giuseppe De Giacomo, Riccardo
De Masellis, and Paolo Felli. Description logic Knowledge and
Action Bases. J. of Artificial Intelligence Research, 46:651–686,
2013.

[Bagheri Hariri et al., 2014] Babak Bagheri Hariri, Diego Cal-
vanese, Alin Deutsch, and Marco Montali. State-boundedness in
data-aware dynamic systems. In Proc. of KR 2014. AAAI Press,
2014.

[Belardinelli et al., 2014] Francesco Belardinelli, Alessio Lomus-
cio, and Fabio Patrizi. Verification of agent-based artifact sys-
tems. J. of Artificial Intelligence Research, 51:333–376, 2014.

[Brachman and Levesque, 2003] Ron J. Brachman and Hector J.
Levesque. Knowledge Representation and Reasoning. Morgan
Kaufmann, 2003.

[Bylander, 1994] Tom Bylander. The computational complexity of
propositional STRIPS planning. Artificial Intelligence, 69(1–
2):165–204, 1994.

[Calvanese et al., 2007a] Diego Calvanese, Giuseppe De Giacomo,
Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
EQL-Lite: Effective first-order query processing in description
logics. In Proc. of IJCAI 2007, pages 274–279, 2007.

[Calvanese et al., 2007b] Diego Calvanese, Giuseppe De Giacomo,
Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Tractable reasoning and efficient query answering in descrip-
tion logics: The DL-Lite family. J. of Automated Reasoning,
39(3):385–429, 2007.

[Calvanese et al., 2009] Diego Calvanese, Giuseppe De Giacomo,
Domenico Lembo, Maurizio Lenzerini, Antonella Poggi, Mar-
iano Rodriguez-Muro, and Riccardo Rosati. Ontologies and
databases: The DL-Lite approach. In Sergio Tessaris and En-
rico Franconi, editors, RW 2009 Tutorial Lectures, volume 5689
of LNCS, pages 255–356. Springer, 2009.

[Calvanese et al., 2013a] Diego Calvanese, Giuseppe De Giacomo,
Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Data complexity of query answering in description logics. Ar-
tificial Intelligence, 195:335–360, 2013.

[Calvanese et al., 2013b] Diego Calvanese, Giuseppe De Giacomo,
Marco Montali, and Fabio Patrizi. Verification and synthesis in
description logic based dynamic systems. In Proc. of RR 2013,
volume 7994 of LNCS, pages 50–64. Springer, 2013.

[Cimatti et al., 2008] Alessandro Cimatti, Marco Pistore, and Paolo
Traverso. Automated planning. In Handbook of Knowledge Rep-
resentation, volume 3 of Foundations of Artificial Intelligence,
pages 841–867. Elsevier, 2008.

[De Giacomo et al., 2014] Giuseppe De Giacomo, Yves
Lespérance, Fabio Patrizi, and Stavros Vassos. Progression

and verification of situation calculus agents with bounded
beliefs. In Proc. ofAAMAS’14, 2014.

[Drescher and Thielscher, 2008] Conrad Drescher and Michael
Thielscher. A fluent calculus semantics for ADL with plan con-
straints. In Proc. of JELIA 2008, volume 5293 of LNCS, pages
140–152. Springer, 2008.

[Erol et al., 1995] Kutluhan Erol, Dana S. Nau, and V. S. Sub-
rahmanian. Complexity, decidability and undecidability results
for domain-independent planning. Artificial Intelligence, 76(1–
2):75–88, 1995.

[Fan et al., 2012] Yi Fan, Minghui Cai, Naiqi Li, and Yongmei Liu.
A first-order interpreter for knowledge-based golog with sensing
based on exact progression and limited reasoning. In Proc. of
AAAI 2012. AAAI Press, 2012.

[Gabbay et al., 2003] Dov Gabbay, Agnes Kurusz, Frank Wolter,
and Michael Zakharyaschev. Many-dimensional Modal Logics:
Theory and Applications. Elsevier, 2003.

[Ghallab et al., 2004] Malik Ghallab, Dana S. Nau, and Paolo
Traverso. Automated planning – Theory and Practice. Elsevier,
2004.

[Glimm et al., 2008] Birte Glimm, Carsten Lutz, Ian Horrocks, and
Ulrike Sattler. Conjunctive query answering for the description
logic SHIQ. J. of Artificial Intelligence Research, 31:151–198,
2008.

[Hoffmann et al., 2009] Jörg Hoffmann, Piergiorgio Bertoli, Malte
Helmert, and Marco Pistore. Message-based web service com-
position, integrity constraints, and planning under uncertainty: A
new connection. J. of Artificial Intelligence Research, 35:49–117,
2009.

[Levesque and Lakemeyer, 2001] Hector J. Levesque and Gerhard
Lakemeyer. The Logic of Knowledge Bases. The MIT Press,
2001.

[Levesque, 1984] Hector J. Levesque. Foundations of a functional
approach to knowledge representation. Artificial Intelligence,
23:155–212, 1984.

[Ortiz et al., 2008] Magdalena Ortiz, Diego Calvanese, and
Thomas Eiter. Data complexity of query answering in expressive
description logics via tableaux. J. of Automated Reasoning,
41(1):61–98, 2008.

[Pednault, 1994] Edwin P. D. Pednault. ADL and the state-
transition model of action. J. of Logic and Computation,
4(5):467–512, 1994.

[Wolter and Zakharyaschev, 1999] Frank Wolter and Michael Za-
kharyaschev. Temporalizing description logic. In D. Gabbay and
M. de Rijke, editors, Frontiers of Combining Systems, pages 379–
402. Studies Press/Wiley, 1999.

[Zarrieß and Claßen, 2015] Benjamin Zarrieß and Jens Claßen.
Verification of knowledge-based programs over description logic
actions. In Proc. of IJCAI’15, 2015.

