12,095 research outputs found

    Efficient Hardware Implementation Of Haar Wavelet Transform With Line-Based And Dual-Scan Image Memory Accesses

    Get PDF
    Image compression is of great importance in multimedia systems and applications because it drastically reduces bandwidth requirements for transmission and memory requirements for storage. An image compression algorithm JPEG2000 isbased on Discrete Wavelet Transform. In the hardware implementation of DiscreteWavelet Transform (DWT) and inverse DiscreteWavelet Transform (IDWT),the main problems are storage memory, internal processing buffer, and the limitation of the FPGA resources. Based on non-separable 2-D DWT, the method used to access the image memory has a direct impact on the internal buffer size,the power consumption and, the transformation speed. The need for internal buffer reduces the image memory access time. The main objectives of this thesis are as follows; to implement a 2-D Haar wavelet transform for large gray-scale image, to reduce the number of image memory access by implementing the 2- D Haar wavelet transform with a suitable combination between using external memory and internal memory, and targeting a low-power and high-speed architecture based on multi-levels non-separable discrete Haar wavelet transform. In this work, the proposed two architectures reduce the number of image memory access. The line-based architecture reduces the internal buffer by 2 x 0.5 x N where N presents the image size. This happens for the low-pass coefficients and for the high-pass coefficients. The dual-scan architecture does not use the internal memory. Overall both architectures work well on the Altera FPGA board at frequency 100 MHz

    On the design of fast and efficient wavelet image coders with reduced memory usage

    Full text link
    Image compression is of great importance in multimedia systems and applications because it drastically reduces bandwidth requirements for transmission and memory requirements for storage. Although earlier standards for image compression were based on the Discrete Cosine Transform (DCT), a recently developed mathematical technique, called Discrete Wavelet Transform (DWT), has been found to be more efficient for image coding. Despite improvements in compression efficiency, wavelet image coders significantly increase memory usage and complexity when compared with DCT-based coders. A major reason for the high memory requirements is that the usual algorithm to compute the wavelet transform requires the entire image to be in memory. Although some proposals reduce the memory usage, they present problems that hinder their implementation. In addition, some wavelet image coders, like SPIHT (which has become a benchmark for wavelet coding), always need to hold the entire image in memory. Regarding the complexity of the coders, SPIHT can be considered quite complex because it performs bit-plane coding with multiple image scans. The wavelet-based JPEG 2000 standard is still more complex because it improves coding efficiency through time-consuming methods, such as an iterative optimization algorithm based on the Lagrange multiplier method, and high-order context modeling. In this thesis, we aim to reduce memory usage and complexity in wavelet-based image coding, while preserving compression efficiency. To this end, a run-length encoder and a tree-based wavelet encoder are proposed. In addition, a new algorithm to efficiently compute the wavelet transform is presented. This algorithm achieves low memory consumption using line-by-line processing, and it employs recursion to automatically place the order in which the wavelet transform is computed, solving some synchronization problems that have not been tackled by previous proposals. The proposed encodeOliver Gil, JS. (2006). On the design of fast and efficient wavelet image coders with reduced memory usage [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1826Palanci

    Adaptation of Zerotrees Using Signed Binary Digit Representations for 3D Image Coding

    Get PDF
    Zerotrees of wavelet coefficients have shown a good adaptability for the compression of three-dimensional images. EZW, the original algorithm using zerotree, shows good performance and was successfully adapted to 3D image compression. This paper focuses on the adaptation of EZW for the compression of hyperspectral images. The subordinate pass is suppressed to remove the necessity to keep the significant pixels in memory. To compensate the loss due to this removal, signed binary digit representations are used to increase the efficiency of zerotrees. Contextual arithmetic coding with very limited contexts is also used. Finally, we show that this simplified version of 3D-EZW performs almost as well as the original one

    Map online system using internet-based image catalogue

    Get PDF
    Digital maps carry along its geodata information such as coordinate that is important in one particular topographic and thematic map. These geodatas are meaningful especially in military field. Since the maps carry along this information, its makes the size of the images is too big. The bigger size, the bigger storage is required to allocate the image file. It also can cause longer loading time. These conditions make it did not suitable to be applied in image catalogue approach via internet environment. With compression techniques, the image size can be reduced and the quality of the image is still guaranteed without much changes. This report is paying attention to one of the image compression technique using wavelet technology. Wavelet technology is much batter than any other image compression technique nowadays. As a result, the compressed images applied to a system called Map Online that used Internet-based Image Catalogue approach. This system allowed user to buy map online. User also can download the maps that had been bought besides using the searching the map. Map searching is based on several meaningful keywords. As a result, this system is expected to be used by Jabatan Ukur dan Pemetaan Malaysia (JUPEM) in order to make the organization vision is implemented
    corecore