11,628 research outputs found

    Simple digital quantum algorithm for symmetric first order linear hyperbolic systems

    Full text link
    This paper is devoted to the derivation of a digital quantum algorithm for the Cauchy problem for symmetric first order linear hyperbolic systems, thanks to the reservoir technique. The reservoir technique is a method designed to avoid artificial diffusion generated by first order finite volume methods approximating hyperbolic systems of conservation laws. For some class of hyperbolic systems, namely those with constant matrices in several dimensions, we show that the combination of i) the reservoir method and ii) the alternate direction iteration operator splitting approximation, allows for the derivation of algorithms only based on simple unitary transformations, thus perfectly suitable for an implementation on a quantum computer. The same approach can also be adapted to scalar one-dimensional systems with non-constant velocity by combining with a non-uniform mesh. The asymptotic computational complexity for the time evolution is determined and it is demonstrated that the quantum algorithm is more efficient than the classical version. However, in the quantum case, the solution is encoded in probability amplitudes of the quantum register. As a consequence, as with other similar quantum algorithms, a post-processing mechanism has to be used to obtain general properties of the solution because a direct reading cannot be performed as efficiently as the time evolution.Comment: 28 pages, 12 figures, major rewriting of the section describing the numerical method, simplified the presentation and notation, reorganized the sections, comments are welcome

    Transfer Function Synthesis without Quantifier Elimination

    Get PDF
    Traditionally, transfer functions have been designed manually for each operation in a program, instruction by instruction. In such a setting, a transfer function describes the semantics of a single instruction, detailing how a given abstract input state is mapped to an abstract output state. The net effect of a sequence of instructions, a basic block, can then be calculated by composing the transfer functions of the constituent instructions. However, precision can be improved by applying a single transfer function that captures the semantics of the block as a whole. Since blocks are program-dependent, this approach necessitates automation. There has thus been growing interest in computing transfer functions automatically, most notably using techniques based on quantifier elimination. Although conceptually elegant, quantifier elimination inevitably induces a computational bottleneck, which limits the applicability of these methods to small blocks. This paper contributes a method for calculating transfer functions that finesses quantifier elimination altogether, and can thus be seen as a response to this problem. The practicality of the method is demonstrated by generating transfer functions for input and output states that are described by linear template constraints, which include intervals and octagons.Comment: 37 pages, extended version of ESOP 2011 pape

    Polynomial-time T-depth Optimization of Clifford+T circuits via Matroid Partitioning

    Full text link
    Most work in quantum circuit optimization has been performed in isolation from the results of quantum fault-tolerance. Here we present a polynomial-time algorithm for optimizing quantum circuits that takes the actual implementation of fault-tolerant logical gates into consideration. Our algorithm re-synthesizes quantum circuits composed of Clifford group and T gates, the latter being typically the most costly gate in fault-tolerant models, e.g., those based on the Steane or surface codes, with the purpose of minimizing both T-count and T-depth. A major feature of the algorithm is the ability to re-synthesize circuits with additional ancillae to reduce T-depth at effectively no cost. The tested benchmarks show up to 65.7% reduction in T-count and up to 87.6% reduction in T-depth without ancillae, or 99.7% reduction in T-depth using ancillae.Comment: Version 2 contains substantial improvements and extensions to the previous version. We describe a new, more robust algorithm and achieve significantly improved experimental result

    Simulating chemistry efficiently on fault-tolerant quantum computers

    Get PDF
    Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. Here we consider methods to make proposed chemical simulation algorithms computationally fast on fault-tolerant quantum computers in the circuit model. Fault tolerance constrains the choice of available gates, so that arbitrary gates required for a simulation algorithm must be constructed from sequences of fundamental operations. We examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay-Kitaev algorithm [C.M. Dawson and M.A. Nielsen, \emph{Quantum Inf. Comput.}, \textbf{6}:81, 2006]. For a given approximation error ϵ\epsilon, arbitrary single-qubit gates can be produced fault-tolerantly and using a limited set of gates in time which is O(logϵ)O(\log \epsilon) or O(loglogϵ)O(\log \log \epsilon); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for Lithium hydride.Comment: 33 pages, 18 figure

    MV3: A new word based stream cipher using rapid mixing and revolving buffers

    Full text link
    MV3 is a new word based stream cipher for encrypting long streams of data. A direct adaptation of a byte based cipher such as RC4 into a 32- or 64-bit word version will obviously need vast amounts of memory. This scaling issue necessitates a look for new components and principles, as well as mathematical analysis to justify their use. Our approach, like RC4's, is based on rapidly mixing random walks on directed graphs (that is, walks which reach a random state quickly, from any starting point). We begin with some well understood walks, and then introduce nonlinearity in their steps in order to improve security and show long term statistical correlations are negligible. To minimize the short term correlations, as well as to deter attacks using equations involving successive outputs, we provide a method for sequencing the outputs derived from the walk using three revolving buffers. The cipher is fast -- it runs at a speed of less than 5 cycles per byte on a Pentium IV processor. A word based cipher needs to output more bits per step, which exposes more correlations for attacks. Moreover we seek simplicity of construction and transparent analysis. To meet these requirements, we use a larger state and claim security corresponding to only a fraction of it. Our design is for an adequately secure word-based cipher; our very preliminary estimate puts the security close to exhaustive search for keys of size < 256 bits.Comment: 27 pages, shortened version will appear in "Topics in Cryptology - CT-RSA 2007

    Topics on Register Synthesis Problems

    Get PDF
    Pseudo-random sequences are ubiquitous in modern electronics and information technology. High speed generators of such sequences play essential roles in various engineering applications, such as stream ciphers, radar systems, multiple access systems, and quasi-Monte-Carlo simulation. Given a short prefix of a sequence, it is undesirable to have an efficient algorithm that can synthesize a generator which can predict the whole sequence. Otherwise, a cryptanalytic attack can be launched against the system based on that given sequence. Linear feedback shift registers (LFSRs) are the most widely studied pseudorandom sequence generators. The LFSR synthesis problem can be solved by the Berlekamp-Massey algorithm, by constructing a system of linear equations, by the extended Euclidean algorithm, or by the continued fraction algorithm. It is shown that the linear complexity is an important security measure for pseudorandom sequences design. So we investigate lower bounds of the linear complexity of different kinds of pseudorandom sequences. Feedback with carry shift registers (FCSRs) were first described by Goresky and Klapper. They have many good algebraic properties similar to those of LFSRs. FCSRs are good candidates as building blocks of stream ciphers. The FCSR synthesis problem has been studied in many literatures but there are no FCSR synthesis algorithms for multi-sequences. Thus one of the main contributions of this dissertation is to adapt an interleaving technique to develop two algorithms to solve the FCSR synthesis problem for multi-sequences. Algebraic feedback shift registers (AFSRs) are generalizations of LFSRs and FCSRs. Based on a choice of an integral domain R and π ∈ R, an AFSR can produce sequences whose elements can be thought of elements of the quotient ring R/(π). A modification of the Berlekamp-Massey algorithm, Xu\u27s algorithm solves the synthesis problem for AFSRs over a pair (R, π) with certain algebraic properties. We propose two register synthesis algorithms for AFSR synthesis problem. One is an extension of lattice approximation approach but based on lattice basis reduction and the other one is based on the extended Euclidean algorithm
    corecore