
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2016

Topics on Register Synthesis Problems Topics on Register Synthesis Problems

Weihua Liu
University of Kentucky, liuweihua817@gmail.com
Digital Object Identifier: http://dx.doi.org/10.13023/ETD.2016.160

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Liu, Weihua, "Topics on Register Synthesis Problems" (2016). Theses and Dissertations--Computer
Science. 45.
https://uknowledge.uky.edu/cs_etds/45

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232573066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Weihua Liu, Student

Dr. Andrew Klapper, Major Professor

Dr. Miroslaw Truszczynski, Director of Graduate Studies

Topics on Register Synthesis Problems

DISSERTATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the

College of Engineering

at the University of Kentucky

By

Weihua Liu

Lexington, Kentucky

Director: Dr. Andrew Klapper, Professor of Computer Science

Lexington, Kentucky

2016

Copyright c© Weihua Liu 2016

ABSTRACT OF DISSERTATION

Topics on Register Synthesis Problems

Pseudo-random sequences are ubiquitous in modern electronics and information tech-

nology. High speed generators of such sequences play essential roles in various engi-

neering applications, such as stream ciphers, radar systems, multiple access systems,

and quasi-Monte-Carlo simulation. Given a short prefix of a sequence, it is undesir-

able to have an efficient algorithm that can synthesize a generator which can predict

the whole sequence. Otherwise, a cryptanalytic attack can be launched against the

system based on that given sequence.

Linear feedback shift registers (LFSRs) are the most widely studied pseudorandom

sequence generators. The LFSR synthesis problem can be solved by the Berlekamp-

Massey algorithm [44], by constructing a system of linear equations, by the extended

Euclidean algorithm, or by the continued fraction algorithm [52,53]. It is shown that

the linear complexity is an important security measure for pseudorandom sequences

design. So we investigate lower bounds of the linear complexity of different kinds of

pseudorandom sequences.

Feedback with carry shift registers (FCSRs) were first described by Goresky and

Klapper [22, 31]. They have many good algebraic properties similar to those of LF-

SRs. FCSRs are good candidates as building blocks of stream ciphers. The FCSR

synthesis problem has been studied in many literatures [7, 30, 33] but there are no

FCSR synthesis algorithms for multi-sequences. Thus one of the main contributions

of this dissertation is to adapt an interleaving technique to develop two algorithms to

solve the FCSR synthesis problem for multi-sequences.

Algebraic feedback shift registers (AFSRs) are generalizations of LFSRs and FC-

SRs. Based on a choice of an integral domain R and π ∈ R, an AFSR can produce

sequences whose elements can be thought of elements of the quotient ring R/(π). A

modification of the Berlekamp-Massey algorithm, Xu’s algorithm solves the synthe-

sis problem for AFSRs over a pair (R, π) with certain algebraic properties [33]. We

propose two register synthesis algorithms for AFSR synthesis problem. One is an

extension of lattice approximation approach but based on lattice basis reduction and

the other one is based on the extended Euclidean algorithm.

KEYWORDS: FCSRs, AFSRs, Register synthesis problem, Multi-sequences.

Weihua Liu

May 6, 2016

Topics on Register Synthesis Problems

By

Weihua Liu

Dr. Andrew Klapper

Director of Dissertation

Dr. Miroslaw Truszczynski

Director of Graduate Studies

May 6, 2016

Date

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my advisor Dr. Andrew Klapper for

his patient guidance and continuous support. I could not have imagined having a

better advisor and mentor for my Ph.D. study. His advice on both research as well

as on my career have been priceless. I would also like to thank my Ph.D. Committee

Members, Dr. Judy Goldsmith, Dr. Miroslaw Truszczynski and Dr. Heide Gluesing-

Luerssen for their invaluable advice and direction throughout the years. In addition,

I would like to thank Dr. Andrew Klapper, Dr. Judy Goldsmith, and Dr. Debby

Keen for their kind assistance with writing recommendation letters and helping me

in my job search.

I am very grateful to my research collaborator, Dr. Zhixiong Chen, for his scientific

advice and knowledge. Thanks also go to my colleges and all members in the group

of Crypto seminar, Dr. Ting Gu, Mr. Virgil Barnard, Dr. Xiaoni Du and Dr. Zhihua

Niu for their insightful discussions and suggestions.

My Ph.D. would not have been possible without my family and friend’s support

and encouragement. Words cannot express how grateful I am to my mother and

father for all of the sacrifices that they’ve made on my behalf. I would also like to

thank Dr. Tom Tucker and Mrs. Nancy Tucker for their endless love and supports.

iii

Contents

Acknowledgements iii

Table of Contents iv

List of Figures vi

1 Introduction 1

1.1 Pseudorandom sequences . 1

1.2 The one-time pad and stream ciphers 2

1.3 Sequence generators and their Properties 3

1.3.1 Linear Feedback Shift Registers 5

1.3.2 Feedback with Carry Shift Registers 7

1.3.3 Algebraic Feedback Shift Registers and d-FCSRs 12

1.4 Register Synthesis Problem . 16

1.5 Lattices and basis reduction . 18

1.5.1 The LLL lattice basis reduction 20

1.5.2 Low-dimensional lattice basis reduction 21

2 LFSR synthesis and linear complexity 24

2.1 Previous works on LFSR synthesis algorithms 24

2.2 Linear complexity of FCSR sequences 26

2.2.1 Cyclotomic Polynomials . 28

2.2.2 Complementary properties and special cases 29

3 FCSR synthesis 34

3.1 Previous work on FCSR synthesis algorithms 34

3.1.1 Rational approximation based on the extended Euclidean algo-

rithm . 35

3.1.2 Rational approximation based on lattice approximation 38

3.2 Multi-sequences and joint N -adic complexity 38

3.3 Rational approximation for multi-sequences 41

3.4 Multi-sequences FCSR synthesis via lattice approximation 43

3.4.1 Rational approximation algorithm based on the lattice reduc-

tion greedy algorithm . 44

3.4.2 Rational approximation algorithm based on the LLL algorithm 47

iv

3.4.3 Comparison of ApproxGreedy and ApproxLLL 50

4 AFSR Synthesis 51

4.1 Xu’s rational approximation algorithm 51

4.2 Algebraic number fields . 54

4.3 AFSR synthesis via lattice rational approximation algorithm 55

4.3.1 Size and π-adic complexity . 55

4.3.2 k-th Approximation Lattices 56

4.3.3 Lattice Approximation Algorithms 57

4.4 AFSR synthesis via the Extended Euclidean Rational Approximation

Algorithm . 60

4.4.1 R-lattices . 61

4.4.2 Division Algorithm in R . 66

4.4.3 The Extended Euclidean Rational Approximation Algorithm . 67

4.5 Comparison . 70

4.5.1 ApproxLattice and Xu’s algorithm 70

4.5.2 EEAapprox and Xu’s algorithm 72

4.5.3 EEAapprox and ApproxLattice 72

5 Conclusions and Future work 74

5.1 The study of linear complexity . 74

5.2 Two-dimensional Euclidean algorithm and its applications to register

synthesis . 74

5.3 AFSRs synthesis with the LLL algorithm 79

Appendix 80

Bibliography 84

Vita 90

v

List of Figures

1.1 Stream Cipher Schematic . 3

1.2 A Linear Feedback Shift Register of Length m 6

1.3 Galois LFSR . 6

1.4 A Feedback with Carry Shift Register of Length m 9

1.5 Galois FCSR . 9

1.6 An algebraic feedback shift register of length m 14

1.7 A binary d-FCSR with d = 2 . 16

1.8 The LLL Algorithm . 22

1.9 The lattice reduction greedy algorithm 23

2.1 The Berlekamp-Massey algorithm . 25

3.1 The Euclidean algorithm . 35

3.2 The extended Euclidean algorithm 36

3.3 The extended Euclidean rational approximation algorithm 37

3.4 The rational approximation algorithm based on lattice approximation 39

3.5 The multi-FCSR Rational Approximation with GreedyLatticeRe-

duction . 44

3.6 The multi-FCSR Rational Approximation with LLL 48

4.1 Xu’s rational approximation algorithm 53

4.2 Lattice Rational Approximation Algorithm for AFSRs over a quadratic

extension . 58

4.3 The Extended Euclidean Rational Approximation Algorithm 68

5.1 Number of iterations for the two-dimensional Euclidean algorithm . . 78

vi

1 Introduction

This thesis concerns pseudorandom sequence generators and the problem of finding

minimal generators of certain types given only partial knowledge of the sequence.

This problem has implications for symmetric key cryptography. In the remainder of

this chapter we review the definition of pseudorandom sequences, the basics of the

type of generator we are concerned with, and the introduction of lattice theory.

1.1 Pseudorandom sequences

Random sequences are useful for a variety of purposes, such as generating encryp-

tion keys, gambling, statistical sampling and computer simulation. The randomness

means that it is hard to predict the next number using the numbers that we have

seen. Truly random sequences can be generated by true random number generators

(TRNGs), such as HotBits [69] using radioactive decay and RANDOM.ORG [1] using

atmospheric noise. However, TRNGs are nondeterministic and generally are ineffi-

cient in most practical environments. In such situations, pseudorandom sequence

generators are substituted for TRNGs.

Pseudorandom sequence generators are deterministic algorithms which produce

sequences, called pseudorandom sequences, that are apparently random. These se-

quences are not truly random but apparently random in the sense that it is not

efficient for an adversary to distinguish them from the truly random sequences of the

same length. To gain confidence in the randomness of pseudorandom sequences, a

collection of statistical tests is designed to detect the specific characteristics expected

of random sequences. Besides the five basic tests [45] listed blow, other statistical

tests have been proposed, such as Golomb’s randomness postulates [21], Maurer’s

universal statistical test [45] and FIPS 140-1 statistical tests [17,45].

• Frequency test: Determine whether the number of 0’s and 1’s in the sequence

are approximately the same.

• Serial test: Determine whether the number of occurrences of 00, 01, 10, and

11 as subsequences are approximately the same.

• Poker test: Determine whether the sequences of length m each appear ap-

proximately the same number of times in the sequence.

• Runs test: Determine whether the number of runs (i.e. subsequences that

contains consecutive 0’s or consecutive 1’s which are neither preceded nor suc-

1

ceeded by the same symbol) of various lengths in the sequence is as expected

for a random sequence.

• Autocorrelation test: Check for correlations between the sequence and its

shifts.

Along with the property of randomness, pseudorandom sequences with particular

statistical properties are used in different applications. In frequency hopping spread

spectrum, pseudorandom sequences known to both transmitter and receiver are used

as spreading codes to lead signals rapidly to switch among many frequency channels.

This method has been used in many wireless communication systems, such as blue-

tooth, cellphone, and GPS systems. Pseudorandom sequences are also used as error

correcting codes in satellite and other communications. In stream ciphers and other

cryptographic applications, pseudorandom sequences are used as crucial components

for generating key streams. In Monte Carlo methods, pseudorandom sequences that

are uniformly distributed are used as samples data for simulation.

Considering the security problems, not all pseudorandom sequence generators are

suitable for use in cryptography. NIST Special Publication 800-22, A Statistical

Test for Random and Pseudorandom Number Generators for Cryptographic Applica-

tions [57] discusses the selecting and testing of random and pseudorandom sequence

generators in cryptography and offers detailed recommendations on how to use these

tests.

1.2 The one-time pad and stream ciphers

The one-time pad is a cipher in which each character in the plaintext is encrypted

with a random key. It was first described by Frank Miller in 1882 [47]. In 1917,

AT&T research engineer, Gilbert Vernam, re-invented the electrical one-time pad

using the XOR operation (addition modulo 2) and got it patented in 1919 (U.S.

Patent 1,310,719 [67]). It was proved by Claude Shannon, using information theory,

that the one-time pad is mathematically unbreakable [62]. Even adversaries with

unbounded computational power and infinite time cannot break it. It is said to

have perfect secrecy, which means that the ciphertext gives absolutely no additional

information about the plaintext. However, it is inconvenient to use a one-time pad in

practice due to the constraints that the key must be at least as long as the plaintext

and each key can be used only once. A well-designed stream cipher can be a good

replacement for one-time pad.

2

A stream cipher is a private (symmetric) key cryptosystem where encryption and

decryption keys are identical. Stream ciphers encrypt plaintext character by character

by adding the key stream generated by a pseudorandom sequence generator. The

decryption is to subtract the identical copy of the key stream character by character

from the ciphertext. Figure 1.1 shows the procedure of encryption and decryption in

a stream cipher in the form of binary digits.

���� ����-

GG- �

? ?
- -Plaintext Plaintext

SeedSeed

Key Key

Ciphertext

Figure 1.1: Stream Cipher Schematic

Because of their high speed stream ciphers are suitable for transmitting large

amounts of data, such as that generated by digital telephones, video on demand,

and Voice over Internet Protocol (VoIP). They are often implemented in hardware

to add speed. The most widely used stream cipher is RC4, which is used in WEP

(security algorithm for IEEE 802.11 wireless networks), SSL (cryptographic protocols

to security communication over computer network) and SSH (network protocol for

remote login over an unsecured network). In November 2004, ECRYPT (European

Network of Excellence in Cryptology) launched a four year project called “eSTREAM”

to advance the development of stream cipher designs.

1.3 Sequence generators and their Properties

In this section, we recall three kinds of sequence generators: linear feedback shift

registers (LFSRs), feedback with carry shift registers (FCSRs) and algebraic feedback

shift registers (AFSRs). The design and analysis of LFSRs and FCSRs are based on

similar algebraic structures, which gives rise to a common generalization, AFSRs [32].

LFSRs are widely used in cryptography. There are many important LFSR-based

stream ciphers such as A5 used in GSM, and E0 used in Bluetooth. With the right

3

choices of coefficients, LFSRs produce pseudorandom sequences with desirable ran-

domness properties.

Algebraic attacks [13, 36] on stream ciphers based on LFSRs take advantage of

the linear nature of the state change operation. If a sequence is annihilated by a low

degree polynomial in the shift operator, then it is also annihilated by the composition

of this polynomial with the state change operator. Iteration gives us many more

annihilators of the sequence. This allows an adversary to break the stream cipher by

solving a system of low degree polynomials. Thus alternatives to LFSRs as building

blocks are desirable.

FCSRs, proposed by Klapper and Groresky [22,31], are good alternatives to LFSRs

as building blocks to proffer resistance to algebraic attacks. The sequences generated

by FCSRs enjoy many useful statistical properties. FCSRs are high speed sequence

generators which are suitable for hardware implementation. The stream cipher family

Filtered-FCSR (F-FCSR) [3–6] is an example of stream ciphers based on FCSRs.

Generally speaking, a sequence generator is an algorithm for generating sequences

of numbers. Different state changes determine different properties of the generated

sequences.

Definition 1.3.1. [25] A sequence generator with output,

F = (U,Σ, f, g),

consists of a discrete (i.e., finite or countable) set U of states, a discrete alphabet

Σ of output values, a state transition function f : U → U and an output function

g : U → Σ.

Such a generator is depicted as follows:

f ↪→ U
g−→ Σ.

Given an initial state s ∈ U , such a sequence generator outputs an infinite sequence

F (s) = g(s), g(f(s)), g(f 2(s)), · · ·

with elements in Σ.

The output sequence a=(a0, a1, · · ·) is periodic if there exists an integer T > 0 so

that

ai = ai+T (1.1)

for all i = 0, 1, 2, · · · . We call T a period of the sequence a and the least one is called

the least period of a. The sequence a is eventually periodic if there exists N > 0 and

4

T > 0 so that (1.1) holds for all i ≥ N . It is well known that every period of a is a

multiple of the least period of a.

Consider the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, · · · .

The sequence generator for the Fibonacci sequence is with states U = Z2, output

alphabet Z, state change function f(a0, a1) = (a1, a0+a1), output function g(a0, a1) =

a0, and initial state s = (0, 1).

1.3.1 Linear Feedback Shift Registers

Linear feedback shift registers (LFSRs) are high speed generators of linearly recurrent

sequences that have many desired properties for applications including cryptography,

random number testing and wireless communication systems employing spread spec-

trum or CDMA techniques. They provide a fast and simple method of generating

pseudo-random sequences. Although binary LFSRs are most widely used, we here

consider the general case that the alphabet is a finite commutative ring. We assume

that R is a finite commutative ring (with identity denoted by 1).

Definition 1.3.2. [25] A (Fibonacci mode) linear feedback shift register of length

m over R, with coefficients q1, q2, · · · qm ∈ R is a sequence generator whose state is

an element

s = (a0, a1, · · · , am−1) ∈ Rm,

whose output is out(s) = a0, and whose state change operation τ is given by

(a0, a1, · · · , am−1)→ (a1, a2, · · · , am−1,Σm
i=1qiam−i).

A circuit presentation of a Fibonacci LFSR is shown in Figure 1.2.

Definition 1.3.3. [25] A (Galois mode) linear feedback shift register of length m

over R, with coefficients q1, q2, · · · qm ∈ R is a sequence generator whose state is an

element

s = (h0, h1, · · · , hm−1) ∈ Rm,

whose output is out(s) = h0, and whose state change operation τ is given by

(h0, h1, · · · , hm−1)→ (a1 + q1h0, h2 + q2h0, · · · , hm−1 + qm−1h0, qmh0).

5

? ? ? ?

��
��
��
��

��
��
��
��
a0a1· · ·

· · ·

am−2am−1

q1 q2 qm−1 qm

∑ �
�
�
�

- -

Figure 1.2: A Linear Feedback Shift Register of Length m

��
��

��
��

��
��

��
��

qm qm−1 q2 q1

��� ��� ���+ + +hm−1 · · · h1 h0
- - - - -- - -

6 6 6

Figure 1.3: Galois LFSR

It is illustrated in Figure 1.3.

Galois LFSRs and Fibonacci LFSRs are equivalent. That is, given identical co-

efficients, they can produce the same sequence. However, the initial states of the

two implementations may be different for the two sequences to be identical. When

implemented in hardware, Galois LFSRs are generally faster than Fibonacci LFSR

because the additions are performed in parallel by separate adders that will result

in a potentially lower clock cycle time. So the Galois form is usually preferred in

applications especially in hardware.

There are many useful results about LFSRs and LFSR sequences [25]:

1. The coefficients q1, q2, . . . , qm can be associated to the connection polynomial

q(x) = −1 +
m∑
i=1

qix
i ∈ R[x].

6

Many properties (such as the period) of the output sequence can be determined

from this polynomial.

2. Any infinite sequence a = (a0, a1, a2 · · ·) over R may be identified with its

generating function a(x) =
∑∞

i=0 aix
i, which is an element of the ring of R[[x]]

of formal power series. It is well known that the sequence a is eventually periodic

if and only if its generating function is equal to a quotient of two polynomials,

a(x) =
f(x)

q(x)
∈ R[[x]].

Now let q(x) be any polynomial with constant term -1. Then q(x) is the connec-

tion polynomial for a LFSR which generates a and f(x) is uniquely determined

by the initial loading of this LFSR. The sequence a is strictly periodic if and

only if deg(f(x)) < deg (q(x)). If the ring R is finite and if qm 6= 0, then every

output sequence is strictly periodic.

3. The output sequence a = (a0, a1, a2 · · ·) of an LFSR can be represented as

ai = x−if(x) (mod q(x)) (mod x),

where a(x) is the generating function, q(x) is the connection polynomial and

a(x) = −f(x)/q(x).

4. The number of cells in the shortest LFSR that can generate a is called the linear

complexity or equivalently linear span of a; denoted by λ(a). It is an important

measure of the cryptographic security of the sequence. By the Berlekamp-

Massey algorithm, for a given output sequence a, we can reconstruct a gener-

ating LFSR with only 2λ(a) consecutive bits of a. So for the sake of security,

we need to use sequences with high linear complexity.

5. A sequence is an m-sequence if it is the output sequence of a LFSR that cycles

through all possible nonzero states before it repeats. Such sequences have many

important statistical properties and have found applications in communications,

coding theory, radar system and CDMA. If the ring R is a field, then a is an

m-sequence if and only if the connection polynomial q(x) of its generating LFSR

is a primitive polynomial in R[x].

1.3.2 Feedback with Carry Shift Registers

LFSRs are widely used because they can be easily implemented in hardware but using

LFSRs alone can not guarantee good security. So many schemes have been proposed

7

to increase the security of LFSRs. One approach is to combine the outputs of several

parallel LFSRs with a non-linear Boolean function or pass the entire state of a single

LFSR into a non-linear filtering function. The non-linear function used here should

be chosen very carefully according to several criteria in order to avoid correlation

attacks and other cryptanalysis. Another approach is to have the LFSR clocked by

the output of a second LFSR. However, the appearance of algebraic attacks raised a

very challenging problem for stream ciphers based on these LFSR-generators [13,36].

The main idea behind this method is finding and solving a system of multivariate

polynomial equation over a finite field. Generating such a system is usually based

on the linear structure of LFSRs. So one good choice is to substitute LFSRs with

FCSRs.

FCSRs were first described by Goresky and Klapper [22, 31]. They are similar

to LFSRs, so they also can be implemented to be very fast, especially in hardware.

The main difference is the fact that the additions are not simple additions but addi-

tions with propagation of carries. Since they were introduced, the properties of the

sequences generated by FCSRs have been well studied from a mathematical point of

view.

Definition 1.3.4. Fix an integer N > 1. Let S = {0, 1, · · · , N−1}. Let q1, q2, · · · , qm ∈
S. An N-ary feedback with carry shift register of length m with multipliers or taps

q1, q2, · · · , qm is a discrete state machine whose state is a collection (a0, a1, · · · , am−1; z)

where ai ∈ S and z ∈ Z and whose state change operation is described as follows:

• Compute the integer sum

σ =
m∑
i=1

qiam−i + z.

• Replace (a0, a1, · · · , am−1; z) by (a1, a2, · · · , am−1, σ (mod N);σ(divN)).

It is convenient to think of a FCSR as a physical circuit, as in Figure 1.4.

As with LFSRs, there is a Galois form of FCSRs. The state of a Galois FCSR is

(a0, a1, · · · , am−1; c1, ..., cm), where ai, cj ∈ S and the change of states can be described

as follows:

• Calculate δm = cm + qma0 and δj = cj + aj + qja0 for 1 ≤ j < m.

• The new values are

a′j−1 = δj (mod N), c′j = δj (divN).

8

? ? ? ?

��
��
��
��

��
��
��
��
a0a1· · ·

· · ·

am−2am−1

q1 q2 qm−1 qm∑ �
�
�
�

- -z modNdivN

-

�

Figure 1.4: A Feedback with Carry Shift Register of Length m

��
��

��
��

��
��

��
��

qm qm−1 q2 q1

m m mm ∑ ∑ ∑∑
hm−1 · · · h1 h0- - - - -- - -

6 6 66

��
��

��
��

��
��

��
��

cm cm−1 c2 c1

6 6 66

? ? ??

Figure 1.5: Galois FCSR

This procedure is illustrated in Figure 1.5

In a Fibonacci FCSR, all the feedback bits influence a single cell while in Galois

mode, a single feedback bit influences all the cells. As noticed, the Fibonacci mode

is not suitable for cryptographic applications because most of the cells of a Fibonacci

FCSR have a linear transition function [18]. As with the Galois LFSR, the addi-

tions are performed in parallel in Galois FCSRs, so Galois FCSRs perform better in

applications.

The most studied stream cipher based on FCSRs is F-FCSR. At the FSE 2005, F.

Arnault and T. P. Berger proposed several stream ciphers based on FCSRs, called F-

FCSR-SF1, F-FCSR-SF8, F-FCSR-DF1 and F-FCSR-DF8 [6]. Later for eSTREAM

project, they submitted two new algorithms called F-FCSR-8 and F-FCSR-H. Af-

9

ter three phases of evaluation, the F-FCSR family (F-FCSR-H v2 and F-FCSR-16)

was recommended as one of the eight algorithms selected for ECRYPT eSTREAM

portfolio at the time of April 15, 2008 and it tended to lie in the top half of most

hardware performance classifications. Unfortunately, Hell and Johansson presented

a severe cryptanalytic attack on the F-FCSR stream cipher family, because of which

F-FCSR was removed from the final eSTREAM portfolio [26]. At Indocrypt 2007,

Arnault, Berger, Lauradoux, and Minier presented two new constructions for soft-

ware implementations, called X-FCSR-128 and X-FCSR-256 [4]. The main idea was

to use two optimal 256 bit FCSRs clocked with different directions and a nonlinear

extraction function. The X-FCSR-128 outputs 128 bits at each iteration and runs

at 8.2 cycles/byte. The X-FCSR-256 outputs 256 bits at each iteration and has a

better performance with 6.5 cycles/byte. They are comparable to the fastest known

stream ciphers. The X-FCSR family of stream ciphers was attacked by Stankovski,

Hell and Johansson by a state recovery method [64, 65]. They observed that a suffi-

cient amount of consecutive zero feedback bits will eventually make the carry registers

contain only zeros so that FCSRs can be treated as LFSRs. Arnault et al. introduced

a new representation of FCSR, called ring FCSR, that has better diffusion properties

to proffer better resistance to the state recovery attack [5]. Although the F-FCSR

stream cipher is no longer in the final eSTREAM portfolio, the design and analysis

of stream ciphers based on FCSRs are still interesting problems.

N-adic numbers and FCSR sequences

The analysis of FCSRs is based on N -adic numbers which were discovered by K.

Hensel around 1900. There are several books about p-adic numbers and p-adic anal-

ysis [34, 55].

Definition 1.3.5. An N-adic integer is an infinite expression

a = a0 + a1N + a2N
2 + · · · ,

where a0, a1, · · · ∈ {0, 1, · · · , N − 1}. The set of N-adic integers is denoted by ZN .

The least degree of a nonzero N-adic integer a =
∑∞

i=0 aiN
i is the least index i such

that ai 6= 0.

If a =
∑∞

i≥0 aiN
i, b =

∑∞
i≥0 biN

i, we have

a = b⇐⇒ for all i ≥ 0, ai = bi.

10

Addition in ZN is performed by “carrying” overflows to higher terms, i.e.,

Nm + · · ·+Nm︸ ︷︷ ︸
N

= Nm+1, for all m ∈ N.

ZN is a ring with additive identity 0 and multiplicative identity 1. It can be seen that

− 1 = (N − 1) + (N − 1)N + (N − 1)N2 + (N − 1)N3 + · · · (1.2)

since 1 + (−1) = 0. Calculating the additive inverse can be done as follows. Let

a ∈ ZN have least degree d. That is, a =
∑∞

i=d aiN
i with 1 ≤ ad ≤ N − 1. Then

− a = (N − ad)Nd +
∞∑
i=1

(N − ai − 1)N i. (1.3)

Let a =
∑∞

i≥0 aiN
i ∈ ZN . Then a is invertible in ZN if and only if a0 is relatively

prime to N .

The set of N-adic numbers, denoted by QN , consists of infinite sums

a = a−mN
−m + a−m+1N

−m+1 + · · ·+ a0 + a1N + · · ·

with coefficients 0 ≤ ai ≤ N − 1. It contains ZN as a subring. We have QN = S−1ZN
where S = {N,N2, N3, · · · }. Notice that if N is a power of a prime number, then Zp
is an integral domain and Qp is its fraction field. That is, Qp = S−1Zp where S = Z×p
consists of all nonzero elements. For composite N , the ring ZN has zero divisors and

the ring QN is not a field.

There are many parallels between LFSR sequences and FCSR sequences [25].

1. The m taps q1, q2, · · · , qm of a FCSR of length m define a connection integer

q = qmN
m + qm−1N

m−1 + · · ·+ q1N − 1.

The period (and many other properties) of the FCSR sequence may be expressed

in terms of number-theoretic properties of this integer.

2. Any infinite sequence a = (a0, a1, · · ·) over Z/(N) can be identified with the

formal power series, a =
∑∞

i≥0 aiN
i which is an element of the ring of ZN .

Sequence a is an eventually periodic N -ary sequence if and only if the associated

N -adic number a is a quotient of two integers,

a =
f

q
∈ ZN .

11

The denominator q or −q is the connection integer of a FCSR which generates

the sequence a. The denominator f determine the initial loading of this FCSR.

Assume that q > 0. The sequence a is strictly periodic if and only if−q ≤ f ≤ 0.

If a is strictly periodic then for all i,

ai = N−if (mod q) (mod N).

3. As in the case of linear span, the N-adic span is intended to measure how large

an FCSR is required to generate a given eventually periodic sequence a. In the

LFSR case, the linear complexity is the number of cells in the smallest LFSR

that outputs a and coincides with degree of the connection polynomial. But in

the FCSR case, the number of N -ary coefficients in the connection integer only

coincides with the size of the basic register and additional space is required

for the memory. So the N-adic span of an eventually periodic sequence a is

the number of cells in the register plus the number of elements needed for the

memory of an FCSR which outputs the sequence a. The N-adic complexity

is the real number ΦN(a) = logN(max(|p| , |q|)) where p/q is the fraction of

sequence a in lowest terms. It has been proved that the difference between

N -adic span and N -adic complexity is bounded by logN(ΦN(a)) + 2 [25]. From

a mathematical viewpoint, it is easier to analyze the N -adic complexity.

The N -adic complexity is a useful measure in the study of the security of pseu-

dorandom sequences for cryptographic application. Based on De Weger and

Mahler’s rational approximation theory only for N = 2 [14], Goresky and Klap-

per gave an algorithm for the FCSR synthesis problem. This showed that the

number of bits we need to know for finding the smallest FCSR that generates

a given periodic sequence a is highly related to N -adic complexity. We discuss

N -adic complexity and these algorithms in detail in later sections.

4. An l -sequence is a periodic sequence a which is obtained from a FCSR with

connection integer q such that q = pr is a power of an odd prime and the period

of a is φ(q) (φ is Euler’s totient function). These sequences have been studied

since the time of Gauss [20]. They have remarkable distribution and correlation

properties which are parallel to those of m-sequences.

1.3.3 Algebraic Feedback Shift Registers and d-FCSRs

A sequence generator based on algebra over complete rings, called an algebraic feed-

back shift register, was proposed as a generalization of LFSR and FCSR [32]. Here

12

are some notions we will use.

Let R be an integral domain and π be an element in R. Let S be a complete

set of representatives for the quotient ring R/(π) (This means that the composition

S → R → R/(π) is a one to one correspondence). For any u ∈ R denote its image

in R/(π) by ũ = u (mod π). Having chosen S, every element a ∈ R has a unique

expression a = a0 + bπ, where a0 ∈ S. The element a0 is the representative of ã in S,

and a− a0 is divisible by π. We write

a0 = a (mod π) and b = a (div π) =
a− a0
π

.

Definition 1.3.6. Let q0, q1, q2, · · · , qm ∈ R and assume that q0 is invertible (mod π).

An algebraic feedback shift register (or AFSR) over (R, π, S) of length m with mul-

tipliers or taps q1, q2, · · · , qm is a sequence generator whose states are elements

s = (a0, a1, · · · , am−1; z) ∈ Sm ×R

consisting of cell contents ai and memory z. The output is out(s)=a0. The state

change operation is described as follows:

1. Compute

σ =
m∑
i=1

qiam−i + z.

2. Find am ∈ S such that −q0am ≡ σ (mod π). That is, ãm = −q̃−10 σ̃.

3. Replace (a0, a1, · · · , am−1) by (a1, a2, · · · , am) and replace z by σ (divπ) = (σ +

q0am)/π.

The procedure is illustrated in Figure 1.6.

An LFSR over a field K is an AFSR where R = K[x] is the ring of all polynomials

with coefficients in K, π = x and S = K is the set of polynomials of degree 0, which

may also be identified with the quotient R/(π) = K[x]/(x).

An FCSR is an AFSR with R = Z, π = N , and S = {0, 1, · · · , N − 1}. There are

many other special cases that have been introduced [22,31].

For better understanding the analysis of AFSRs, we first recall the basics of al-

gebra. Let R be a commutative ring which is an integral domain (no zero divisors).

Let F be its field of fractions. Let π ∈ R be a prime element. The principal ideal

generated by π is denoted I = (π). Any such π defines a topology on R with respect

to which the operations of addition and multiplication are continuous. The set {(πi)}

13

-

? ? ? ?

��
��
��
��

��
��
��
��
a0a1· · ·

· · ·

am−2am−1

q1 q2 qm−1 qm

σ
�
�
�
�

��
��
θ

-z

-

6

modπ
divπ

Figure 1.6: An algebraic feedback shift register of length m

forms a basic set of neighborhoods of zero. This topology is known as the π−adic

topology on R and extends to F with the same basic set of neighborhoods of zero.

A completion of the π-adic topology on R is a topological ring R̂ containing R

that is complete (every Cauchy sequence converges) and is a minimal completion

containing R. The same notion of completion applies to F .

The set of power series
∞∑
i=0

aiπ
i, ai ∈ R (1.4)

is a completion of R with the π-adic topology if ∩n(π)n = (0) (we assume this always

holds in the following pages). Two such power series
∑∞

i=0 aiπ
i and

∑∞
i=0 biπ

i are

identified if for every n,
n−1∑
i=0

(ai − bi)πi ∈ (π)n

Addition and multiplication can be defined naturally. The resulting ring is called the

completion of R or the set of π-adic integers and is denoted by Rπ. If π is irreducible

then the ring Rπ has a unique prime ideal Î, the set of such power series with a0 = 0.

We have (π) = Î ∩R .

Let S be a complete set of representatives for R modulo π. It can be shown that

every element of Rπ can be written uniquely in the form of equation (1.4) with every

ai in S. This means that an element of Rπ can be expressed as a sequence of elements

of S.

Consider the AFSR over (R, π, S) with m multipliers q0, q1, · · · , qm and the initial

state (a0, a1, · · · , am; z). As with LFSRs and FCSRs, define the connection element as

q = q0 + q1π+ · · ·+ qmπ
m ∈ Rπ. The associated π-adic number integer can expressed

14

in a rational form shown in Theorem 1.3.1.

Theorem 1.3.1. (Fundamental Theorem on AFSRs [32]) Let the output sequence

a = a0, a1, . . . of an AFSR with connection element q and initial state (a0, a1, · · · ,
am−1; z) have associated π-adic integer α =

∑∞
i=0 aiπ

i. Then

α =

∑m−1
n=0

∑n
i=0 qian−iπ

n − zπm

q
=
u

q
∈ Rπ. (1.5)

The expression u/q is called a rational expression of α.

For more results about AFSRs, please refer to [25] (Chapter 5). Here we are

more interested in a special case of AFSRs called d-FCSRs which was first introduced

in [31] and described and analyzed in [22–24].

Definition 1.3.7. Let N ≥ 2 and d ≥ 1 be integers such that the polynomial xd −N
is irreducible over the rational number field Q and π ∈ C is a root of this polynomial

in an extension field of Q. A d-FCSR is an AFSR over (R = Z[π], π, S), where

Z[π] is the set of polynomials in π modulo xd − N with integer coefficients and S =

{0, 1, 2, · · · , N − 1}.

A binary d-FCSR is a special case of d-FCSR with N = 2. For an intuitive

understanding of the procedure d-FCSR, we look at such binary d-FCSRs in detail.

Now, πd = 2, R = Z[π], and S = {0, 1}. Any z ∈ Z[π] may be uniquely expressed

as a polynomial z = z0 + z1π + · · · + zd−1π
d−1 with zi ∈ Z by making use of the

equation πd = 2π0 whenever higher powers of π are encountered. Using the binary

expansion of each zi, any element z ∈ Z[π] with all zi ≥ 0 can be uniquely expressed

as a polynomial

z =
e∑
i=0

z′iπ
i

with coefficients z′i ∈ {0, 1} and e ≥ 0. Addition and multiplication are performed as

for integers, except that carried bits are advanced d steps because

1 + 1 = 2 = 0 + 0π + 0π2 + · · ·+ 0πd−1 + 1πd.

The operations (mod π) and (div π) are defined as z (mod π) = z0 (mod 2) ∈ F2 and

z (div π) = z1π + · · ·+ zd−1π
d−1.

The circuit of a binary d-FCSR with d = 2 is illustrated in Figure 1.7.

15

z6 z5 z4 z3 z2 z1 z0 - am−1 am−2 · · ·

· · ·

a1 a0

��
��
��
��
��
��
��
��

q1 q2 qm−1 qm

∑666
��
��
��
��
��
��∑ ∑ ∑

��

6 6 6 6

? ? ?

Figure 1.7: A binary d-FCSR with d = 2

1.4 Register Synthesis Problem

Given a short prefix of a sequence, it is undesirable to have an efficient algorithm

that can synthesize a generator which can generate the whole sequence. Otherwise, a

cryptanalytic attack can be launched against the system based on that given sequence.

So finding such synthesis algorithm is an interesting problem in cryptanalysis. For a

class of generators F and a sequence a, a register synthesis algorithm is an algorithm

that finds the smallest size generator in F that outputs sequence a given only a

prefix of a. We consider sequence generator classes F to be the set of LFSRs over a

particular ring R, the set of FCSRs for a particular N , or the set of AFSRs over a

particular integral domain.

For the class of LFSRs over a particular ring R, the size of an LFSR is measured

by the number of cells used to represent the states. Given a sequence a, the size of

the smallest LFSR that can generate a is defined as the linear complexity (or linear

span) of a, denoted by λ(a). The most famous LFSR synthesis algorithm, Berlekamp-

Massey algorithm, can find the smallest LFSR that generates a given sequence a with

only 2λ(a) consecutive bits of a [44]. The LFSR synthesis problem can also be solved

by constructing a system of linear equations, by the extended Euclidean algorithm,

or by the continued fraction algorithm [52, 53]. On the one hand, these algorithms

provide a way to predict the whole sequence by using part of the information. On the

other hand, they illustrate that linear complexity is an important security measure

for pseudorandom sequences design. So in Chapter 2, we investigate lower bounds of

the linear complexity of different kinds of pseudorandom sequences.

16

FCSRs share many good algebraic properties with LFSRs. Klapper and Goresky

gave an lattice approximation approach to the FCSR synthesis problem [30] in terms

of integer approximation lattice that was proposed by Mahler [43] and de Weger

[14]. In the case of binary FCSRs, the algorithm can construct the smallest FCSR

which generates the sequence a, and it does so using only a knowledge of the first

2λ2(a)+d2 log2(λ2(a))e+2 bits of a, where λ2(a) is the 2-adic complexity of a [25]. For

arbitrary N , Arnault, Berger, and Necer proposed an algorithm based on the extended

Euclidean algorithm [7]. The register synthesis problem for FCSRs was also solved

by Xu’s algorithm which is a modified version of Berlekamp-Massey algorithm [33].

As an extension of single sequences, multi-sequences have been introduced for

applications of word-oriented stream ciphers. For positive integers M and N , an

M -fold N -ary multi-sequence is denoted by

S =
(
S(0),S(1), . . . ,S(M−1)) ,

which consists of M parallel streams of N -ary sequences S(h) =
(
s
(h)
0 , s

(h)
1 , s

(h)
2 , . . .

)
,

where s
(h)
i ∈ {0, 1, ..., N−1} for i ∈ N and h = 0, 1, . . . ,M−1. We say S is eventually

periodic if S(h), h = 0, 1, . . . ,M − 1, are all eventually periodic sequences.

The register synthesis problem for single sequences can be extended to multi-

sequences. That is, given a prefix of each sequence S(h), find a common generator

of the smallest size that can generate all M sequences S(0),S(1), . . . ,S(M−1) (with a

different initial state for each sequence). The LFSR synthesis problem for multi-

sequences has been solved by Feng and Tzeng’s generalized Euclidean algorithm [16],

by a modification of the fundamental iterative algorithm [60], by the Sakata algorithm

using Gröbner basis theory [59] and by an F[x]-lattice basis reduction algorithm [70].

However, multi-sequence synthesis with FCSRs is more complicated than with LFSRs.

To the best of our knowledge, there are no FCSR synthesis algorithms for multi-

sequences in the literature. Thus the main contributions of Chapter 3 is to adapt an

interleaving technique to develop two algorithms to solve the FCSR synthesis problem

for M -fold N -ary multi-sequences under the restriction that xM − N is irreducible

over the rational field Q for M ≥ 2 and N ≥ 2.

AFSRs are generalizations of LFSRs and FCSRs. An AFSR based on a chosen

R, π and S can produce sequences whose elements can be thought of as elements

of the quotient ring R/(π). As a modification of the Berlekamp-Massey algorithm,

Xu’s algorithm can solve the synthesis problem for many AFSRs over the pair (R, π)

that has certain algebraic properties [33]. In Chapter 4, we propose two register

synthesis algorithms for AFSRs. The first one can be seen as an extension of lattice

17

approximation approach but based on lattice basis reduction. For AFSRs over (R, π),

where R = Z[π] with π2 = D ∈ Z, the algorithm can find the smallest AFSR

that generates the sequence a given at least 2ϕπ(a) + 2 + dlog|D|(4D
2 + 2|1 + D|)e

terms of sequence a, where ϕπ(a) is the π-adic complexity of a. It has quadratic

time complexity. The second algorithm applies the extended Euclidean algorithm

on a norm-Euclidean imaginary quadratic field to find a smallest AFSR for a given

sequence a. It is more efficient than the lattice rational approximation algorithm in

that only 2φπ(α) + 1 terms of sequence a are needed. φπ(α) is a complexity measure

that reflects the size of AFSRs.

1.5 Lattices and basis reduction

An integer lattice L of rank d is a discrete additive subgroup of Rn of the form

L(b1,b2, · · · ,bd) :=
d∑
i=1

biZ,

where b1,b2, . . . ,bd ∈ Rn are linearly independent vectors over R [15]. We call

(b1,b2, . . . ,bd) a basis of lattice L. Usually, the basis of a lattice is not unique.

When d = n, we call L a full lattice. We always suppose the lattice we discuss is full.

For arbitrary vectors b1,b2, . . . ,bd ∈ Rd, let

span(b1,b2, · · · ,bd) :=
d∑
i=0

biR

be the space spanned by b1,b2, . . . ,bd.

Let 〈·, ·〉 be the inner product of Rd. That is, for two vectors u = (u1, u2, . . . , ud) ∈
Rd and v = (v1, v2, . . . , vd) ∈ Rd,

〈u,v〉 =
d∑
i=1

uivi.

Let || · || and || · ||∞ be the Euclidean norm and the sup (or L∞) norm on lattices

respectively. So for any vector u = (u1, u2, . . . , ud) ∈ Rd, we have

||u|| =
√
〈u,u〉 =

√
u21 + u22 + · · ·+ u2d,

and

||u||∞ = max(|u0|, |u1|, . . . , |ud|).

The notation [b1,b2, . . . ,bd]≤ means ‖b1‖ ≤ ‖b2‖ ≤ · · · ≤ ‖bd‖ which is to say

the bis are ordered. The Gram matrix, denoted by G(b1,b2, . . . ,bd), is a d × d

symmetric matrix with entries given by Gij = 〈bi,bj〉.

18

Definition 1.5.1. [15] The determinant, det(L), of lattice L(b1,b2, · · · ,bd) is de-

fined by

det(L) = det(G(b1,b2, . . . ,bd))
1/2.

When L is a full lattice, we have det(L) is the determinant of the matrix whose rows

are the bi.

Proposition 1.5.1. [15] The determinant of a lattice is independent of the choice

of basis b1,b2, . . . ,bd ∈ Rd.

Definition 1.5.2. [15] (Successive Minima ζ1, ζ2, . . . , ζd) For every lattice L ∈
Rd of rank d the successive minima ζ1, ζ2, . . . , ζd are defined as:

ζi = ζi(L) := min

r > 0

∣∣∣∣∣
∃ linearly independent
c1, c2, . . . , ci ∈ L with
‖cj‖ ≤ r for j = 1, 2 . . . , i

 , for i = 1, 2, . . . , d.

The successive minima depend on the underlying norm. The first successive min-

imum with respect to the Euclidean norm is

ζ1(L) = min(||b|| : b ∈ L\{0}).

The first successive minimum with respect to the sup norm is

ζ1,∞(L) = min(||b||∞ : b ∈ L\{0}).

The definition of successive minima is due to H. Minkowski [48]. The values of

successive minima remain unchanged under isometric transformations of the lattice

[15], so they are geometric lattice invariants. According to Proposition 1.5.1, the

determinant of a lattice is also a geometric lattice invariant. However, the value

ζ1,∞(L) is not a geometric invariant but with a bound [48],

ζ1,∞(L) ≤ (det(L))1/d.

Suppose we have two vectors ũ and û, where ũ = (ũ1, ũ2, . . . , ũd) ∈ Rd has the

smallest Euclidean norm in L and û = (û1, û2, . . . , ûd) ∈ Rd has the smallest sup

norm. That is, ||ũ|| = ζ1(L) and ||û||∞ = ζ1,∞(L). Normally, ũ and û are not the

same vectors, but they are related by the inequalities

||ũ||∞ = max(|ũ1|, . . . , |ũd|)

≤
√
|ũ1|2 + · · ·+ |ũd|2 = ||ũ||

≤ ||û|| =
√
|û1|2 + |û2|2 + · · ·+ |ûd|2

≤
√
d ·max(|û1|2, |û2|2, . . . , |ûd|2)

≤
√
d||û||∞ (1.6)

19

and

||û|| =
√
|û1|2 + |û2|2 + · · ·+ |ûd|2

≤
√
d ·max(|û1|2, |û2|2, . . . , |ûd|2)

≤
√
d||ũ||∞ ≤

√
d||ũ||. (1.7)

Given a basis of a lattice L, finding a vector of the smallest norm (the shortest vec-

tor problem or SVP) is a computationally hard problem in lattice theory. Although

the SVP has been proved to be NP-hard if the dimension is unrestricted [2], there

are some efficient algorithms based on lattice basis reduction that can solve the SVP

under certain conditions. Loosely speaking, the lattice reduction problem is: given

an arbitrary lattice basis, obtain a basis of shortest possible vectors which are mu-

tually orthogonal. Finding a good reduced basis has many important applications in

mathematics, computer science, and cryptography. They were used to break Merkle-

Hellman public key cryptosystem based on the knapsack problem [46] or based on

rational numbers [66], Blum’s protocol for exchanging secrets [19], truncated linear

congruential generators [19], RSA with exponent 3 [10,28], and NTRU (a lattice-based

cryptosystem proposed by Hoffstein, Pisher, and Silverman) [11]. Nguyen and Stern

surveyed the applications of lattices to cryptology and explained the developments

of lattice reduction both in cryptography and cryptanalysis [51]. There are many

different kinds of lattice reduction, such as Hermite [27], Minkowski [48], Venkov [58],

Hermite-Korkine-Zolotarev(HKZ) [35], and Lenstra-Lenstra-Lovász (LLL) [37]. For

two dimensional lattices, Gauss’s basis reduction algorithm, which is a generalization

of the Euclidean algorithm, can be used. For higher dimensions, the lattice reduction

problem is more complicated..

In this work we utilize two algorithms, the lattice reduction greedy algorithm [50]

and the LLL Algorithm [37]. The lattice reduction greedy algorithm is a generalization

of the Lagrange’s algorithm on arbitrary dimensions. Up to dimension four, it can

compute a Minkowski reduced basis, which includes the shortest vector as its first

vector, in quadratic time. But it becomes extremely complicated as the dimension

increases and may not output a basis that is Minkowski reduced. The LLL algorithm

can find a LLL reduced basis in polynomial time. It is an approximation algorithm

for the Shortest Vector Problem.

1.5.1 The LLL lattice basis reduction

Definition 1.5.3. Given d linearly independent vectors b1,b2, . . . ,bd ∈ Rd, the

Gram-Schmidt orthogonalization of b1,b2, . . . ,bd is b∗1,b
∗
2, . . . ,b

∗
d. The b∗i s, i =

20

1, 2, . . . , d are defined by

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j ,

where µi,j =
<bi,b

∗
j>

<b∗j ,b
∗
j>

.

Definition 1.5.4. A basis [b1,b2, . . . ,bd]≤ is called LLL reduced with parameter δ

(or a δ-LLL reduced basis), 1/4 < δ ≤ 1, when:

1. |µi,j| ≤ 1/2, for 1 ≤ j < i ≤ d;

2. δ · ||b∗i−1||2 ≤ ||b∗i ||2 + µ2
i−1,i||b∗i−1||2 for i = 2, 3, . . . , d.

The first property is a criterion for being length reduced. The parameter δ de-

scribes how well reduced the basis is. A larger value for δ implies a more strongly

reduced basis [15]. The LLL reduction was originally defined by A.K. Lenstra, H.W.

Lenstra and L. Lovász with δ = 3/4 [37]. The LLL algorithm, given in Figure 1.8,

takes an arbitrary basis of L as inputs and outputs a δ-LLL reduced basis with poly-

nomial time complexity. Given a d-dimensional integer lattice basis with vectors of

Euclidean norm less than B in a d-dimensional space, the LLL algorithm outputs

a δ-LLL reduced basis in O(d4 logB · M(d logB)) bit operations, where M(d logB)

denote the time required to multiply d logB-bit integers [49]. The first vector of the

output of the LLL algorithm, say b1, has the property that ||b1|| ≤ (1
δ−1/4)(d−1)/2ζ1(L).

This means that b1 can be used to approximate the smallest nonzero vector in the

lattice.

1.5.2 Low-dimensional lattice basis reduction

Definition 1.5.5. [50] (Minkowski reduction) A basis [b1,b2, . . . ,bd]≤ of a lat-

tice L is Minkowski-reduced if for all 1 ≤ i ≤ d, bi has minimal norm among all

lattice vectors bi such that [b1,b2, . . . ,bi]≤ can be extended to a basis of L.

Notice that the first vector in a Minkowski-reduced basis is the shortest nonzero

vector in lattice L. It has been proved that the shortest vector problem (SVP) is

NP-hard if the dimension is unrestricted [2]. Nguyen and Stehlé [50] proposed a

greedy algorithm that generalizes Lagrange’s algorithm for lattice reduction to arbi-

trary dimension. They showed that up to dimension four, their algorithm computes

a Minkowski-reduced basis in quadratic time without fast arithmetic but as the di-

mension increases, the analysis becomes more complex. Figure 1.9 is an iterative

description of Nguyen and Stehl’s greedy algorithm [50].

21

1: procedure LLL(b1,b2, . . . ,bd)
2: Input: A basis b1,b2, . . . ,bd of lattice L.
3: Output: A δ-LLL reduced basis of L(b1,b2, . . . ,bd).
4: /* Compute the Gram-Schmidt orthonormalization b∗1,b

∗
2, . . . ,b

∗
d.*/

5: for i = 1 to d do
6: b∗i := bi
7: for j = 1 to i-1 do

8: µi,j :=
<bi,b

∗
j>

<b∗j ,b
∗
j>

9: b∗i := bi − µi,jb∗j
10: end for
11: end for
12: /* Reduction step */
13: k := 2 /* k is the stage */
14: while k ≤ d do
15: for j := k − 1 to M do
16: bk := bk − bµk,jebj where b·e is rounding to the nearest integer.
17: Update the Gram-Schmidt orthogonalization accordingly.
18: end for
19: if δ · ||b∗k−1||2 > ||b∗k||2 + µ2

k,k−1||b∗k−1||2 then
20: bk−1 ↔ bk i.e. exchange bk−1 and bk
21: Update the Gram-Schmidt orthogonalization accordingly.
22: k := max(k − 1, 2)
23: else
24: k := k + 1
25: end if
26: end while
27: end procedure

Figure 1.8: The LLL Algorithm

Theorem 1.5.1. [50] Let d ≤ 4. Given as input an ordered basis [b1,b2, . . . ,bd]≤

and its Gram matrix, the greedy algorithm of Figure 1.9 outputs a Minkowski-reduced

basis of L(b1,b2, . . . ,bd), with bit complexity in O(log ‖bd‖·[1+log ‖bd‖−log ζ1(L)]),

where the O() constant is independent of the lattice. Moreover, in dimension five, the

output basis may not be Minkowski-reduced.

We use the greedy algorithm in four dimensions, i.e., d = 4, to find the shortest

vector in L in our Rational Approximation algorithm. More exactly, the closest vector

in step 6 of GreedyLatticeReduction can be found as follows.

1. Let h =
∑m−1

i=1 yibi be the orthogonal projection of bm on span(b1,b2, . . . ,

22

1: procedure GreedyLatticeReduction(b1, b2, . . . , bd)
2: Input: A basis [b1,b2, . . . ,bd]≤ with its Gram matrix
3: Output: An ordered basis of L(b1,b2, . . . ,bd) with its Gram matrix
4: m := 2
5: while m ≤ d do
6: Compute a vector c ∈ L(b1,b2, . . . ,bm−1) closest to bm
7: end while
8: bm := bm − c and update the Gram matrix
9: if ‖bm‖ ≥ ‖bm−1‖ then
10: m := m+ 1
11: else
12: insert bm between bm′−1 and bm′ such that ‖bm′−1‖ ≤ ‖bm‖ < ‖b′m‖.
13: update the Gram matrix and set m := m′ + 1.
14: end if
15: end procedure

Figure 1.9: The lattice reduction greedy algorithm

bm−1). Then

G(b1,b2, . . . ,bm−1)

y1
y2
...

ym−1

 =

〈b1,bm〉
〈b2,bm〉

...
〈bk−1,bm〉

 .

2. Let c be the closest vector to h in L(b1,b2, . . . ,bm−1). Then h−c ∈ Vor(b1,b2, . . . ,

bm−1), where Vor(b1,b2, . . . ,bm−1) = {x
∣∣ ‖x−v‖ ≥ ‖x‖, ∀ v ∈ L(b1,b2, . . . ,bm−1)}

is the Voronöı cell. With Theorem 1.5.2, c can be found by a suitable exhaustive

search when j ≤ 4.

Theorem 1.5.2. [50]

1. Let [b1,b2]≤ be a Minkowski-reduced basis and u ∈ Vor(b1,b2). Write u =

xb1 + yb2. Then |x| < 3/4 and |y| ≤ 2/3.

2. Let [b1,b2,b3]≤ be a Minkowski-reduced basis and u ∈ Vor(b1,b2,b3). Write

u = xb1 + yb2 + zb3. Then |x| < 3/4, |y| ≤ 2/3 and |z| ≤ 1.

Copyright c© Weihua Liu 2016

23

2 LFSR synthesis and linear complexity

2.1 Previous works on LFSR synthesis algorithms

Linear complexity is an important security measure of pseudorandom sequences. We

consider the register synthesis problem for LFSRs over a field F. Recall the properties

of LFSRs sequence in Section 1.3.1. Let

a(x) =
∞∑
i=0

aix
i

be the generating function associated with sequence a. Suppose eventually periodic

sequence a can be generated by an LFSR with connection polynomial q(x). Then

there is a polynomial f(x) in F[x] so that a(x) = f(x)/q(x). Equivalently,

q(x)a(x) = f(x). (2.1)

The size of the LFSR [25] is defined as

Φ(f, g) = max(deg(f(x)) + 1, deg(q(x))).

Thus the linear complexity λ(a) is the minimum over all f, g with a(x) = f(x)/g(x)

of Φ(f, g). In other words, λ(a) is the size of the smallest LFSR that can generate

the sequence a. Notice that if F is a finite field, then deg(f(x)) < deg(q(x)) because

sequence a is strictly periodic. In this case, λ(a) = deg(q(x)), where q(x) is the

connection polynomial of the smallest LFSR that generates sequence a.

The LFSR synthesis problem can be rephrased as follows:

• Given a prefix a0, a1, · · · , ak−1 of a.

• Find a pair (f, g) that minimizes Φ(f, g) among all polynomials f, g that satisfy

equation (2.1).

The most famous synthesis algorithm for LFSRs is Berlekamp-Massey algorithm

which is given in Figure 2.1.

We say a pair (f(x), q(x)) of polynomials form a degree i approximation to a(x),

if

q(x)a(x) ≡ f(x) (mod xi).

A natural number i is a turning point if

Φ(fi+1, qi+1) > Φ(fi, qi)

24

1: procedure B-M(a0, · · · , an−1)
2: if all ai = 0 then
3: return (0,1)
4: else
5: a(x) =

∑n−1
i=0 aix

i

6: Let m be minimal with am 6= 0
7: fm(x) = 0
8: qm(x) = 1
9: fm+1(x) = amx

m

10: qm+1(x) =

{
1 + xm if m > 0
1 else

11: c = am
12: for i = m+ 1 to n− 1 do
13: Let a(x)qi(x)− fi(x) ≡ bxi (mod x)i+1

14: if b = 0 then
15: fi+1(x) = fi(x)
16: qi+1(x) = qi(x)
17: else
18: fi+1(x) = fi(x)− (b/c)xi−mfm(x)
19: qi+1(x) = qi(x)− (b/c)xi−mqm(x)
20: if Φ(fi+1, qi+1) > Φ(fi, qi) then
21: m = i
22: c = b
23: end if
24: end if
25: i = i+ 1
26: end for
27: return (fn, qn)
28: end if
29: end procedure

Figure 2.1: The Berlekamp-Massey algorithm

25

Theorem 2.1.1. [25] Let a = a0, a1, · · · and let a(x) ∈ F[[x]] be its generating

function. Let (fi, qi) be the values computed at stage i ≥ 1 in the Berlekamp-Massey

algorithm. Then (fi, qi) is a degree i approximation to a(x). Suppose (f, q) is another

degree i approximation to a(x). Then

Φ(fi, qi) ≤ Φ(f, q)

If Φ(fi, qi) = Φ(f, q) and if i is a turning point, then fi/qi = f/q. If i ≥ 2λ(a),

then Φ(fi, qi) = λ(a) and fi(x)/qi(x) = a(x).

Theorem 2.1.1 says that at each stage the Berlekamp-Massey algorithm generates

a Φ-minimizing approximation. If i is a turning point then there is a unique such

approximation. If i ≥ 2λ(a) then this approximation is exact: it generates the

whole sequence a. The overall time complexity of the Berlekamp-Massey algorithm

is O(n2) where n is the number of known symbols of the sequence. Furthermore, the

algorithm is adaptive: each time a new bit is determined, it can be used to update

the determined LFSR in linear worst case time [25].

2.2 Linear complexity of FCSR sequences

Linear complexity has been extensively studied [52, 56]. The linear complexity test

has been selected by NIST (National Institute of Standards and Technology) as one

of the randomness tests in the statistical test suite for random and pseudorandom

number generators for cryptographic applications [57]. One of the important tools to

study linear complexity is the characteristic polynomial.

Let F denote a field and Fq denote the finite field or Galois field with q elements.

It is known that q must be a prime or a power of a prime. Suppose q = pe where

p is a prime and e ≥ 1. Then p is the characteristic of the field Fq. Let Z/(n)

be the quotient ring of integers modulo n. When q is not a prime, Z/(q) and Fq
are different. We denote by Z/(n)× the multiplicative group of nonzero elements of

Z/(n), which consists of all the invertible elements in Z/(n). It has been proved that

F×q , the multiplicative group of Fq, is a cyclic group (a group that can be generated

by one element). A generator of F×q is called a primitive element of Fq.

Definition 2.2.1. [25] Let a = a0, a1, a2, · · · be an arbitrary sequence of elements of

the field F. We say a satisfies a linear recurrence of order m if there exist coefficients

q0, q1, . . . , qm ∈ F with q0 6= 0 such that

q0ai + q1ai−1 + · · ·+ qmai−m = 0 for i = m,m+ 1,m+ 2, · · · .

26

The polynomial

q∗(x) = q0x
m + q1x

m−1 + · · ·+ qm−1x+ qm ∈ F[x]

is called a characteristic polynomial of sequence a. The polynomial q∗(x) is also called

the reciprocal polynomial of q(x) = q0 + q1x+ · · ·+ qmx
m ∈ F[x].

Suppose that an LFSR with coefficients q1, q2, · · · , qm generates the eventually

periodic sequence a. That is, the connection polynomial of the LFSR is q(x) =

−1 +
∑m

i=1 qix
i. Then the reciprocal polynomial of q(x), q∗(x) = −xm + q1x

m−1 +

· · ·+ qm−1x+ qm, is a characteristic polynomial of a.

Theorem 2.2.1. [39] Let a = a0, a1, a2, · · · satisfies the linear recurrence. Then

there exists a unique monic polynomial m(x) ∈ Fq[x] having the following properties:

• m(x) is a characteristic polynomial of a;

• a monic polynomial f(x) ∈ Fq[x] of positive degree is a characteristic polynomial

of a if and only if m(x) divides f(x).

The polynomial m(x) is called the minimal polynomial of the sequence.

In fact, m(x) is the characteristic polynomial of sequence a that has the least

possible degree. It can be shown that λ(a) = deg(m(x)).

Definition 2.2.2. [39] Let f(x) ∈ Fq[x] be a nonzero polynomial. If f(0) 6= 0, then

the least positive integer e for which f(x) divides xe − 1 is called the order of f(x)

and is denoted by ord(f(x)).

Theorem 2.2.2. [39] Suppose a = a0, a1, · · · satisfies the linear recurrence with

minimal polynomial m(x) ∈ Fq[x]. Then the least period of the sequence is equal to

ord(m(x)).

There is more discussion about characteristic polynomials and minimal polyno-

mials [39, 52,53].

In 1999, Seo, etc. proved a lower bound on the linear complexity of binary FCSRs

with special connection integers using cyclotomic polynomials [61]. Qi and Xu ex-

tended the results to binary l-sequences (defined in Section 1.3.2) [54]. In the following

parts of this section, we discuss the lower bounds defined for the linear complexities

of FCSRs with more general settings.

27

2.2.1 Cyclotomic Polynomials

Before introducing the main results about the linear complexity, we summarize some

known results related to cyclotomic polynomials that are important tools needed

later. These results can be found in most books about number theory and finite

fields [39, 40].

For every integer n ≥ 1, Euler’s function, φ(n), is defined to be the number of

integers a such that gcd(a, n) = 1, where 0 ≤ a < n. It satisfies the following:

1. For any prime p and positive integer k, φ(pk) = pk−1(p− 1).

2. If m,n ≥ 1 and gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).

For any integers n and a > 0 with gcd(a, n) = 1, the order of a modulo n, denoted

by ordna, is defined to be the least positive integer d such that ad ≡ 1(mod n).

Theorem 2.2.3. If ordna = d and am ≡ 1(mod n) for some m > 0, then d|m.

Theorem 2.2.4. For any n > 1 and gcd(a, n) = 1, we have

aφ(n) ≡ 1 (mod n).

From the two theorems above, we can conclude that ordna|φ(n) for any n > 1 if

gcd(a, n) = 1. If ordna = φ(n), then a is called a primitive root modulo n. Here are

two theorems that are used a lot for computing the order of integers.

Theorem 2.2.5. Let the prime factorization of the integer n be pe11 p
e2
2 · · · p

ek
k . If

ordpeii a = di for i = 1, 2, · · · , k, then ordna = lcm(d1, d2, · · · , dk).

Theorem 2.2.6. Let p be a prime. Then ordpj+1a = ordpja or ordpj+1a = p · ordpja
for j ≥ 2.

Definition 2.2.3. [39] A polynomial f(x) ∈ Fq[x] is irreducible over Fq if f(x) has

positive degree and f(x)=g(x)h(x) with g(x), h(x) ∈ Fq[x] implies that either g(x) or

h(x) is a constant polynomial.

If K is a subfield of Fq, then the polynomial xq−x in K[x] factors in Fq[x] and Fq
is a splitting field of xq − x over K. Let n be a positive integer. The splitting field of

xn− 1 over a field K is called the nth cyclotomic field over K and the roots of xn− 1

in it are called the nth roots of unity over K. If K has characteristic p and n is not

divisible by p, then all the nth roots of unity over K form a cyclic group. A generator

of the cyclic group is called a primitive nth root of unity over K. In fact, let ξ be

a primitive nth root of unity over K. There are exactly φ(n) different primitive nth

roots of unity over K given by ξs where 1 ≤ s < n and gcd(s, n) = 1.

28

Definition 2.2.4. [40] Let K be a field of characteristic p. Let n be a positive

integer not divisible by p, and let ξ be a primitive nth root of unity over K, then the

polynomial

Φn(x) =
n∏

s∈(Z/(n))×
(x− ξs)

is called the nth cyclotomic polynomial over K.

Proposition 2.2.1. [40] Let K be a field of characteristic p with q elements. Let n

a positive integer not divisible by p. Then

1.

xn − 1 =
∏
d|n

Φd(x),

2.

Φn(x) =

φ(n)/d∏
i=1

ti(x),

where ti(x) is an irreducible polynomial of degree d, and d = ordnq.

2.2.2 Complementary properties and special cases

Theorem 2.2.7. [31] An N-ary FCSR sequence with connection integer q is eventu-

ally periodic with period dividing the order of N modulo q. If q is the least connection

integer, then the period equals the order of N modulo q.

Lemma 2.2.1. Let q = pe where p is an odd prime and e ≥ 1. If γ ∈ Z/(q)× has

even order T modulo q, then gcd(γT/2 − 1, q) = 1.

Proof: We have φ(q) = pe−1(p − 1), so T |pe−1(p − 1). Suppose T = pst, where

0 ≤ s ≤ e− 1 and t|p− 1. We claim that ordpγ = t.

If the order of γ modulo p is w, then w|p− 1. So w 6 |p. We have

γT ≡ 1 (mod pe), so γT ≡ 1 (mod p).

According to Theorem 2.2.3, w|T . This implies that w|t. We have

γw ≡ 1 (mod p), so γw = kp+ 1 for some k .

We have

γwp
e

= (kp+ 1)p
e ≡ 1 (mod pe).

29

So T |wpe which means that t|w. Thus, t = w. We have

γT/2 = γp
st/2 = γt/2 6≡ 1 (mod p).

gcd(γT/2 − 1, p) = 1, so gcd(γT/2 − 1, q) = 1 2

Lemma 2.2.2. Let q = p1p2 · · · pk, where pi’s (1 ≤ i ≤ k) are distinct odd primes.

Let γ ∈ Z/(q)× and let the order of γ modulo pi be Ti for 1 ≤ i ≤ k. Suppose δ =

gcd(T1, T2, . . . , Tk) is an even number and T ′i = Ti/δ is odd. Then gcd(γT/2−1, q) = 1,

where T = ordqγ.

Proof:

T = lcm(T1, T2, . . . , Tk) = T ′1T
′
2 . . . T

′
kδ.

For every i, we have

γT/2 = γTi
∏
j 6=i T

′
j/2 6≡ 1 (mod pi),

so pi 6 |(γT/2 − 1). Further, gcd(γT/2 − 1, q) = 1. 2

Lemma 2.2.3. Let q = q1q2 . . . qk where qi = peii such that pi’s are distinct odd

primes and ei ≥ 1 (1 ≤ i ≤ k). Let γ ∈ Z/(q)× and ordqiγ = Ti for 1 ≤ i ≤ k.

Suppose δ = gcd(T1, T2, . . . , Tk) is an even number and T ′i = Ti/δ is odd. Then

gcd(γT/2 − 1, q) = 1, where T is the order of γ modulo q.

Proof: As shown in Lemma 2.2.1, gcd(γTi/2 − 1, q) = 1 and the order of γ modulo

pi is ti where Ti = psii ti with si ≤ ei and ti|p− 1.

For 1 ≤ i ≤ k, we have

γT/2 = γTi
∏
j 6=i T

′
j/2 = γtip

si
i

∏
j 6=i T

′
j/2 6≡ 1 (mod pi).

So gcd(γT/2 − 1, q) = 1.

2

Theorem 2.2.8. Let q be the connection integer of an N-ary FCSR. Suppose γ ≡ N−1

(mod q). Then γ ∈ Z/(q)×. Let q and γ have the properties in Lemma 2.2.1, Lemma

2.2.2 or Lemma 2.2.3. If it is the smallest FCSR to generate the strictly periodic

sequence a = (a0, a1, a2 . . .), then

ai + ai+T/2 = N − 1 ≡ −1 (mod N),

where T is the period of sequence a.

30

Proof: Suppose a is associated with N -adic number a with the rational expression

a = −h/q. Then

ai ≡ γ−ih (mod q) (mod N).

Let fi ≡ γih(mod q). So

fi + fi+T/2 ≡ γih+ γi+T/2h

≡ γih(1 + γT/2)

≡ γih
1− γT

1− γT/2
(mod q).

According to Theorem 2.2.7, T = ordqN . It is also true that ordqγ = T because γ ≡
N−1 (mod q). According to Lemma 2.2.1, Lemma 2.2.2 and Lemma 2.2.3, gcd(γT/2−
1, q) = 1. So fi + fi+T/2 ≡ 0(mod q).

For every i ≥ 0, 0 < fi ≤ q − 1 and 0 < fi+T/2 ≤ q − 1. So fi + fi+T/2 = q

ai + ai+T/2 ≡ fi + fi+T/2 (mod N)

≡ q (mod N)

≡ q0 (mod N)

≡ −1 (mod N)

2

Theorem 2.2.8 means that the FCSR sequence a = (a0, a1, a2 . . .) described above

satisfies a linear recurrence of order T/2 + 1, because

ai − ai+1 + ai+T/2 − ai+T/2+1 = 0 holds for all i ≥ 0.

A characteristic polynomial of sequence a is

f(x) = −1 + x− xT/2 + xT/2+1

So the linear complexity of a is less than or equal to T/2 + 1.

Case 1: 2-adic FCSRs with connection integer q = p1p2

Let N = 2, and connection integer q = p1p2 where p1 and p2 are distinct odd primes

and 2 is primitive module pi. Suppose pi is of the form 2ri + 1, where ri is an odd

prime. We have

Ti = ordpi2 = pi − 1 = 2ri, for i = 1, 2,

31

and

T = ordq2 = (p1 − 1)(p2 − 1)/2 = 2r1r2.

A characteristic polynomial is f(x) = (x− 1)(xr1r2 − 1). 2 6 |r1r2, so

f(x) = (x− 1)(xr1r2 − 1) = (x− 1)
∏
d|r1r2

Φd(x)

= (x− 1)(x− 1)Φr1(x)Φr2(x)Φr1r2(x)

Let q(x) be the minimal polynomial of a sequence generated by the 2-adic FCSRs

with connection integer q. Then q(x)|f(x) and ord(q(x)) = T = 2r1r2. So q(x) can

only have the following forms:

1. q(x) = (x− 1)2q1(x)q2(x) where qi(x) 6= 1, q1(x)|Φr1(x) and q2(x)|Φr2(x).

2. q(x) = (x−1)2q3(x)q4(x) where q4(x) 6= 1, q4(x)|Φr1r2(x) and q3(x)|Φr1(x)Φr2(x).

If ordri2 = mi, then ordr1r22 = lcm(m1,m2) because of Theorem 2.2.5.

According to Proposition 2.2.1, Φr1(x) factors into irreducible polynomials of de-

gree m1. Similarly, Φr2(x) factorized into irreducible polynomials of degree m2 and

Φr1r2(x) factorized into irreducible polynomials of degree lcm(m1,m2). So deg(q(x)) ≥
min(2 + m1 + m2, 2 + lcm(m1,m2)). The linear complexity of a generated by such

FCSR is greater than or equal to min(2 +m1 +m2, 2 + lcm(m1,m2)).

Case 2: N-adic l-sequence, where N is an odd prime

Because N is an odd prime, Z/(N) is a field with characteristic N . An l-sequence

has a connection integer q = pe where p is an odd prime and T = ordqN = φ(q) =

pe−1(p− 1). Additionally,

q ≡ −1 (mod N).

These conditions satisfy Lemma 2.2.1. One characteristic polynomial is

f(x) = (x− 1)(xp
e−1(p−1)/2 − 1).

Let p = 2r + 1, where r is prime. We know that N 6= r, otherwise

q = pe = (2N + 1)e 6≡ −1 (mod N).

32

So N 6 |pe−1r and N 6 |2pe−1r. From Theorem 2.2.1, we have

(x− 1)(xp
e−1r + 1)

= (x− 1)
x2p

e−1r − 1

xpe−1r − 1

= (x− 1)

∏
d|2pe−1r Φd(x)∏
d|pe−1r Φd(x)

= (x− 1)
∏

d|pe−1r

Φ2d(x)

= (x− 1)Φ2(x)Φ2p(x)Φ2p2(x) · · ·Φ2pe−1(x)Φ2r(x)Φrp(x)Φ2rp2(x) · · ·Φ2rpe−1(x).

Suppose q(x) is the minimal polynomial. Then there are only two cases that can

happen for q(x), otherwise the period T cannot reach 2pe−1r.

1. There exist two irreducible polynomials q1(x) and q2(x) such that q1(x)q2(x)|q(x).

They satisfy q1(x)|Φ2pe−1(x) and q2(x)|Φ2rpj(x) for some 1 ≤ j < e− 1

2. There exists an irreducible polynomial q3(x) such that q3(x)|q(x) and q3(x)|Φ2rpe−1(x).

According to Theorem 2.2.5 and Theorem 2.2.6, we have

ord2pe−1N = pe−2(p− 1),

because ordpe−1N = pe−2(p − 1) and ord2N = 1. Similarly, for every 1 ≤ j < e, we

have

ord2pjN = pj−1(p− 1).

Let ordrN = m. Then

ord2rpj = lcm(m, pj−1(p− 1)) for any 1 ≤ j ≤ e.

Based on the properties of cyclotomic polynomials, we have

deg(q1(x)) ≥ ord2pe−1N = pe−2(p− 1),

deg(q2(x)) ≥ ord2rpjN = lcm(m, pj−1(p− 1)), 1 ≤ j < e,

and

deg(q3(x)) ≥ ord2rpe−1N = lcm(m, pe−2(p− 1)).

Let a be the generated sequence. So the linear complexity of a is

λ(a) ≥ min{pe−2(p− 1) + lcm(m, p− 1), lcm(m, pe−2(p− 1))}.

Copyright c© Weihua Liu 2016

33

3 FCSR synthesis

3.1 Previous work on FCSR synthesis algorithms

We recall some basic facts about FCSR sequences. Let a = (a0, a1, · · ·) be an even-

tually periodic N -ary sequence. Then the associated N -adic number

a =
∞∑
i=0

aiN
i

is a quotient of two integers. That is, a = f/q with gcd(f, q) = 1. As we have

discussed in Section 1.3.2, N -adic span can be used to measure the size of an FCSR.

Instead we usually use the N -adic complexity, which is very close to the N -adic span.

Let ΦN(f, q) = logN(max(|f | , |q|)). The N -adic complexity λN(a) is the minimum

over all f, q with a = f/q of ΦN(f, q). So the FCSR synthesis problem can be

rephrased as follows:

• Given a prefix a0, a1, · · · , ak−1 of an eventually periodic N -ary sequence a.

• Find an integer pair (f, q) satisfying a = f/q and minimizing ΦN(f, q).

A useful description for FCSR synthesis algorithms is in terms of integer approx-

imation lattices [30]. This notion is due to Mahler [43] and de Weger [14].

Definition 3.1.1. [25] Let a = a0 + a1N + · · · ∈ ZN be an N-adic integer. Its k-th

approximation lattice is the set

Lk = Lk(a) = {(h1, h2) ∈ Z× Z : ah2 − h1 ≡ 0 (mod Nk)}

An element (f, q) ∈ Lk with q relatively prime to N represents a fraction f/q as a

N -adic number agrees with that of a in the first k places. It will be shown that when

k is large enough, f/q will equal a as an N -adic number. We introduce two rational

approximation algorithms. One is based on the extended Euclidean algorithm and

the other is based on lattice approximation. There is another algorithm, proposed by

Xu and Klapper, which is a modified version of the Berlekamp-Massy algorithm [33].

It is even applicable to many more general AFSRs, so we introduce it in the next

Chapter.

34

3.1.1 Rational approximation based on the extended Euclidean algorithm

The Euclidean algorithm is well-known for efficiently computing the greatest common

divisor (GCD) of two integers. This algorithm can also be defined for more general

rings. An integral domain R is said to be Euclidean if there exists a map ψ : R\{0} →
N such that given any a, b ∈ R, there exist q, r ∈ R such that a = bq + r with either

r = 0 or ψ(r) < ψ(b). Any such ring is a principal ideal domain (PID). ψ is called

a “Euclidean function”, “degree function”, “valuation function”, or “norm function”.

Moreover, there are principal ideal domain which are not Euclidean but where the

equivalent of the Euclidean algorithm can be defined [9].

The set of integers Z is an Euclidean domain with the Euclidean function defined

as the absolute value, that is, ψ(a) = |a| for all a ∈ Z.

Theorem 3.1.1. [63] (Division with remainder property) Let a, b ∈ Z with b > 0.

Then there exist unique q, r ∈ Z such that a = bq + r and 0 ≤ r < b.

This procedure can be iterated :

a = bq1 + r1

b = r1q2 + r2 (3.1)

r1 = r2q3 + r3

· · ·

rn−1 = qn+1rn

At last, we get the greatest common divisor of a and b by the relation that

gcd(a, b) = gcd(b, r1) = · · · = gcd(rn, 0) = rn.

The Euclidean algorithm is based on the division with remainder property and it can

be implemented as in Figure 3.1.

1: procedure EA(a, b)
2: if b = 0 then
3: return a
4: else
5: return EA(b, a (mod b))
6: end if
7: end procedure

Figure 3.1: The Euclidean algorithm

35

The overall running time of the Euclidean algorithm is proportional to the number

of recursive calls it makes, times the time needed for division. The number of recursive

calls is controlled by the Fibonacci numbers as shown in the following theorem.

Theorem 3.1.2. [12] Let Fk be the Fibonacci numbers defined by F0 = 0, F1 = 1,

and Fi = Fi−1 + Fi−2 for i ≥ 2. For any integer k ≥ 1, if a > b ≥ 1 and b < Fk, then

the call EA(a,b) makes fewer than k recursive calls.

Bézout’s identity says that there are integers x and y such that

xa+ yb = gcd(a, b).

Such x and y can be computed through the extended Euclidean algorithm which is

described in Figure 3.2. It takes as input a pair of nonnegative integers and returns a

triple of the form (gcd(a, b), x, y) that satisfies Bézout’s identity. The time complexity

is asymptotically the same as the Euclidean algorithm.

1: procedure EEA(a, b)
2: (r0, x0, y0) = (a, 1, 0)
3: (r1, x1, y1) = (b, 0, 1)
4: while r1 6= 0 do
5: (q, r) = (r0 (div r1), r0 (mod r1))
6: (x3, y3) = (x0 − qx1, y0 − qy1)
7: (r0, x0, y0) = (r1, x1, y1)
8: (r1, x1, y1) = (r, x3, y3)
9: end while
10: return (r0, x0, y0)
11: end procedure

Figure 3.2: The extended Euclidean algorithm

The Euclidean algorithm and the extended Euclidean algorithm can also be ap-

plied to the ring of polynomials over a field in the same manner because the ring

of polynomials over a field is also a Euclidean domain with its Euclidean function

defined as the degree of polynomials.

The algorithm given in Figure 3.3 is the rational approximation algorithm for

FCSR synthesis based on the extended Euclidean algorithm. Suppose the first k

symbols a0, a1, · · · , ak−1 of an N -ary sequence are available. We execute the extended

Euclidean algorithm with a = Nk and b = a0 + a1N + · · ·+ ak−1N
k−1. Then we can

obtain sequences of integers ri, xi, and yi with ri = xia+ yib. That is,

yib− ri ≡ 0 (mod Nk),

36

so (ri, yi) ∈ Lk. When |ri| first becomes less than N (k−1)/2, Φ(ri, yi) is minimized [25].

Theorem 3.1.3 shows the number of terms needed. If N = 2 then given 2λ2(a) + 3

bits, the EEAapprox outputs a description of the smallest FCSR that generates a.

For N 6= 2, suppose p = r0 and q = y0, where (r0, x0, y0) is the output of EEAapprox.

Then (p, q) is a pair of coprime integers but it may happen that q 6≡ −1 (mod N).

We can multiply q with u ≡ q−1 (mod N) and 1 ≤ |u| < N/2. Then up/uq is the

rational number corresponding to an FCSR that outputs a. Moreover, ΦN(up, uq) =

logN(max(|up|, |uq|)) < (1− logN 2) + ΦN(p, q), where ΦN(p, q) is minimal among all

the elements in Lk(a)

One problem for EEAapprox is that it is not adaptive. If a better approximation

is needed, then the previous approximation is no longer useful and the entire algorithm

must be started from the beginning. Arnault, Berger and Necer discussed some

possible solutions. For more details please refer to [7].

1: procedure EEAapprox(a0, · · · , ak−1)
2: if k is not odd then
3: k = k − 1
4: end if
5: (r0, x0, y0) = (Nk, 1, 0)
6: (r1, x1, y1) = (

∑k−1
i=0 aiN

i, 0, 1)
7: while r1 > Nk/2 do
8: Let r0 = qr1 + r
9: (x3, y3) = (x0 − qx1, y0 − qy1)
10: (r0, x0, y0) = (r1, x1, y1)
11: (r1, x1, y1) = (r, x3, y3)
12: end while
13: if |y1| ≤ Nk/2 then
14: return (r1, y1)
15: else
16: return FALSE
17: end if
18: end procedure

Figure 3.3: The extended Euclidean rational approximation algorithm

Theorem 3.1.3. [25] Suppose that N is not a square and the N-adic complexity of

the infinite sequence a0, a1, · · · is less than or equal to n. Suppose algorithm EEAap-

prox is executed with k ≥ 2n+ 3 and the algorithm outputs a pair of integers (r1, y1).

Then
∞∑
i=0

aiN
i =

r1
y1
,

37

r1 and y1 are relatively prime, and gcd(N, y1)=1.

Theorem 3.1.4. [25] The EEAapprox algorithm runs in time O(k2) if k elements

of a are used.

3.1.2 Rational approximation based on lattice approximation

The algorithm give in Figure 3.4 is the rational approximation algorithm based on

lattice approximation, called LatticeApprox. It has the same adaptive features

as Berlekamp-Massey algorithm (Figure 2.1). For each k, the algorithm tries to find

the smallest basis of the kth approximation lattice Lk(a). As k grows, the minimal

vector in Lk(a) will give the rational expression of a. LatticeApprox is for FCSR

synthesis with N = 2. Theorem 3.1.5 shows that the smallest FCSR for a sequence

a can be found with at most 2λ2(a) + d2 log2(λ2a)e+ 2 bits. It is shown in [25] that

the time complexity for LatticeApprox is O(T 2 log T log log T).

Theorem 3.1.5. [25] Suppose a = a0, a1, . . . , is an eventually periodic sequence with

associalted 2-adic integer a =
∑∞

i=0 ai2
i = f/q, with f, q ∈ Z, and gcd(f, q) = 1. If

T ≥ 2λ2(a) + d2 log2(λ2a)e+ 2, then LatticeApprox outputs g = (f, q).

3.2 Multi-sequences and joint N-adic complexity

The FCSR synthesis problem for multi-sequences is: given a prefix of each sequence

S(h), find a common generator of the smallest size that can generate all M sequences

S(0),S(1), . . . ,S(M−1) (with a different initial state for each sequence). Let

S =
(
S(0),S(1), . . . ,S(M−1))

be an M -fold N -ary eventually periodic multi-sequence, as defined in Section 1.4.

If U(x) ∈ Fq[x] is a characteristic polynomial for each of the M sequence, then

it specifies the connection polynomial of an LFSR that generates each of the M

sequences. However, we cannot solve the FCSR synthesis problem in the same way.

This makes multi-sequence synthesis with FCSRs more complicated than with LFSRs.

We proposed a new idea of adopting interleaving technique with π-adic numbers to

study the problem. We derive two algorithms based on this method. One is based

on the lattice reduction greedy algorithm proposed by Nguyen and Stehlé (Figure

1.9). The other is based on the LLL algorithm (Figure 1.8) which is a polynomial

time lattice reduction algorithm. Both of these rational approximation algorithms

can find the smallest common FCSR for a given multi-sequence but with different

38

1: procedure Latticeapprox(a0, · · · , aT−1)
2: a =

∑T−1
i=0 ai2

i

3: Let t be minimal with at−1 = 1
4: f = (0, 2)
5: g = (2t−1, 1)
6: for (k = t, · · · , T − 1) do
7: if (a · g2 − g1 ≡ 0(mod 2k+1)) then
8: if Φ2(f) < Φ2(g) then
9: f = 2f
10: else
11: Let d minimize Φ2(f + dg)
12: 〈g, f〉 = 〈g, 2(f + dg)〉
13: end if
14: else
15: if Φ2(f) < Φ2(g) then
16: Let d minimize Φ2(f + dg) with d odd
17: 〈g, f〉 = 〈f + dg, 2g〉
18: else
19: Let d minimize Φ2(g + df) with d odd
20: 〈g, f〉 = 〈g + df, 2f〉
21: end if
22: end if
23: end for
24: end procedure

Figure 3.4: The rational approximation algorithm based on lattice approximation

numbers of known terms. If the number of sequences within the multi-sequence is

less than or equal to 3, the one based on Nguyen and Stehlé’s algorithm is suggested

because it has better time complexity and fewer terms are needed. Otherwise, the

one based on the LLL algorithm will be much better according to its time complexity.

We suppose that xM − N is irreducible over the rational field Q for M ≥ 2 and

N ≥ 2. For eventually periodic multi-sequence S = (S(0),S(1), . . . ,S(M−1)), each

eventually periodic sequence S(h) can be identified with an N -adic integer. That is,

for h = 0, 1, · · · ,M − 1, a(h) =
∑∞

i≥0 s
(h)
i N i ∈ ZN and a(h) = p(h)/q(h) for some

p(h), q(h) ∈ Z.

Definition 3.2.1. The joint N-adic complexity of multi-sequence S = (S(0), S(1), . . . ,

S(M−1)), λN,M(S), is the size of the smallest FCSR that can generate all M sequences

S(0),S(1), . . . , and S(M−1).

To find a common FCSR that can generate all M sequences, we look into the

39

interleaved sequence of S which is defined as

(s
(0)
0 , s

(1)
0 , s

(2)
0 , . . . s

(M−1)
0 , s

(0)
1 , s

(1)
1 , . . . s

(M−1)
1 , s

(0)
2 , s

(1)
2 , . . .).

Take πM = N , R = Z[π], and S = {0, 1, ..., N −1}. Because xM −N is irreducible

over the rational field Q and π ∈ C is a root of this polynomial, it is true that R is an

integral domain. The ring of π-adic numbers, Rπ, contains the subring consisting of

quotients γ/b with γ ∈ R and b ∈ Z such that gcd(b,N) = 1. We also have ZN ⊂ Rπ.

The carries in each S(h) (h = 0, 1, · · ·M − 1) are independent and will be out of

order if the interleaved sequence is treated as an N -adic integer. To make the carries

work properly within a single sequence, we associate the interleaved sequence with a

π-adic number ς ∈ Rπ as follows:

ς = s
(0)
0 + s

(1)
0 π + s

(2)
0 π2 + · · ·+ s

(M−1)
0 πM−1 + s

(0)
1 πM + s

(1)
1 πM+1 + · · · . (3.2)

The following theorem demonstrates how to find λN,M(S) in terms of the π-adic

number ς.

Theorem 3.2.1. Let ϕ(γ) = max(|r0|, |r1|, . . . , |rM−1|) for any γ = r0 + r1π +

r2π
2 · · ·+ rM−1π

M−1 ∈ Z[π] with ri ∈ Z (i = 0, 1, . . . ,M − 1). The joint N-adic com-

plexity of S, λN,M(S), is the minimal value of logN(max(ϕ(γ), |q|)), where γ/q = ς

(ς is the π-adic number associated with the interleaved sequence of S), γ ∈ Z[π] and

q ∈ Z.

Proof: Consider each sequence S(h) (h = 0, 1, . . . ,M−1). We have a(h) =
∑∞

i≥0 s
(h)
i N i =

p(h)/q(h). Because πM = N , we have

ς = a(0) + a(1)π + a(2)π2 + · · ·+ a(M−1)πM−1

=
p(0)

q(0)
+
p(1)

q(1)
π +

p(2)

q(2)
π2 + · · ·+ p(M−1)

q(M−1)
πM−1

=
γ

lcm(q(0), q(1), · · · , q(M−1))
for some γ ∈ Z[π].

Here, lcm(q(0), q(1), · · · , q(M−1)) denotes the least common multiple of q(0), q(1), · · · ,
q(M−1). The FCSR with connection integer lcm(q(0), q(1), · · · , q(M−1)) can generate all

these M sequences S(0),S(1), . . . ,S(M−1) with proper initial settings determined by γ.

So ς has a rational expression of the form γ/q, where γ ∈ Z[π] and q ∈ Z.
On the other hand, if ς = γ/q for some γ = r0 + r1π + r2π

2 · · · + rM−1π
M−1 ∈

Z[π] and q ∈ Z, then rh/q = a(h), h = 0, 1, · · · ,M − 1. It means that the FCSR

with connection integer q and the particular initial setting related to rh can generate

40

sequence S(h). Considering all the M initial settings together, the size of the FCSR

is

logN(max(ϕ(γ), |q|)) = logN(max(|r0|, |r1|, . . . , |rM−1|, |q|)).

So according to the definition, λN,M(S) is the minimal value of logN(max(ϕ(γ), |q|)).
2

Thanks to Theorem 3.2.1, the problem of FCSR synthesis for multi-sequence S =

(S(0),S(1), . . . ,S(M−1)) , where S(h) is an eventually periodic N -ary sequence, can be

rephrased as follows:

• Given A prefix of the interleaved sequence of S

• Find γ ∈ Z[π] and q ∈ Z satisfying ς = γ/q and minimizing max(ϕ(γ), |q|).

The joint N -adic complexity and joint 2-adic complexity have been discussed under

the assumption that sequences S(0),S(1), . . . ,S(M−1) are all strictly periodic [29,71,72].

That is, |p(h)| ≤ |q(h)| for h = 0, 1, . . . ,M − 1. So,

λN,M(S) = logN(lcm(q(0), q(1), · · · , q(M−1))).

Results about the expected value, upper bound, and lower bound of the joint com-

plexity λN,M(S) in this case were proved by Hu, et al. [29], and Yang, et al. [71].

3.3 Rational approximation for multi-sequences

To solve the problem of FCSR synthesis for the multi-sequence S, we define an integer

lattice using the first k consecutive terms of the interleaved sequence of S. We

assume that M divides k, which means that the known prefixes of each S(h) are of

the same length, k/M . The elements in the formed integer lattice will determine

approximations of the rational expression of the interleaved sequence. Finding a

minimal vector in this integer lattice will result in a best rational expression of the

associated π-adic number. In other words, the best common FCSR that can generate

the multi-sequence S will have been found.

Definition 3.3.1. Let πM = N where M,N are positive integers such that xM −N
is an irreducible polynomial over the rational numbers Q. Let R = Z[π] and ς ∈ Rπ,

the ring of π-adic numbers. The kth integer approximation lattice of ς is defined as

Lk(ς) :={(u0, . . . , uM−1, v) ∈ ZM+1: ςv− (u0 + u1π+ · · ·+ uM−1π
M−1)≡0 (mod πk)}.

41

It can be shown that Lk(ς) is a lattice, because it is closed under addition and

scalar multiplication.

Denote the interleaved sequence of S by S, where S = (S(0),S(1), . . . ,S(M−1)).

Let ς ∈ Rπ be the π-adic number that is associated with S. Then, for any vector

(u0, . . . , uM−1, v) ∈ Lk(ς), we have

ς≡ u0 + u1π + · · ·+ uM−1π
M−1

v
(mod πk) if gcd(v,N) = 1.

That is, (u0+u1π+ · · ·+uM−1πM−1)/v is a rational approximation of ς up to k terms.

Let ςk ∈ Z[π] be associated with the first k terms of S as follows.

ςk = s
(0)
0 + s

(1)
0 π + s

(2)
0 π2 + · · ·+ s

(0)
k
M
−1π

k−1 + · · ·+ s
(M−2)
k
M
−1 π

k−1 + s
(M−1)
k
M
−1 π

k

= s0 + s1π + · · ·+ sM−1π
M−1, for some s0, s1, . . . , sM−1 ∈ Z.

It can be verified that the vectors u1 = (Nk/M , . . . , 0), u2 = (0, Nk/M , . . . , 0), · · · ,
uM−1 = (0, . . . , Nk/M , 0), uM = (0, . . . , Nk/M) and uM+1 = (s0, s1, . . . , sM−1, 1) are

all in Lk(ς).

Theorem 3.3.1. Lk(ς) is a full lattice of rank M + 1 and u1,u2, . . . ,uM+1 form a

basis of Lk(ς).

Proof: It is true that u1,u2, . . . ,uM+1 are linearly independent vectors in RM+1. We

will show that Lk(ς) = L(u1,u2, . . . ,uM+1).

Let u =
∑M+1

i=1 ciui, where ci ∈ Z. We have u ∈ Lk(ς), because Lk(ς) is closed under

addition and scalar multiplication. So L(u1,u2, . . . ,uM+1) ⊆ Lk(ς).

Suppose v = (v0, v1, . . . , vM) is an arbitratry vector in Lk(ς). Then we have

ςvM − (v0 + v1π + v1π
2 + · · ·+ vM−1π

M−1) ≡ 0 (mod πk).

So there exists γ ∈ Z[π] such that

ςkvM − (v0 + v1π + v2π
2 + · · ·+ vM−1π

M−1) = γπk = γNk/M .

Let γ = r0 +r1π+r2π
2 + · · ·+rM−1π

M−1, where ri ∈ Z. Making corresponding terms

equal, we have
s0vM − v0 = r0N

k/M ,
s1vM − v1 = r1N

k/M ,
s2vM − v2 = r2N

k/M ,
. . .
sM−1vM − vM−1 = rM−1N

k/M .

42

So v = vMuM+1 − r0u1 − r1u2 − · · · − rM−1uM which is a linear combination of

(u1,u2, . . . ,uM+1). That is, v ∈ L(u1,u2, . . . ,uM+1). Lk(ς) ∈ RM+1 is a lattice with

the same dimension of the space RM+1, so it is full.

2

Recalling the definition of the determinant of a lattice L, we have

det(Lk(ς)) = (det(G(u1,u2, . . . ,uM+1)))
1
2 = Nk.

Suppose we have two vectors ũ and û, where ũ = (ũ0, ũ1, ũ2, . . . , ũM−1, ṽ) ∈ Lk(ς)

has the smallest Euclidean norm and û = (û0, û1, û2, . . . , ûM−1, v̂) ∈ Lk(ς) has the

smallest super norm. Then, according to the inequalities (1.6) and (1.7),

||ũ||∞ ≤
√
M + 1||û||∞. (3.3)

Also, we have ||û||∞ ≤ det(Lk(ς))
1

M+1 = N
k

M+1 owing to Minkowski’s bound on

lattices [15] and

||ũ||∞ ≤
√
M + 1||û||∞ ≤

√
M + 1N

k
M+1 . (3.4)

We want to use ũ or û in Lk(ς) to approximate the best rational expression of the

interleaved sequence, but finding them is a hard problem in lattice theory.

3.4 Multi-sequences FCSR synthesis via lattice approximation

In this section, we introduce two approximation algorithms. One, called Approx-

Greedy (Figure 3.5), is based on the lattice reduction greedy algorithm (Figure 1.9)

and the other, called ApproxLLL (Figure 3.6), is based on the LLL algorithm (Fig-

ure 1.8). Given a multi-sequence S = (S(0),S(1), . . . ,S(M−1)), the interleaved sequence

S is associated with a π-adic number ς. Suppose the first k consecutive terms of S are

known and M |k. Then each of the rational approximation algorithms can compute a

vector in the kth integer approximation lattice, Lk(ς), that almost has the minimal

super norm. When k is sufficiently large, both of their outputs are exactly a rational

expression of the smallest common FCSR that can generate the multi-sequence S.

But the minimum k that suffices for the two algorithms differs. In other words, they

both solve the problem of FCSR synthesis for multi-sequences.

43

3.4.1 Rational approximation algorithm based on the lattice reduction
greedy algorithm

The lattice reduction greedy algorithm was proposed by Nguyen and Stehlé [50] in

2009. Figure 1.9 is an iterative description of it. ApproxGreedy, based on the

lattice reduction greedy algorithm, is given in Figure 3.5. The inputs are the first

k/M consecutive terms of each sequence S(i) for (0 ≤ i ≤ M − 1), so the total

number of input terms is k. The output is a pair (β, q) where β ∈ Z[π] and q ∈ Z.

Theorem 3.4.1 shows that when k is large enough, q will be the connection integer of

the smallest FCSR that can generate the multi-sequence S. The output β determines

the initial state for each S(i).

1: procedure ApproxGreedy(S(0),S(1), . . . ,S(M−1))

2: Input: s
(i)
0 , s

(i)
1 , . . . , s

(i)
k
M
−1, the first k/M terms of sequence S(i) (0 ≤ i ≤M − 1).

3: Output: (β, q) where β ∈ Z[π], q ∈ Z.
4: for j = 1 to M − 1 do

5: sj :=
∑ k

M
−1

i=0 s
(j)
i N i

6: end for
7: uM+1 := (s0, s1, . . . , sM−1, 1)
8: for i = 1 to M do
9: ui := (0, 0, . . . , Nk/M︸ ︷︷ ︸

ith postion

, . . . , 0)

10: end for
11: Sort u1,u2, . . . ,uM+1 by their norm ‖ · ‖ so (u1,u2, . . . ,uM+1) is an ordered

basis
12: Compute the Gram matrix G so that Gij = 〈ui,uj〉
13: (u1,u2, . . . ,uM+1) :=GreedyLatticeReduction(u1,u2, . . . ,uM+1)
14: Suppose u1 = (u0, u1, . . . , uM−1, v)
15: return (u0 + u1π + · · ·+ uM−1π

M−1, v)
16: end procedure

Figure 3.5: The multi-FCSR Rational Approximation with GreedyLatticeReduc-
tion

Theorem 3.4.1. Let πM = N where xM−N be irreducible over the rationals. Suppose

M ≤ 3. Let ς be the π-adic number identified with the interleaved sequence of S =

(S(0),S(1), . . . ,S(M−1)). So Lk(ς) is of dimension at most four. Let the joint N-adic

complexity of S be less than or equal to n. Suppose ApproxGreedy is executed

with k ≥ max(b2M · n + M · logN(2
√
M + 1) + 1c, bM(M + 1) logN(

√
M + 1) + 1c)

and outputs (β, q), where β = b0 + b1π + + · · · + bM−1π
M−1 ∈ Z[π], q ∈ Z. Then for

44

0 ≤ i ≤M − 1,
∞∑
j=0

s
(i)
j N

j =
bi
q
,

where (s
(i)
0 , s

(i)
1 , s

(i)
2 , . . .) is the sequence S(i). This means that bi/q is a rational expres-

sion of sequence S(i). The value of max(ϕ(β), |q|) is equal to λN,M(S), which implies

that |q| is the connection integer of the smallest common FCSR that can generate

S(0),S(1), . . . ,S(M−1). For simplicity, we always suppose the denominators of all the

rational forms are positive.

Proof: (β, q) is the output of ApproxGreedy, so v = (b0, b1 . . . , bM−1, q) is the

first vector of the Minkowski reduced basis. It is true that gcd(b0, b1, . . . , bM−1, q) = 1.

Otherwise, (b0, b1 . . . , bM−1, q) cannot be the smallest vector. For any other v′ ∈ Lk(ς),
we have ||v|| ≤ ||v′||.

First, we show that q 6= 0. If q = 0, then β ≡ 0 (mod πk). So if β 6= 0 then

ϕ(β) ≥ Nk/M . Hence,

||v|| ≥ ||v||∞ = max(ϕ(β), |q|) ≥ Nk/M .

But according to equation (3.4), ||v|| ≤
√
M + 1N

k
M+1 . This is impossible because

Nk/M >
√
M + 1N

k
M+1 , when k > M(M + 1) logN(

√
M + 1). So β = q = 0, which is

false.

Suppose u = (u0, u1, . . . , uM−1, p) ∈ ZM+1, gcd(p,N) = 1 such that

ς =
u0 + u1π + · · ·+ uM−1π

M−1

p
,

and ||u||∞ = λN,M(S). That is, (u0 + u1π + · · · + uM−1π
M−1)/p is a best rational

expression of ς. Then gcd(u0, u1, . . . , uM−1, p) = 1, since otherwise the joint N -adic

complexity would be smaller. So we have

||u||∞ = max(|u0|, |u1|, . . . , |uM−1|, |p|) ≤ Nn.

Suppose û = (û0, û1, û2, . . . , ûM−1, v̂) has the smallest sup norm in Lk(ς). Then

||û||∞ ≤ ||u||∞ ≤ Nn because u ∈ Lk(ς). Also, v has the smallest Euclidean norm,

so

||v||∞ ≤
√
M + 1||û||∞ ≤

√
M + 1 ·Nn.

We have

q · u0 + u1π + · · ·+ uM−1π
M−1

p
≡ b0 + b1π + · · ·+ bM−1π

M−1 (mod πk),

45

so there exists γ ∈ Z[π] such that

q(u0 + u1π + · · ·+ uM−1π
M−1)− p(b0 + b1π + · · ·+ bM−1π

M−1) = pqNk/Mγ.

Suppose γ = r0 + r1π + · · ·+ rM−1π
M−1 with ri ∈ Z, so

qu0 − pb0 = pqr0N
k/M ,

qu1 − pb1 = pqr1N
k/M ,

· · · ,
quM−1 − pbM−1 = pqrM−1N

k/M .

If γ 6= 0, then ri 6= 0 for some 0 ≤ i ≤M − 1. WLOG, let i = 0.

|qu0 − pb0| ≤ 2 · ||u||∞ · ||v||∞ ≤ 2
√
M + 1 ·N2n.

But

|pqr0Nk/M | ≥ |Nk/M | > 2
√
M + 1 ·N2n,

because k > 2Mn + M · logN(2
√
M + 1). This is a contradiction. So γ = 0. This

means that

q(u0 + u1π + · · ·+ uM−1π
M−1) = p(b0 + b1π + · · ·+ bM−1π

M−1)

Because gcd(b0, b1, . . . , bM−1, q) = 1, we have q|p. Similarly, p|q. So p = q and bi = ui

for 0 ≤ i ≤M − 1. Thus

ς = β/q =
b0 + b1π + · · ·+ bM−1π

M−1

q
.

In addition, gcd(q,N) = 1 and max(ϕ(β), |q|) = ||v||∞ = λN,M(S). 2

Consider the case of 3-fold binary multi-sequences. That is, let M = 3 and N = 2.

Theorem 3.4.1 shows that the number of known terms required for ApproxGreedy

to output the smallest common FCSR is at most max(6n + 7, 13), where n is the

2-adic joint complexity of the given multi-sequence.

Theorem 3.4.2. Let M ≤ 3. The algorithm ApproxGreedy runs in time O(k2)

if k elements of S are used, where S is the interleaved sequence of the multi-sequence

S = (S(0),S(1), . . . , S(M−1)).

Proof: The time complexity of the multiplication of two integers that are no more

than Nk/M is O(k log k log log k) if Fast Fourier Transforms are used. So the time

46

complexity of obtaining u1,u2, . . . ,uM+1 from step 4 to step 10 in Figure 3.5 is

O(k log2 k log log k). We have ||ui|| = Nk/M , (1 ≤ i ≤M) and

||uM+1|| =
√
s20 + s21 + · · ·+ s2M−1 + 1 <

√
M ·N2k/M + 1.

The sorting and computation of the Gram matrix G both have time complexity of

O(k2) because the dimension of the Lk(ς) is fixed. According to Theorem 1.5.1, the

time complexity of the lattice basis reduction step is bounded by O
(

log ||uM+1||[1 +

||uM+1|| − log ζ1(Lk(ς)]
)

= O(k2). So the time complexity of the algorithm Approx-

Greedy is O(k2).

2

3.4.2 Rational approximation algorithm based on the LLL algorithm

The rational approximation algorithm based on the LLL algorithm, ApproxLLL, is

given in Figure 3.6. Notice that it takes the same inputs as ApproxGreedy which

are also the first k/M consecutive terms of each sequence S(i) for (0 ≤ i ≤ M − 1).

The output pair (β′, q′), where β′ ∈ Z[π] and q′ ∈ Z, is formed from the first vector

of the LLL-reduced basis obtained from Step 11. We assume that the LLL algorithm

runs with δ = 3/4. Actually, other values of δ will also work and the analysis is

similar. Theorem 3.4.3 shows that when k is large enough, q′ will be the connection

integer of the smallest FCSR that can generate S(0),S(1), . . . ,S(M−1). Compared with

Theorem 3.4.1, the number of inputs needed for ApproxLLL is about M2

2
logN 2

more additively. This is because the first vector in the LLL reduced basis is not the

smallest nonzero vector but its Euclidean norm is less than or equal to 2M/2 ·ζ1(Lk(ς))
when δ = 3/4.

Theorem 3.4.3. Let πM = N where xM−N is irreducible over the rational numbers.

Let ς be the π-adic number identified with the interleaved sequence of S. So Lk(ς)

is a (M + 1)-dimensional full lattice. Let the joint N-adic complexity of S be less

than or equal to n. Suppose ApproxLLL is executed with k ≥ max(b2M · n + M ·
logN(

√
M + 1) + M2+2M

2
logN 2 + 1c, bM(M + 1) logN(

√
M + 1) + M3+M2

2
logN 2 + 1c)

and outputs (β′, q′), where β′ = b′0 + b′1π+ + · · ·+ b′M−1π
M−1 ∈ Z[π], q′ ∈ Z. Then for

0 ≤ i ≤M − 1,
∞∑
j=0

s
(i)
j N

j =
b′i
q′
,

where (s
(i)
0 , s

(i)
1 , s

(i)
2 , . . .) is the sequence S(i). This means that b′i/q

′ is a rational ex-

pression of sequence S(i). The value of max(ϕ(β′), |q′|) is equal to λN,M(S), which

47

1: procedure ApproxLLL(S(0),S(1), . . . ,S(M−1))

2: Input: s
(i)
0 , s

(i)
1 , . . . , s

(i)
k
M
−1. The first k/M terms of sequence S(i) (0 ≤ i ≤M −1).

3: Output: (β′, q′) where β′ ∈ Z[π], q′ ∈ Z.
4: for j = 1 to M − 1 do

5: sj :=
∑ k

M
−1

i=0 s
(j)
i N i

6: end for
7: uM+1 := (s0, s1, . . . , sM−1, 1)
8: for i = 1 to M do
9: ui := (0, 0, . . . , Nk/M︸ ︷︷ ︸

ith postion

, . . . , 0)

10: end for
11: (u1,u2, . . . ,uM+1) :=LLL(u1,u2, . . . ,uM+1)
12: Suppose u1 = (u0, u1, . . . , uM−1, v)
13: return (u0 + u1π + · · ·+ uM−1π

M−1, v)
14: end procedure

Figure 3.6: The multi-FCSR Rational Approximation with LLL

implies that |q′| is the connection integer of the smallest common FCSR that can gen-

erate S(0),S(1), . . . ,S(M−1). For simplicity, we always suppose the denominators of all

the rational forms are positive.

Proof: Let ũ = (ũ0, ũ1, ũ2, . . . , ũM−1, ṽ) ∈ Lk(ς) be a vector with the smallest Eu-

clidean norm. (β′, q′) is the output of ApproxLLL, so v = (b′0, b
′
1 . . . , bM−1, q

′) is the

first vector of the LLL reduced basis. So

||v|| ≤ 2M/2||ũ||.

First, we show that q 6= 0. If q = 0, then β ≡ 0 (mod πk). So ϕ(β) ≥ Nk/M , and

thus

||v|| ≥ ||v||∞ = max(ϕ(β), |q|) ≥ Nk/M .

But according to inequality (3.4), ||ũ|| ≤
√
M + 1N

k
M+1 , so

||v|| ≤ 2M/2
√
M + 1N

k
M+1 .

This is impossible because Nk/M > 2M/2
√
M + 1N

k
M+1 when

k > M(M + 1) logN(
√
M + 1) +

1

2
M2(M + 1) logN 2.

Suppose u = (u0, u1, . . . , uM−1, p) ∈ ZM+1, p 6= 0 such that

ς =
u0 + u1π + · · ·+ uM−1π

M−1

p
,

48

and ||u||∞ = ΦN(S(0),S(1), . . . ,S(M−1)). Then gcd(u0, u1, . . . , uM−1, p) = 1, otherwise

the joint N adic-complexity would be smaller. So we have

||u||∞ = max(|u0|, |u1|, . . . , |uM−1|, |p|) ≤ Nn.

Suppose û = (û0, û1, û2, . . . , ûM−1, v̂) ∈ Lk(ς) has the smallest L∞ norm. Then

||û||∞ ≤ ||u||∞ ≤ Nn because u ∈ Lk(ς). So we have

||v||∞ ≤ ||v|| ≤ 2M/2||ũ|| ≤ 2M/2
√
M + 1||û||∞ ≤ 2M/2

√
M + 1 ·Nn.

We have

u0 + u1π + · · ·+ uM−1π
M−1

p
=
b0 + b1π + · · ·+ bM−1π

M−1

q
(mod πk),

so there exists γ ∈ Z[π] such that

q(u0 + u1π + · · ·+ uM−1π
M−1)− p(b0 + b1π + · · ·+ bM−1π

M−1) = pqNk/Mγ.

Suppose γ = r0 + r1π + · · ·+ rM−1π
M−1 so

qu0 − pb0 = pqr0N
k/M

qu1 − pb1 = pqr1N
k/M

· · ·
quM−1 − pbM−1 = pqrM−1N

k/M .

If γ 6= 0, then ri 6= 0 for some 0 ≤ i ≤M − 1. WLOG, let i = 0.

|qu0 − pb0| ≤ 2 · ||u||∞ · ||v||∞ ≤ 2M/2+1
√
M + 1 ·N2n.

But

|pqr0Nk/M | ≥ |Nk/M | > 2M/2+1
√
M + 1 ·N2n,

because k > 2Mn+M · logN(2
√
M + 1) + M2+2M

2
logN 2. This is a contradiction. So

γ = 0. This means that

b0 + b1π + · · ·+ bM−1π
M−1

q
=
u0 + u1π + · · ·+ uM−1π

M−1

p
= ς.

So it is proved that ς = β
q

and max(ϕ(β), |q|) = ||v||∞ = λN,M(S). 2

Theorem 3.4.4. The algorithm ApproxLLL runs in time O(k2 log k log log k) if k

elements of a are used.

49

Proof: From theorem 3.4.2, we know that ||ui|| = Nk/M , (1 ≤ i ≤M) and

||uM+1|| =
√
s20 + s21 + · · ·+ s2M−1 + 1 <

√
M ·N2k/M + 1.

Given a d-dimensional integer lattice basis with vectors of Euclidean norm less than

B in a d-dimensional space, the time complexity of the LLL algorithm is O(d4 logB ·
M(d logB)) bit operations, whereM(d logB) denotes the time required to multiply

d logB-bit integers [49]. In ApproxLLL, d = M + 1 and B can be chosen as
√
M + 1Nk/M . We haveM(d logB) = O(k log k log log k), if Fast Fourier Transforms

are used and if M is fixed. So the time complexity of step 11 in Figure 3.4.3 is

O(k2 log k log log k). The other steps don’t cost more according to the discussion in

Theorem 3.4.2. So the time complexity of ApproxLLL is O(k2 log k log log k).

2

3.4.3 Comparison of ApproxGreedy and ApproxLLL

ApproxGreedy and ApproxLLL are both rational approximation algorithms that

can solve the problem of FCSR synthesis for multi-sequences. When M = 1, the

multi-sequence N -adic FCSR synthesis problem is reduced to the single sequence syn-

thesis problem. ApproxGreedy and ApproxLLL still work, so ApproxGreedy

and ApproxLLL can be thought of as a generalization of lattice approximation al-

gorithm (Figure 3.4) to multi-sequences cases but they are not adaptive. According

to the time complexity and number of terms needed, ApproxGreedy is better than

ApproxLLL when M ≤ 3. When M > 3, ApproxGreedy may not output the

right rational expression due to Theorem 1.5.1, so ApproxLLL should be used.

Copyright c© Weihua Liu 2016

50

4 AFSR Synthesis

We recall the definition of AFSRs over (R, π, S) in Section 1.3.3, where R is an integral

domain, π ∈ R and S is a complete set of representative of R/(π). Fix an eventually

periodic sequence a = a0, a1, a2, · · · of S and denote its corresponding π-adic number

by α. That is,

α = a0 + a1π + a2π
2 + · · · .

According to Theorem 1.3.1, α has a rational expression u/q. If (u, q) is found, then

the AFSR that generates sequence a can be constructed by Theorem 1.3.1. So our

goal is to find a rational expression u/q using as few terms of sequence a as we can.

The AFSR synthesis problem is :

• Given A prefix of the eventually periodic sequence a=a0, a1, · · · over R/(π).

• Find f, q ∈ R such that α = u/q.

Xu’s rational approximation algorithm [25, 33], proposed by Xu and Klapper, is

a modificaion of the Berlekamp-Massey algorithm (Figure 2.1) that solves the LFSR

synthesis problem. It solves the synthesis problem for AFSRs over (R, π, S) with

certain algebraic properties, which we introduce in Section 4.1. We approach the

AFSR synthesis problem with two different methods. One can be seen as an extension

of the lattice approximation approach (Figure 3.4) and is introduced in Section 4.3.

The other one, in Section 4.4, is an approximation algorithm based on the extended

Euclidean algorithm on norm-Euclidean imaginary quadratic fields.

4.1 Xu’s rational approximation algorithm

Xu’s rational approximation algorithm is a modificaion of the Berlekamp-Massey

algorithm in the sense that at each stage i, it maintains a rational element whose

π-adic expansion is coincident with the given π-adic number up to i terms. As in the

Berlekamp-Massey algorithm, the discrepancy is controlled at each stage. But they

do so by forming a more general linear combination between two previous rational

approximations. When constructing these linear combinations, several new terms are

considered together to compensate for the increase in size due to the carry. Given

R, π, and S, two structures are needed to make Xu’s rational approximation algorithm

work: size function and interpolation set.

Size function [25]

51

To measure the “size” of the elements of R, Xu and Klapper introduced a function

ψR,π : R→ Z
⋃
{−∞} satisfying the following properties for some constants b and c:

1. ψR,π(0) = −∞ and ψR,π(x) ≥ 0 if x 6= 0;

2. for all x, y ∈ R we have ψR,π(xy) ≤ ψR,π(x) + ψR,π(y) + b;

3. for all x, y ∈ R we have ψR,π(x± y) ≤ max{ψR,π(x), ψR,π(y)}+ c;

4. for all x ∈ R and k ≥ 0 ∈ Z, we have ψR,π(πkx) = k + ψR,π(x).

Define a “height” function

ΓR,π(x, y) = max{ψR,π(x), ψR,π(y)},

and the “π-adic complexity” of a sequence,

λπ(a) = inf{ΓR,π(u, q) : a = u/q}.

The size function gives a description of the sizes of AFSRs. They claim that in many

cases λπ(a) grows at most linearly with the actual size of the AFSR that is needed

to generate a.

Interpolation set [25]

To control the growth of the size of a new approximation, they assume there exists

a subset of R, denoted by PR,π, from which the coefficients are selected. The subset

will restrict the elements that can be used to multiply the previous approximations.

The subset PR,π of R must have the following properties.

There is an integer B > 0 such that

1. 0 ∈ PR,π, and if s ∈ PR,π with πB|s, then s = 0;

2. for every h1, h2 ∈ R and s, t ∈ PR,π, we have

ψR,π(sh1 + th2) < max(ψR,π(h1)), ψR,π(h2) +B;

3. for every h1, h2 6= 0 ∈ R, there exist s, t ∈ PR,π such that (s, t) 6= (0, 0) and

πB|(sh1 + th2).

With these definition, Xu’s rational approximation algorithm is given in Figure

4.1. The constant B is from the definition of PR,π. It was shown that after a fi-

nite number of steps the algorithm outputs a description of the AFSR for a given

eventually periodic sequence.

52

Theorem 4.1.1. [25] Let a = a0, a1, · · · be an eventually periodic sequence. The

associated π-adic number α has the rational expression u/q where ΓR,π(u, q) has the

minimum value, λπ(a). In Xu’s algorithm for the sequence a,

1. For every j, rj 6= 0.

2. Suppose

i > B(2b+ 2c+B + cdlog(B)e+ 2f1) + 2Bλπ(a),

where f1 = max(ψR,π(a) : a ∈ S) ∪ ψR,π(1). Then the algorithm is convergent

at i. That is, hi/ri = u/q.

1: procedure Xu(a0, a1, · · · , ak)
2: a = 1 + π

∑k
i=0 aiπ

i

3: (h0, r0) = (0, 1)
4: Let r1 = b0 + b1π + · · ·+ bB−1π

B−1 satisfy r1a ≡ 1(mod πB)
5: h1 = 1
6: m = 0
7: for i = 1 to k − 1 do
8: if (hi − ria) 6≡ 0(mod πi+1) then
9: if ∃s 6= 0 ∈ PR,π with πi+B|s(hi − ria) then
10: (hi+1, ri+1) = s(ji, ri)
11: else
12: Find s, t ∈ PR,π, not both zero, with πi+B|s(hi− ria) + tπi−m(hm−

rma)
13: (hi+1, ri+1) = s(ji, ri) + tπi−m(hm, rm)
14: end if
15: if ΓR,π(hi+1, ri+1) > ΓR,π(hi, ri) and ΓR,π(hi, ri) ≤ i−m+ ΓR,π(hm, rm)

and t 6= 0 then
16: m = i
17: end if
18: end if
19: end for
20: Let 1 + π(u/q) = hk/rk
21: Find the largest t so that πt that divides both u and q
22: return (u/πt, q/πt)
23: end procedure

Figure 4.1: Xu’s rational approximation algorithm

Theorem 4.1.2. [25] The worst case time complexity of the Xu’s rational approxi-

mation algorithm is in

O(

λπ(a)∑
m=1

σ(m)),

53

where σ(m) is the time required to add two elements a, b ∈ R with ψR,π(a), ψR,π(b) ≤
m.

The worst case space complexity is in

O(λπ(a) log(|S|)),

where |S| is the cardinality of set S.

Notice that if u, q ∈ R is the output pair of Xu’s algorithm when k is large

enough, then q is the connection element for an AFSR over R that outputs sequence

a. However, q may not the the smallest.

4.2 Algebraic number fields

In this section, we review some definitions and results of basic algebraic number

theory. An algebraic number field K is a finite field extension of the rational numbers

Q. That is, K is a field that contains Q and can be considered as a vector space over

Q of finite dimension. The dimension of this vector space is called the degree of the

extension and is denoted by [K : Q]. When [K : Q] = 2, we say K is a quadratic

extension of Q or K is a quadratic number field. An algebraic integer in a number

field K is an element α ∈ K which is a root of a monic polynomial with coefficients

in Z.

Theorem 4.2.1. [8] Any quadratic extension of Q is of the form Q(
√
d), where d is

a square free integer, not 0 or 1. The set of all algebraic integers in Q forms a ring

E =

{
Z + Z ·

√
d if d ≡ 2 or 3 (mod 4),

Z + Z · (1+
√
d

2
) if d ≡ 1 (mod 4).

The set of algebraic integers of a number field K is called the ring of integers of

K. If d > 0, the quadratic number field K is called a real quadratic field. Otherwise,

K is called an imaginary quadratic field. For any x+ y
√
d ∈ K, the norm of x+ y

√
d

is defined as

N(x+ y
√
d) := x2 − dy2.

The norm function is multiplicative, that is,

N(αβ) = N(α)N(β)

for all α, β ∈ Q(
√
d). We say R is norm Euclidean if for all α, β ∈ R, β 6= 0, there

exist ε, γ ∈ R such that α = εβ + γ and |N(γ)| < |N(β)|. It is known that Q(
√
d) is

a norm Euclidean quadratic number field if and only if d is in the set

{−1,−2,−3,−7,−11, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}. [38]

54

The ring of integers of a norm Euclidean quadratic number field is also norm Eu-

clidean.

4.3 AFSR synthesis via lattice rational approximation algorithm

For Section 4.3, we discuss AFSRs over quadratic extensions of Z. That is, fix π ∈ Z
such that π2 = D, whereD ∈ Z is square free. So x2−D is irreducible over the rational

numbers Q. Let R = Z[π], a quadratic extension of Z. It is an integral domain in

which every prime ideal is maximal. It can be proved that S = {0, 1, . . . , D − 1} is

a complete set of representatives for the quotient ring R/(π). First of all, we give a

different definition of the size and π-adic complexity to describe AFSRs. Then we

construct a lattice based on the first k outputs of AFSRs that gives an approximation

of the associated π-adic integer.

4.3.1 Size and π-adic complexity

Suppose R = Z[π] = {a0 + a1π : a0, a1 ∈ Z} and π2 = D ∈ Z . To measure the size

of the elements of R, let size function ϕR,π : R→ Z be

ϕR,π(q) = q20 + q21,

where q = q0 + q1π and q0, q1 ∈ Z.

Proposition 4.3.1. For any u, q ∈ Z[π], we have

1. ϕR,π(u± q) ≤ 2(ϕR,π(u) + ϕR,π(q)) and

2. ϕR,π(uq) ≤ (D2 + |1 +D|/2)ϕR,π(u)ϕR,π(q).

Proof: Let u = u0 + u1π and q = q0 + q1π where u0, u1, q0, q1 ∈ Z. We have

u± q = (u0 ± q0) + (u1 ± q1)π, so

ϕR,π(u± q) = (u1 ± q1)2 + (u0 ± q0)2

= u21 + q21 + u20 + q20 ± 2u1q1 ± 2u0q0

≤ 2(u21 + q21 + u20 + q20)

= 2(ϕR,π(u) + ϕR,π(q)).

We have uq = (u0 + u1π)(q0 + q1π) = (u0q0 +Du1q1) + (u0q1 + u1q0)π, so

ϕR,π(uq) = (u0q0 +Du1q1)
2 + (u0q1 + u1q0)

2

= u20q
2
0 +D2u21q

2
1 + u20q

2
1 + u21q

2
0 + (2 + 2D)u0u1q0q1

≤ u20q
2
0 +D2u21q

2
1 + u20q

2
1 + u21q

2
0 + |(2 + 2D)| · |u0u1q0q1|

55

Since ϕR,π(u)ϕR,π(q) = u20q
2
0 + u21q

2
1 + u20q

2
1 + u21q

2
0 ≥ 4|u0u1q0q1|, we have

ϕR,π(uq) ≤ D2ϕR,π(u)ϕR,π(q) +
|2 + 2D|

4
ϕR,π(u)ϕR,π(q)

= (D2 +
|1 +D|

2
)ϕR,π(u)ϕR,π(q).

2

For any u, q ∈ R, let

ΦR,π(u, q) = log|D|(ϕR,π(u) + ϕR,π(q)).

We define ΦR,π(u, q) to be the size of the AFSR constructed by Theorem 1.3.1. That

is, u/q is a rational expression of α, the associated π-adic integer of sequence a. Then

the π-adic complexity of a is

ϕπ(a) = min{ΦR,π(u, q) : α = u/q}.

The AFSR synthesis problem in terms of the size and π-adic complexity defined

above is as follow:

• Given A prefix of the eventually periodic sequence a=a0, a1, · · · over S =

{0, 1, · · · , |D| − 1}.

• Find u, q ∈ R satisfying α = u/q and minimizing ΦR,π(u, q) .

4.3.2 k-th Approximation Lattices

Definition 4.3.1. Let π =
√
D, where D ∈ Z is square free. Let R = Z[π] and let

Rπ be the ring of π-adic integers. Suppose α = a0 + a1π + a2π
2 + . . . is an element

in Rπ. The kth approximation lattice of α is defined as

Lk = Lk(α) := {(u1, u2, u3, u4) ∈ Z4 : α(u3 + u4π)− (u1 + u2π) ≡ 0 (mod πk)}

Notice that for every element (u1, u2, u3, u4) in Lk(α), we have

α ≡ u1 + u2π

u3 + u4π
(mod πk) if gcd(u3, D) = 1.

Thus the pair (u, q) with u = u1 + u2π and q = u3 + u4π represents a fraction u/q

whose π-adic expansion agrees with α in the first k places. We call (u, q) a rational

56

approximation of α up to k terms. If αk =
∑k−1

i=0 aiπ
i = a+ bπ, where a, b ∈ Z, then

u1 = (a, b, 1, 0) ∈ Lk. Also, it can be verified that u2 = (Db, a, 0, 1) ∈ Lk. Suppose

πk = c+ dπ =

{
D

k−1
2 π, if k is odd;

D
k
2 , if k is even.

Then u3 = (c, d, 0, 0) ∈ Lk and u4 = (Dd, c, 0, 0) ∈ Lk

Theorem 4.3.1. Lk(α) is a four dimensional lattice and (u1,u2,u3,u4) is a basis of

Lk(α). Li+1 is a sublattice of Li for any i ∈ Z.

Proof: If u = (u1, u2, u3, u4) ∈ Lk and v = (v1, v2, v3, v4) ∈ Lk, then u + v ∈ L. So

Lk is a lattice. The four vectors u1,u2,u3,u4 are linearly independent elements of

Lk. Now suppose that x = (x1, x2, x3, x4) is an arbitrary vector in Lk. So αk(x3 +

x4π) − (x1 + x2π) = γπk for some γ = r1 + r2π ∈ R. Making corresponding terms

equal, we have {
ax3 + bx4D − x1 = r1c+ r2dD
bx3 + ax4 − x2 = r2c+ r1d.

This also means that x = x3u1 + x4u2 − r1u3 − r2u4. So (u1,u2,u3,u4) is a basis of

Lk.

For any (y1, y2, y3, y4) ∈ Li+1 and any i ∈ Z we have α(y3 + y4π)− (y1 + y2π) ≡ 0

(mod πi+1). So α(y3 + y4π) − (y1 + y2π) ≡ 0(mod πi). That is, (y1, y2, y3, y4) ∈ Li.
So Li+1 is a sublattice of Li for any i ∈ Z. 2

4.3.3 Lattice Approximation Algorithms

The approximation algorithm based on the lattice reduction greedy algorithm Greedy-

LatticeReduction (Figure 1.9) is given in Figure 4.2. Let a be a sequence with

associated π-adic integer α. Given a sufficiently large prefix of a, this algorithm finds

the rational expression of α that realizes the π-adic complexity of a. With the help of

GreedyLatticeReduction, we can find the shortest vector of the kth approxima-

tion lattice which gives the best rational approximation of α up to k terms. Suppose

the π-adic complexity is known. Theorem 4.3.2 shows that if k is chosen big enough,

then such a rational approximation is exactly the rational expression we want. The

algorithm shown in Figure 4.2 is just for the case when k is even. The odd case is

similar, so details are omitted here.

Theorem 4.3.2. Let a be a π-adic sequence with associated π-adic integer α. Suppose

the size of the AFSR that generates a is less than or equal to n. That is, the π-adic

complexity of a, ϕπ(a), is less than or equal to n. Let ApproxLattice (Figure 4.2)

57

1: procedure ApproxLattice(a0, a1, . . . , ak−1)
2: Input: first k terms of sequence a
3: Output: u, q ∈ R satisfying α = u/q and minimizing ΦR,π(x, y)
4: a :=

∑
0≤i≤k/2

a2iD
i

5: b :=
∑

0≤i≤(k−2)/2
a2i+1D

i

6: c := Dk/2

7: u1 := (a, b, 1, 0)
8: u2 := (Db, a, 0, 1)
9: u3 := (c, 0, 0, 0)
10: u4 := (0, c, 0, 0)
11: Sort u1,u2,u3,u4 by their norm ‖ · ‖. Let (u1,u2,u3,u4) be ordered.
12: Compute the Gram matrix G so that Gij = 〈ui,uj〉.
13: (u1,u2,u3,u4) :=GreedyLatticeReduction(u1,u2,u3,u4)
14: Suppose u1 = (u0, u1, q0, q1)
15: return (u0 + u1π, q0 + q1π)
16: end procedure

Figure 4.2: Lattice Rational Approximation Algorithm for AFSRs over a quadratic
extension

be executed with k ≥ 2n+2+ dlog|D|(4D
2 +2|1+D|)e. Suppose the algorithm outputs

a pair (u, q) of elements of R. Then

α =
∞∑
i=0

aiπ
i =

u

q
.

Proof: Let u′/q′ be a rational expression of α with ΦR,π(u′, q′) = ϕπ(a). That is

α =
∞∑
i=0

aiπ
i =

u′

q′
.

It follows that ΦR,π(u′, q′) ≤ n. Suppose v1 = (v1, v2, v3, v4) where u′ = v1 + v2π

and q′ = v3 + v4π. So v1 ∈ Lk(a).

Let (u, q) be the output of ApproxLattice. Then Theorem 1.5.1 shows that

u1 = (u1, u2, u3, u4) in step 14 is the minimal vector in Lk(α).

We have u = u1 + u2π and q = u3 + u4π. So

‖u1‖ =
√
u21 + u22 + u23 + u24 ≤

√
v21 + v22 + v23 + v24 = ‖v1‖.

58

So

ΦR,π(u, q) = log|D|(u
2
1 + u22 + u23 + u24)

≤ log|D|(v
2
1 + v22 + v23 + v24)

= ΦR,π(u′, q′) ≤ n.

This shows that ϕR,π(u′), ϕR,π(q′), ϕR,π(u), ϕR,π(q) are all less than or equal to |D|n.

We have
u

q
≡ u′

q′
(mod πk),

so

πk
∣∣∣uq′ − u′q

qq′
.

Thus there exists t ∈ R such that tqq′πk = uq′ − u′q. From Proposition 4.3.1,

ϕR,π(uq′ − u′q) ≤ 2(ϕR,π(uq′) + ϕR,π(u′q))

≤ (2D2 + |1 +D|)(ϕR,π(u)ϕR,π(q′) + ϕR,π(u′)ϕR,π(q′))

≤ (4D2 + 2|1 +D|)|D|2n.

For any e = e1 + e2π 6= 0 ∈ Z[π], we have

eπk =

{
e1D

k
2 + e2D

k
2π if k is even

e2D
k+1
2 + e1D

k−1
2 π if k is odd.

Therefore ϕR,π(eπk) > |D|k−2. This is to say, ϕR,π(tqq′πk) > |D|k−2 if t 6= 0. But

from k ≥ 2n+ 2 + dlog|D|(4D
2 + 2|1 +D|)e we have |D|k−2 ≥ (4D2 + 2|1 +D|)|D|2n.

So t must be 0, which also means uq′ − u′q = 0. This proves that

u

q
=
u′

q′
=
∞∑
i=0

aiπ
i.

From the proof we also know that ΦR,π(u, q) reaches the π-adic complexity of sequence

a which means that we find the smallest AFSR that generates a. 2

Theorem 4.3.3. The Lattice Rational Approximation Algorithm, ApproxLattice,

runs in time O(k2) if k elements of a are used.

Proof: The time complexity of getting u1,u2,u3,u4 from step 4 to step 10 in Figure

59

(4.2) is O(k log k). Since

|a| =

∣∣∣∣∣∣
∑

0≤i≤k/2

a2iD
i

∣∣∣∣∣∣ ≤ |D|k/2+1,

|b| =

∣∣∣∣∣∣
∑

0≤i≤(k−2)/2

a2iD
i

∣∣∣∣∣∣ ≤ |D|k/2, and

|c| ≤ |D|k/2,

we have max(‖u1‖, ‖u2‖, ‖u3‖, ‖u4‖) ≤
√

2|D|(k+3)/2.

In step 11, to compute and sort ‖u1‖, ‖u2‖, ‖u3‖, ‖u4‖ takes time O(k2) because

the dimension of Lk is fixed. Also, the time complexity for computing the Gram

matrix G is O(k2).

The most costly step in ApproxLattice is Step 13 that calls GreedyLat-

ticeReduction. According to Theorem (1.5.1), the time complexity is bounded

by O
(

log(
√

2|D| k+3
2)[1 + log(

√
2|D| k+3

2)− log ζ1(Lk)]
)

= O(k2), where ζ1(L) is the

smallest vector in Lk. To sum up, the time complexity of ApproxLattice is O(k2).

2

4.4 AFSR synthesis via the Extended Euclidean Rational Approximation
Algorithm

In this section, we want to apply the Extended Euclidean algorithm, so we require R

to be the ring of integers of Q(
√
d), where Q(

√
d) is the imaginary norm Euclidean

quadratic field and d 6= −1. For other cases, the algorithm will not work. That is,

R =

{
Z + Z ·

√
d if d = −2,

Z + Z · (1+
√
d

2
) if d = −3,−7, or− 11.

It is known that R is a Euclidean domain with respect to the norm function. For

any x + y
√
d ∈ R, we have N(x + y

√
d) = x2 − dy2 ≥ 0. Let π =

√
d ∈ R. Then

N(π) = −d = |d|. The ring Rπ consists of elements α = a0+a1π+. . . with coefficients

ai ∈ S = {0, 1, . . . , |d| − 1}.
An element µ ∈ R is a unit if and only if N(µ) = ±1. When d = −2,−7, and

−11, an element µ ∈ R is a unit if and only if µ = ±1. When d = −3, an element

µ ∈ R is a unit if and only if µ = (1+
√
−3

2
)i, for 0 ≤ i ≤ 5.

Definition 4.4.1. Let a be an eventually periodic sequence over S. If its associated

π-adic integer α has a rational expression u/q, then the size of the corresponding

60

AFSR that can generate a is defined as follows:

ΨR,π(u, q) = log|d|(max{|N(u)|, |N(q)|})

The π-adic complexity of the sequence a, denoted by φπ(α), is the minimum of

ΨR,π(u, q) over all u, q with α = u/q.

Based on the Definition 4.4.1, the AFSR synthesis problem can be rephrased as

follows:

• Given A prefix of the eventually periodic sequence a=a0, a1, · · · over S =

{0, 1, . . . , |d| − 1}.

• Find u, q ∈ R satisfying α = u/q and minimizing φπ(a) .

4.4.1 R-lattices

Definition 4.4.2. An R-lattice of rank k is a subset L ⊆ Cn of the form

L =
k⊕
i=1

R~ui,

where ~u1, ~u2, . . . , ~uk ∈ Cn are linearly independent vectors over C. That is, it is a

finitely generated free R-submodule in Cn. We say ~u1, ~u2, . . . , ~uk is a basis of L. L is

full if k = n. We treat all vectors in Cn as column vectors.

Definition 4.4.3. Let ~u1, ~u2, . . . , ~uk be k linearly independent vectors over R. The

matrix whose columns are ~ui is denoted by [~u1, ~u2, . . . , ~uk]. Let L be a full R-lattice

with basis ~u1, ~u2, . . . , ~un. The volume of L is defined as

vol(L) = N(det([~u1, ~u2, . . . , ~un])).

Definition 4.4.4. GLn(R) is the group of n×n matrices over R whose determinant

is a unit in R.

Lemma 4.4.1. Let L be an R-lattice with basis ~u1, ~u2, . . . , ~uk. The vectors ~v1, ~v2, . . . ,

~vk ∈ Cn form a basis of L if and only if there exists a matrix T ∈ GLk(R) such that

[~v1, ~v2, . . . , ~vk] = [~u1, ~u2, . . . , ~uk] · T.

Proof. We prove both directions:

“⇒” Since ~v1, ~v2, . . . , ~vk ∈ L, there is a k × k matrix T over R with

[~v1, ~v2, . . . , ~vk] = [~u1, ~u2, . . . , ~uk] · T.

61

The vectors ~v1, ~v2, . . . , ~vk are linearly independent, so det(T) 6= 0. It follows that

[~v1, ~v2, . . . , ~vk] · T−1 = [~u1, ~u2, . . . , ~uk].

Since ~v1, ~v2, . . . , ~vk form a basis, T−1 has entries in R. det(T) and det(T−1) are both

in R, so det(T) is invertible in R. That is to say det(T) is a unit.

“⇐” Let us suppose for some T ∈ GLk(R) that

[~v1, ~v2, . . . , ~vk] = [~u1, ~u2, . . . , ~uk] · T.

It follows that ~v1, ~v2, . . . , ~vk ∈ L and they are linearly independent. Suppose L′ is the

R-lattice with basis ~v1, ~v2, . . . , ~vk. Similarly, we have

[~v1, ~v2, . . . , ~vk] · T−1 = [~u1, ~u2, . . . , ~uk].

Then ~u1, ~u2, . . . , ~uk ∈ L′. Thus,

L = L′

The following corollary can be derived from the proof of Lemma 4.4.1.

Corollary 4.4.1. Let L be a full R-lattice with basis ~u1, ~u2, . . . , ~un. Suppose ~v1, ~v2, . . . , ~vn

are n linearly independent vectors in L. Then,

vol(L)
∣∣N(det([~v1, ~v2, . . . , ~vn]))

Theorem 4.4.1. Let L be a full R-lattice in Cn. The volume vol(L) is independent

of the choice of basis. Let ~v1, ~v2, . . . , ~vk be any k linearly independent vectors in L.

The ~v1, ~v2, . . . , ~vk form a basis if and only if

N(det([~v1, ~v2, . . . , ~vk])) = vol(L)

Proof. This follows directly from Lemma 4.4.1.

Definition 4.4.5. Let L1, L2 be R-lattices of the same rank with L1 ⊆ L2. Then we

say L1 is a sub-lattice of L2.

Theorem 4.4.2. Let L1 be a sub-lattice of L2, Then

vol(L2)
∣∣vol(L1).

Proof. This is a direct result from Corollary 4.4.1.

62

Definition 4.4.6. Let R be the ring of integers of Q(
√
d) and π2 = d for d =

−2,−3,−7, or −11. Suppose α =
∑∞

i=0 aiπ
i is a π-adic integer with ai ∈ S where

S = {0, 1, · · · , |d| − 1} is the complete set of representatives of R/(π). The kth

approximation R-lattice of α is defined as

Lk = Lk(α) := {(µ1, µ2) ∈ R×R : αµ2 − µ1 ≡ 0 (mod πk)}.

Consider the sequence a over R/(π) which is associated with the π-adic integer α,

that is, a = (a0, a1, a2, a3 · · ·). For every element (µ1, µ2) ∈ Lk(α), we have µ1/µ2 ≡ α

(mod πk), if µ2 is coprime with π. In this case, µ1/µ2 is a rational approximation of

a up to k terms. We see in Theorem 4.4.7 that when (µ1, µ2) is the output from the

Extended Euclidean Rational Approximation Algorithm, then µ2 is coprime with π.

Theorem 4.4.3. Let Lk be the kth approximation R-lattice of α =
∑∞

i=0 aiπ
i. Then

Lk is a full R-lattice in C2. vol(Lk) = N(π)k and Li+1 is a sublattice of Li for any

i ∈ Z+.

Proof. Let Ak = a0+a1π+a2π
2+ · · ·+ak−1πk−1 ∈ R, so we have (πk, 0), (Ak, 1) ∈ Lk.

They are linearly independent, so Lk is full.

For any (µ1, µ2) ∈ Lk, we have Akµ2 − µ1 = γπk for some γ ∈ R. So

(µ1, µ2) = µ2(Ak, 1)− γ(πk, 0)

It follows that (πk, 0), (Ak, 1) form a basis of Lk. We have

vol(Lk) = N
(

det

(
πk Ak
0 1

))
= N(π)k = |d|k.

For any (µ1, µ2) ∈ Li+1 and any i ∈ Z we have,

aµ2 − µ1 ≡ 0 (mod πi+1).

So

aµ2 − µ1 ≡ 0 (mod πi).

That is, (µ1, µ2) ∈ Li. So Li+1 is a sublattice of Li for any i ∈ Z.

Definition 4.4.7. Let ~u = (µ1, µ2, . . . , µn) be a vector in an R-lattice L. Define a

mapping Ω : Cn → R by:

Ω(~u) = max
i=1,2,...,n

{|N(µi)|}.

63

More specifically, if ~u = (µ1, µ2) ∈ Lk ⊂ C2, then Ω(~u) = max{|N(µ1)|, |N(µ2)|}.

Theorem 4.4.4. Ω(·) is a norm of L.

Proof. For any µ, ν ∈ R, we have

N(µ+ ν) ≤ N(µ) +N(ν) and N(µν) = N(µ)N(ν).

So it can be seen that for any ~u,~v ∈ L and γ ∈ R:

• Ω(~u± ~v) ≤ Ω(~u) + Ω(~v)

• Ω(γ~u) = N(γ)Ω(~u)

• Ω(~u) = 0 if and only if ~u = (0, 0).

Lemma 4.4.2. Let L be a full R-lattice in C2. Let ~u ∈ L be a minimal nonzero

vector, that is, Ω(~u) ≤ Ω(~u′) for all ~u′ ∈ L − {(0, 0)}. Then there is a vector ~w ∈ L
so that ~u and ~w form a basis of L.

Proof. Let ~m,~n be a basis of L. Then there exist γ1, γ2 ∈ R, so that

~u = γ1 ~m+ γ2~n.

It follows from the minimality of ~u that γ1, γ2 are coprime. So N(gcd(γ1, γ2)) = 1.

Otherwise, we let

~u′ =
γ1

gcd(γ1, γ2)
~m+

γ2
gcd(γ1, γ2)

~n.

If N(gcd(γ1, γ2)) 6= 1, then ~u′ ∈ R and Ω(~u′) = Ω(~u)/N(gcd(γ1, γ2)) < Ω(~u).

R is an Euclidean domain, so there exist γ3, γ4 ∈ R such that

γ1γ4 + γ2γ3 = gcd(γ1, γ2).

Let ~w = γ3 ~m− γ4~n, so

[~u, ~w] = [~m,~n] ·
(
γ1 γ3
γ2 −γ4

)
and

N
(

det

(
γ1 γ3
γ2 −γ4

))
= N(γ1γ4 + γ2γ3) = 1.

It follows that ~u, ~w form a basis of L.

64

Lemma 4.4.3. Suppose that α = a0+a1π+a2π
2+· · · is a π-adic integer with π2 = d,

and let Lk(α) be its kth approximation R-lattice. Let ~u = (µ1, µ2) and ~v = (ν1, ν2) be

two linearly independent vectors in Lk(α) such that Ω(~u) < x and Ω(~v) < y for some

x, y ∈ Z. Then xy > |d|k/2.

Proof. Since ~u,~v are linearly independent vectors in Lk(a),

vol(Lk(a))
∣∣N(det([~u,~v])).

We also have det([~u,~v]) 6= 0, so N(det([~u,~v])) ≥ |d|k. That is,

N(µ1ν2 − µ2ν1) ≥ |d|k.

But

N(µ1ν2 − µ2ν1) ≤ N(µ1)N(ν2) +N(µ2)N(ν1) < 2xy.

So xy > |d|k/2.

Definition 4.4.8. We say (µ, ν) is a best kth-approximation if (µ, ν) is a minimal

vector in Lk with respect to norm Ω(·).

Theorem 4.4.5. Suppose that a sequence a = a0, a1, . . . over R/(π) is generated

by an AFSR and a is identified with a π-adic number α =
∑∞

i=0 aiπ
i. Let ρ/χ be a

rational approximation to at least k terms. That is, (ρ, χ) ∈ Lk(α). Let m =
√
|d|k/2.

If Ω
(
(ρ, χ)

)
< m, then (ρ, χ) = γ(µ, ν) for some γ ∈ R, where (µ, ν) is a best kth-

approximation of a.

Proof. Since (µ, ν) is a minimal vector with respect to the norm Ω, we have

Ω
(
(µ, ν)

)
≤ Ω

(
(ρ, χ)

)
< m.

We have

m2 =
|d|k

2
.

It follows from Lemma 4.4.3 that (µ, ν), (ρ, χ) are not linearly independent. Thus

there is γ ∈ C such that (ρ, χ) = γ(µ, ν). By Lemma 4.4.2, (µ, ν) is an element of a

basis for Lk(a), so γ ∈ R.

65

Corollary 4.4.2. If (µ, ν) is a best kth-approximation, then (µ, ν) is unique up to a

unit. That is, if Ω((µ′, ν ′)) = Ω((µ, ν)), then (µ′, ν ′) = γ′(µ, ν) for some unit γ′ ∈ R.

Proof. If (µ′, ν ′) is a k-th approximation of a with Ω((µ′, ν ′)) = Ω((µ, ν)) < m, then

we have for some γ′ ∈ R,

(µ′, ν ′) = γ′(µ, ν).

So N(γ′) = 1, which means that γ′ is a unit.

4.4.2 Division Algorithm in R

In this section, we give a rational approximation algorithm based on the extended

Euclidean algorithm. It works when R is the ring of integers of Q(
√
d) with d =

−2,−3,−7, or −11. For other values of d, the algorithm may not output the exact

rational expression of a sequence.

It is well known that R is a Euclidean domain when R is the ring of integers of

Q(
√
d) with d = −2,−3,−7, or −11. That is, for any elements ε and β in R, and

β 6= 0 there are ξ and γ in R such that

ε = ξβ + γ,

and N(γ) < N(β).

• When d = −2, we can find ξ and γ by the following steps. We have ε/β = e+fπ,

for some e, f ∈ Q. Pick g, h ∈ Z such that

|e− g| ≤ 1/2, and |f − h| ≤ 1/2.

Let ξ = g + hπ. Then

γ = ε− ξβ = β
(
(e− g) + (f − h)π

)
.

So we have N(γ) = N(β)N
(
(e− g) + (f − h)π

)
≤ 3/4N(β) < N(β).

• When d = −3,−7 or −11, for any element ε in R we have

ε = a+ b(
1 +
√
d

2
) = (a+

b

2
) +

b

2

√
d, a, b ∈ Z.

Suppose ε/β = e+ f
√
d ∈ Q(

√
d), for some e, f ∈ Q. Pick h ∈ Z such that

|f − h/2| ≤ 1/4.

66

Then pick g ∈ Z such that

|e− h/2− g| ≤ 1/2.

Let ξ = (g + h
2
) + h

2

√
d. Then

γ = ε− ξβ = β
(
(e− g − h/2) + (f − h/2)

√
d
)
.

So we have N(γ) = N(β)N
(
(e−g−h/2)+(f−h/2)

√
d
)
≤ (1/4−d/16)N(β) <

N(β).

4.4.3 The Extended Euclidean Rational Approximation Algorithm

Let ε, β be two elements in R. The extended Euclidean algorithm computes the

greatest common divisor and the associated Bézout coefficients of ε and β as follows:

(γ0, ρ0, χ0) = (ε, 1, 0)

(γ1, ρ1, χ1) = (β, 0, 1).

For i ≥ 1,

γi+1 = γi−1 − ξiγi
ρi+1 = ρi−1 − ξiρi
χi+1 = χi−1 − ξiχi,

where N(γi+1) < N(γi) using the procedure mentioned in Section 4.4.2. The compu-

tation stops at N(γt) = 0 for some t ∈ N. The element γt−1 is the greatest common

divisor of ε and β and (ρi, χi, γi)0≤i≤t is called the Bézout sequence of ε and β.

Theorem 4.4.6. [68] Let (ρi, χi, γi)0≤i≤t be the Bézout sequence of ε and β. We

have the following properties:

1. ρiε+ χiβ = γi, for all i ∈ {0, . . . , t}.

2. ρiχi+1 − ρi+1χi = (−1)i, for all i ∈ {0, . . . , t− 1}.

Let a be an eventually periodic sequence over R/(π) and let α =
∑∞

i=0 aiπ be the

π-adic integer associated with sequence a. Suppose the first k symbols a0, a1, . . . , ak−1

are available. We execute the extended Euclidean algorithm with ε = πk and β =∑k−1
i=0 aiπ

i. Then,

γi = ρiε+ χiβ.

67

That is,

χiβ − γi ≡ 0 (mod πk),

so (γi, χi) ∈ Lk(α). The algorithm is given in Figure 4.3. Note that EEAapprox stops

when N(γi) ≤ |d|k/2 which is different from the Euclidean algorithm (line 4, Figure

4.3).

1: procedure EEAapprox(a0, · · · , ak−1)
2: (γ0, ρ0, χ0) = (πk, 1, 0)
3: (γ1, ρ1, χ1) = (

∑k−1
i=0 aiπ

i, 0, 1)
4: while N(γ1) > |d|k/2 do
5: Let γ0 = ξγ1 + γ2 with N(γ2) < N(γ1)
6: (ρ2, χ2) = (ρ0 − ξρ1, χ0 − ξχ1)
7: (γ0, ρ0, χ0) = (γ1, ρ1, χ1)
8: (γ1, ρ1, χ1) = (γ2, ρ2, χ2)
9: end while
10: if max{|N(γ1)|, |N(χ1)|} <

√
|d|k/2 then

11: return (γ1, χ1)
12: else
13: return FALSE
14: end if
15: end procedure

Figure 4.3: The Extended Euclidean Rational Approximation Algorithm

Theorem 4.4.7. Suppose the size of the AFSR that generates the π-adic sequence a

is less than or equal to n. That is, the π-adic complexity of a, φπ(a), is less than or

equal to n. Let the Extended Euclidean Rational Approximation Algorithm be executed

with inputs (a0, ..., ak−1) and k > 2n+ 1. It outputs a pair (γ1, χ1) of elements of R.

Then χ1 is coprime with π and

α =
∞∑
i=0

aiπ
i =

γ1
χ1

.

Proof. Let µ/ν be a best approximation of sequence a. That is gcd(µ, ν) = 1,

gcd(π, ν) = 1, and

α =
∞∑
i=0

aiπ
i =

µ

ν
.

We have Ω((µ, ν)) ≤ |d|n, because

φπ(a) = log|d|(max{|N(µ)|, |N(ν)|}) ≤ n.

68

Let (σ, τ) be a minimal vector in Lk(a). Then

Ω((σ, τ)) ≤ Ω((µ, ν)) ≤ |d|n.

We have
σ

τ
=
µ

ν
(mod πk).

Thus σν − µτ = πkδτν, for some δ ∈ R. But

N(σν − µτ) ≤ N(σ)N(ν) +N(µ)N(τ) ≤ 2|d|2n,

and

N(πk) = |d|k > |d|2n+1 ≥ 2|d|2n.

It follows that σ/τ = µ/ν = α. Note that τ and π must be coprime. To see this,

suppose π divides τ (the only other possibility since π is irreducible). We have

σν = µτ , so π divides σ. Then (σ/π)/(τ/π) = µ/ν = α, so (σ/π, τ/π) ∈ Lk, which

contradicts the minimality of (σ, τ). Since (γ1, χ1) is the output of the algorithm, then

N(γ1) <
√
|d|k/2 and N(χ1) <

√
|d|k/2. We have (γ1, χ1) ∈ Lk(a), so Ω((γ1, χ1)) <√

|d|k/2. By Theorem 4.4.5, (γ1, χ1) = ω(σ, τ), for some ω ∈ R. By Theorem 4.4.6

we have

ρ1π
k + χ1

k−1∑
i=0

aiπ
i = γ1.

Thus

ρ1π
k = ω(σ − τ

k−1∑
i=0

aiπ
i).

But by Theorem 4.4.6, ρ1, χ1 are coprime. So ω is a unit. (γ1, χ1) is also a minimal

vector in Lk.

In conclusion,
γ1
χ1

=
σ

τ
=
µ

ν
=
∞∑
i=0

aiπ
i.

The Euclidean rational approximation algorithm runs in time O(k2 log(k)) if k

elements are used. If γ ∈ R is the remainder after dividing β ∈ R into α ∈ R

according to the division algorithm in R, then N(γ) < cN(β) for some constant

c < 1. Let n = max{N(πk), N(
∑k−1

i=0 aiπ
i)}, so n ∈ O(2k). Then the complexity is

O(log(n) · C(n)), where C(n) is the time required for one division of two elements .

69

If fast Fourier transforms are used for multiplication, then C(n) ∈ O(k · log(k)).

So the total time complexity of the Euclidean rational approximation algorithm is

O(k2 log(k)).

4.5 Comparison

In this section, we compare Xu’s rational approximation algorithm (Figure 4.1) with

Lattice Rational Approximation Algorithm (ApproxLattice, Figure 4.2) and the

Extended Euclidean Rational Approximation Algorithm (EEAapprox, Figure 4.3).

4.5.1 ApproxLattice and Xu’s algorithm

Let R = Z[π], where π is a root of the polynomial x2 = D, which is an irreducible

polynomial over Z. The complete set is chosen to be S = {0, 1, · · · , |D|−1}. For any

x = x0 + x1π, xi ∈ Z, the corresponding size function used in Xu’s algorithm is

ψR,π(x) = max{2blog|D| |x0|c, b2 log|D| |x1|c+ 1}.

Then the size of the AFSR related to u/q where u, q ∈ Z[π] is

ΓR,π(u, q) = max{ψR,π(u), ψR,π(q)}.

The π-adic complexity defined for Xu’s algorithm is

λπ(a) = inf{ΓR,π(u, q) : α = u/q},

where α is the associated π-adic number for sequence a.

The corresponding size function defined in ApproxLattice is

ϕR,π(x) = x20 + x21, where x = x0 + x1π ∈ Z[π].

Then the size of the AFSR related to u/q where u, q ∈ Z[π] is

ΦR,π(u, q) = log|D|(ϕR,π(u) + ϕR,π(q)).

The π-adic complexity defined for ApproxLattice is

ϕπ(a) = inf{ΦR,π(u, q) : α = u/q},

where α is the associated π-adic number for the sequence a.

Let a = a0, a1, a2 · · · be an eventually periodic sequence over S. It can be as-

sociated with a π-adic number α. Assume u∗/q∗ is a rational expression of α with

70

ΦR,π(u∗, q∗) = ϕπ(a). Let u∗ = u∗0 + u∗1π, q∗ = q∗0 + q∗1π with u∗0, u
∗
1, q
∗
0, q
∗
1 ∈ Z. As-

sume ū/q̄ is a rational expression of α with ΓR,π(ū, q̄) = λπ(a). Let ū = ū0 + ū1π,

q̄ = q̄0 + q̄1π with ū0, ū1, q̄0, q̄1 ∈ Z. So we have

λπ(a) = ΓR,π(ū, q̄)

≤ ΓR,π(u∗, q∗)

= max
(
2blog|D| |u∗0|c, 2blog|D| |u∗1|c+ 1, 2blog|D| |q∗0|c, 2blog|D| |q∗1|c+ 1

)
≤ 2 max

(
blog|D| |u∗0|c, blog|D| |u∗1|c, blog|D| |q∗0|c, blog|D| |q∗1|c

)
+ 1

≤ log|D|(max(u∗0
2, u∗1

2, q∗0
2, q∗1

2)) + 1

≤ ΦR,π(u∗, q∗) + 1

= ϕπ(a) + 1,

and

ϕπ(a) = ΦR,π(u∗, q∗)

≤ ΦR,π(ū, q̄)

= log|D|(ū
2
0 + ū21 + q̄20 + q̄21)

≤ log|D|(4 max(ū20, ū
2
1, q̄

2
0, q̄

2
1))

≤ log|D| 4 + 2 max
(
blog|D| |ū0|c, blog|D| |ū1|c, blog|D| |q̄0|c, blog|D| |q̄1|c

)
+ 2

≤ ΓR,π(ū, q̄) + 2 + log|D| 4

= λπ(a) + 2 + log|D| 4.

That is,

λπ(a)− 1 ≤ ϕπ(a) ≤ λπ(a) + 2 + log|D| 4.

This means that λπ(a) and ϕπ(a) are almost the same neglecting small constants.

Xu’s algorithm has worst case time complexity O(
∑λπ(a)

k=1 σ(k)), where σ(k) is the

time needed to add two elements a, b ∈ Z[π] with the length of π-adic expansion at

most k. So it runs in quadratic time. But it may not output the smallest AFSR

for sequence a. With the same time complexity, ApproxLattice can output the

smallest AFSR with regard to the size function ϕR,π.

The number of terms needed to get the exact rational expression for Xu’s algorithm

is O(λπ(a) log(|S|)). It grows with the the cardinality of the complete set S. However,

ApproxLattice only needs O(2ϕπ(a)) terms to get the exact rational expression,

with fixed coefficent.

71

4.5.2 EEAapprox and Xu’s algorithm

Let R be the ring of integers of Q(
√
d) where Q(

√
d) is norm Euclidean and d <

−1. That is, d = −2,−3,−7,−11. The size functions used in Xu’s algorithm and

EEAapprox are the same without considering the floor function. That is,

ψR,π(x) = log|d|(|N(x)|) = log|d|(x
2
0 − dx21), where x = x0 + x1π ∈ R.

Then the size of the AFSR related to u/q where u, q ∈ Z[π] is

Ψ(u, q) = ΓR,π(u, q) = max{ψR,π(u), ψR,π(q)}.

The π-adic complexity is

φπ(a) = λπ(a) = inf{ΓR,π(u, q) : α = u/q},

where α is the associated π-adic number for sequence a.

Xu’s algorithm runs in quadratic time. To get the smallest AFSR, we need to apply

the extended Euclidean algorithm on the output u, q to find the greatest common

divisor of u and q. So the complexity of Xu’s algorithm and EEAapprox is the

same.

Similarly as ApproxLattice, EEAapprox needs O(2φπ(a)) terms to get the

exact rational expression, which is better than the O(log |S|φπ(a)) required for Xu’s

algorithm.

4.5.3 EEAapprox and ApproxLattice

To compare EEAapprox and ApproxLattice, we require π =
√
−2, R = Z[π],

and S = {0, 1}.
The corresponding size function used in ApproxLattice is

ϕR,π(x) = x20 + x21, where x = x0 + x1π ∈ Z[π].

Then the size of the AFSR related to u/q where u, q ∈ Z[π] is

ΦR,π(u, q) = log(ϕR,π(u) + ϕR,π(q)).

The π-adic complexity defined for ApproxLattice is

ϕπ(a) = inf{ΦR,π(u, q) : α = u/q},

where α is the associated π-adic number for the sequence a.

72

The size of the AFSR related to u/q where u, q ∈ Z[π] defined in EEAapprox is

Ψ(u, q) = max(log(|N(u)|), log(|N(q)|)).

The π-adic complexity is

φπ(a) = inf{ΨR,π(u, q) : α = u/q},

where α is the associated π-adic number for sequence a.

Let a = a0, a1, a2 · · · be an eventually periodic sequence over S. It can be as-

sociated with a π-adic number α ∈ Rπ. Assume u∗/q∗ is a rational expression of α

with ΦR,π(u∗, q∗) = ϕπ(a). Let u∗ = u∗0 + u∗1π, q∗ = q∗0 + q∗1π with u∗0, u
∗
1, q
∗
0, q
∗
1 ∈ Z.

Assume û/q̂ is a rational expression of α with ΨR,π(û, q̂) = φπ(a). Let û = û0 + û1π,

q̂ = q̂0 + q̂1π with û0, û1, q̂0, q̂1 ∈ Z. So we have

φπ(a) = ΨR,π(û, q̂)

≤ ΨR,π(u∗, q∗)

= max
(
log(u∗0

2 + 2u∗1
2), log(q∗0

2 + 2q∗1
2)
)

≤ log
(
2(u∗0

2 + u∗1
2 + q∗0

2 + q∗1
2)
)

= ϕπ(a) + 1,

and

ϕπ(a) = ΦR,π(u∗, q∗)

≤ ΦR,π(û, q̂)

= log(û20 + û21 + q̂20 + q̂21)

≤ log
(
2 max(û20 + 2û21, q̂

2
0 + 2q̂21)

)
= φπ(a) + 1.

That is,

φπ(a)− 1 ≤ ϕπ(a) ≤ φπ(a) + 1.

Theorem 4.4.7 illustrates that when k > 2φπ(a) + 1, EEAapprox outputs the

smallest AFSR with respect to the size function Ψ. The number of bits needed for

ApproxLattice is 2ϕπ(a) + 7. So EEAapprox saves several bits. However, the

time complexity of ApproxLattice is quadratic which is better than EEAapprox’s

O(k2log(k)).

Copyright c© Weihua Liu 2016

73

5 Conclusions and Future work

This dissertation explores the problem of register synthesis with regard to different

kinds of pseudorandom sequence generators. We discuss the complexity measures that

are related to the synthesis algorithms, such as linear complexity, N -adic complexity,

joint N -adic complexity, and π-adic complexity.

The main contribution of Chapter 2 is the study of the linear complexity of se-

quences generated by FCSRs. We give a lower bound of the linear complexity of

two special FCSR sequences. Chapter 3 is about two synthesis algorithms, Ap-

proxGreedy and ApproxLLL, which solve the problem of FCSR synthesis for

multi-sequences based on lattice reduction algorithms. In Chapter 4, we develop

two algorithms for the AFSR synthesis problem. The work on the lattice rational

approximation algorithm has been published in the proceedings of the conference

Sequences and Their Applications-SETA 2014 [41] and the work on the extended Eu-

clidean rational approximation algorithm has been accepted by the journal Advances

in Mathematics of Communications in 2015 [42].

In the future, I will continue my research on register synthesis problems and the

analysis of the related complexity measures. I plan to work on three main related

topics: the study of linear complexity, two-dimensional Euclidean algorithm and its

applications on register synthesis, and AFSRs synthesis with the LLL algorithm.

5.1 The study of linear complexity

In addition to the two special cases in Chapter 2, we can also consider the case of

4-adic FCSRs with special connection integers. We want to determine whether we can

use the same idea to study the sequences generated by AFSRs, such as the maximal

period d-FCSR sequences. We believe that the complementary property should exist

in some special d-FCSRs. This will help us find a characteristic polynomial of the

corresponding d-FCSR sequences.

5.2 Two-dimensional Euclidean algorithm and its applications to register
synthesis

Inspired by the generalized Euclidean algorithm that is used to solve the multi-

sequence LFSR synthesis problem [16], I came up with an algorithm called two-

dimensional Euclidean algorithm that generalizes the Euclidean algorithm over the

integers (Figure 3.1). The Euclidean algorithm works over the integers because the

74

set of integers Z is an Euclidean domain. That is, the division with remainder prop-

erty (Theorem 3.1.1) is true for the set of integers. Similarly, the two-dimensional

Euclidean algorithm is based on the two-dimensional division with reminder property

shown in Theorem 5.2.1.

Let π2 = N , where N ∈ Z is square free. Assume that for any α = a+ bπ ∈ Z[π],

ϕ(α) is the size of α which is defined in Theorem 3.2.1. So ϕ(α) = max{|a|, |b|}.

Definition 5.2.1. We define two sets [π0] and [π1] as :

[π0] = {α : α = a+ bπ ∈ Z[π], |a| > |b|},

and

[π1] = {α : α = a+ bπ ∈ Z[π], |a| ≤ |b|, α 6= 0}.

Notice that Z[π] = [π0] ∪ [π1] ∪ {0}. This is a partition of Z[π]. The equivalence

relation based on this partition is:

α ∼ β if α ∈ [π0] and β ∈ [π0], if a ∈ [π1] and b ∈ [π1], or if α = β = 0.

Lemma 5.2.1. Let α = a + bπ, a, b ∈ Z, and β = c + dπ, c, d ∈ Z. Suppose α ∈ [π0]

and β ∈ [π1], then the vectors (a, b) and (c, d) are linearly independent over R.

Proof: If there exists k ∈ R such that (a, b) = k(c, d) and α ∈ [π0], then |a| > |b|.
Therefore |kc| > |kd|. But β ∈ [π1]. 2

Theorem 5.2.1. (Two-dimensional division with reminder) Let α = a+bπ 6= 0, a, b ∈
Z, β0 = c + dπ, c, d ∈ Z, and β1 = e + fπ, e, f ∈ Z. Suppose β0 ∈ [π0] and β1 ∈ [π1].

There exist q0, q1 ∈ Z and γ = g + fπ ∈ Z[π] such that

α = q0β0 + q1β1 + γ

where |g| < ϕ(β0) = |c| and γ ∈ [π0], or |h| < ϕ(β1) = |f | and γ ∈ [π1] .

The proof is given in Appendix. The proof not only shows the existence of the two-

dimensional division with remainder but also identifies how to do the computation.

The two-dimensional Euclidean algorithm can be described as below.

Given α1, β
(0)
1 , and β

(1)
1 ∈ Z[π], let α1 ∈ [π(v0)] (v0 = 0 or 1), β

(0)
1 ∈ [π0] and

β
(1)
1 ∈ [π1] and ϕ(α) ≥ ϕ(βv01). We repeatedly apply the two-dimensional division

with reminder to obtain the following series of equations

αj = q
(0)
j β

(0)
j + q

(1)
j β

(1)
j + γj for j = 1, 2, 3, 4, · · · , (5.1)

until j = t for some t such that γt = 0. These equations also have to satisfy the

following requirements:

75

1. ϕ(γj) < ϕ(β
(vj)
j), for some vj ∈ {0, 1} such that γj ∼ β

(vj)
j .

2. αj+1 = β
vj
j .

3. β
(vj)
j+1 = γj.

4. β
(h)
j+1 = β

(h)
j+1 for h 6= vj.

The first requirement is guaranteed by the two-dimensional division and the other

three specify the updates from step j to step j+1. Lemma 5.2.2 follows directly from

these requirements and ensures that the iterations will stop at step t.

Lemma 5.2.2. 1. ϕ(β
(0)
j+1) ≤ ϕ(β

(0)
j) and ϕ(β

(1)
j+1) ≤ ϕ(β

(1)
j).

2. Whenever γi ∼ γj for i < j, then ϕ(γi) > ϕ(γj).

Example 5.2.1. Take π2 = 2. We let α = 2340 + 2184π, β
(0)
1 = 2048 + 0π, and

β
(1)
1 = 0 + 2048π. The two-dimensional Euclidean algorithm preforms as a chain of

equations shown below.

2340 + 2184π = 1 · (2048 + 0π) + 1 · (0 + 2048π) + (292 + 136π)

2048 + 0π = 7 · (292 + 136π) + 0 · (0 + 2048π) + (4− 952π)

0 + 2048π = 0 · (292 + 136π) + 2 · (4− 952π) + (8 + 144π)

4− 952π = 0 · (292 + 136π) + (−6) · (8 + 144π) + (52− 88π)

8 + 144π = 0 · (292 + 136π) + (−1) · (52− 88π) + (60 + 56π)

292 + 136π = 4 · (60 + 56π) + 1 · (52− 88π) + (0 + 0π)

From Equation 5.1, we know that

γj = αj − q(0)j β
(0)
j − q

(1)
j β

(1)
j for 1 ≤ j ≤ t.

Without loss of generality, we suppose αj ∈ [π0]. Then

αj = β
(0)
j−1, (5.2)

β
(0)
j = γj−1, (5.3)

and β
(1)
j = β

(1)
j−1. (5.4)

So

γj = β
(0)
j−1 − q

(0)
j γj−1 − q(1)j β

(1)
j−1 for 1 < j ≤ t. (5.5)

Recursively, for every 1 ≤ j ≤ t, we will have

γj = Qjα +Q
(0)
j β

(0)
1 +Q

(1)
j β

(1)
1 for some Qj, Q

(0)
j , Q

(1)
j ∈ Z. (5.6)

76

In Example 5.2.1, we have the following equations:

γ1 = 292 + 136π = (2340 + 2184π)− (2048 + 0π)− (0 + 2048π)

γ2 = 4− 952π = (−7)(2340 + 2184π) + 8(2048 + 0π) + 7(0 + 2048π)

γ3 = 8 + 144π = (−14)(2340 + 2184π) + 16(2048 + 0π) + 15(0 + 2048π)

γ4 = 52− 88π = (−91)(2340 + 2184π) + 104(2048 + 0π) + 97(0 + 2048π)

γ5 = 60 + 56π = (−105)(2340 + 2184π) + 120(2048 + 0π) + 112(0 + 2048π)

γ6 = 0 + 0π = 512(2340 + 2184π) + (−585)(2048 + 0π) + (−546)(0 + 2048π).

Consider the 2-fold N -ary eventually periodic multi-sequence S = (S(0),S(1)). Let

ς ∈ Rπ, where Rπ is the ring of π-adic numbers with R = Z[π] and π2 = N . Suppose

ς is associated with the interleaved sequence. That is,

ς = s
(0)
0 + s

(1)
0 π + s

(0)
1 π2 + s

(1)
1 π3 + s

(0)
2 π4 + s

(1)
2 π5 + · · · (5.7)

= γ/q for some γ ∈ Z[π] and q ∈ Z.

Without loss of generality, we suppose k is even. Assume that

ςk = s
(0)
0 + s

(1)
0 π + s

(0)
1 π2 + s

(1)
1 π3 + · · ·+ s

(0)
k/2−1π

k−1 + s
(1)
k/2−1π

k.

We execute the two-dimensional Euclidean algorithm with α = ςk, β
(0)
1 = πk, and

β
(1)
1 = πk+1. According to Equation (5.6) for every each j, we have

γj = Qjςk +Q
(0)
j πk +Q

(1)
j πk+1 for some Qj, Q

(0)
j , Q

(1)
j ∈ Z.

It also means that

γj ≡ Qjςk ≡ Qjς (mod πk).

If γj = r
(0)
j + r

(1)
j π, then (r

(0)
j , r

(1)
j , Qj) is in the kth integer approximation lattice of

ς for every j. Instead of stopping at step j where γj = 0, we stop when ϕ(γj) first

becomes less than |Qj|. In Example 5.2.1, the iteration will stop at j = 5 where

γ5 = 60 + 56π, Q5 = −105.

Assumption 5.2.1. Suppose that N is not a square and the joint N-adic complexity,

λN,2(S), of the multi-sequence S = (S(0),S(1)) is less than or equal to n. We assume

that k > 2n + c, for some constant c. Let the two-dimensional Euclidean algorithm

be executed with α = ςk, β
(0)
1 = πk, and β

(1)
1 = πk+1 and let it be stopped when ϕ(γj)

first becomes less than |Qj|. Then

ς =
γj
Qj

and max(ϕ(γ), |Qj|) = λN,2(S).

77

This assumption is similar to the assumption in Theorem 3.1.3 for the extended

Euclidean rational approximation algorithm (Figure 3.2). However, experimental

results show that ς = γj/Qj is not alway true. When N = 2, Figure 5.1 shows

how the number of iterations grows as k becomes larger. When k ≤ 34, we tested

every possible element in Z[π]. The number of iterations for the algorithm to stop

is shown as the blue line. When k > 34, we randomly selected 230 elements in Z[π].

The number of iterations required is shown as the red line. For each iteration, the

complexity is determined by the division of two integers which are less than Nk/2. So

the total complexity may be O(k2 log k) for the two-dimensional Euclidean algorithm.

Figure 5.1: Number of iterations for the two-dimensional Euclidean algorithm

We can generalize the two-dimensional Euclidean algorithm to higher dimensions.

Let R = Z[π] and πM = N , where xM −N is irreducible over the rational numbers.

For any element α ∈ R, α has the form α = a0 + a1π + · · · + aM−1π
M−1. Define a

partition {[π0], [π1], · · · , [πM−1], {0}}, where

[πi] = {α 6= 0 : |aj| ≤ |ai| if j < i and |aj| < |ai| if j > i}.

The N -dimensional division with reminder property can be stated as: let α = a0 +

a1π+ · · ·+aM−1π
M−1 ∈ Z[π] and α 6= 0. Suppose β(i) ∈ [πi] for i = 0, 1, 2, · · · ,M−1.

There exist q0, q1, · · · , qM−1 ∈ Z and γ ∈ Z[π] such that

α = q0β
(0) + q1β

(1) + · · ·+ qM−1β
(M−1) + γ,

78

where ϕ(γ) < ϕ(βi0) if γ ∼ β(i0). So the N -dimensional Euclidean algorithm can be

studied using the same method as the two-dimensional Euclidean algorithm.

5.3 AFSRs synthesis with the LLL algorithm

Based on the lattice reduction greedy algorithm, GreedyLatticeReduction (Fig-

ure 1.9), we proposed the lattice rational approximation algorithm, ApproxLattice

(Figure 4.2), which solves the AFSR synthesis problem for AFSRs over R = Z[π] and

π2 = D. We may ask whether the approach can be extended to cubic or higher ex-

tensions of Z. This becomes complicated because of the complexity of GreedyLat-

ticeReduction. However, we can consider other lattice reduction algorithms, such

as the LLL algorithm. It is possible that we can extend ApproxLattice with the

LLL algorithm to solve the synthesis problem for all d-FCSRs (Definition 1.3.7). A d-

FCSR is an AFSR over (R = Z[π], π, S), where N ≥ 2 and d ≥ 1 are integers such that

the polynomial xd−N is irreducible over the rational number field Q, π ∈ C is a root

of this polynomial in an extension field of Q, and S = Z/(N) = {0, 1, 2, · · · , N−1}. In

this case, any eventually periodic sequence a over S can be identified with an element

α in Rπ and α = u/q for some u, q ∈ R = Z[π]. Suppose q = q0 + q1π+ · · ·+ qd−1π
d−1

and u = u0 + u1π + · · · + ud−1π
d−1,where qi, ui ∈ Z for i = 0, 1, 2 · · · , d− 1. We can

defined the kth integer approximation lattice of α as :

Lk(α) :={(u0, . . . , ud−1, q0, . . . , qd−1) ∈ Z2d:αq − u≡0 (mod πk)}.

The LLL algorithm will find a vector in this integer lattice that almost has the minimal

super norm. It is possible that when k is sufficiently large, the vector found gives

exactly a rational expression of the smallest d-FCSR for the given sequence a.

Copyright c© Weihua Liu 2016

79

Appendix

Proof of Theorem 5.2.1.

Theorem 5.2.1 (Two-dimensional division with reminder) Let α = a + bπ 6=
0, a, b ∈ Z, β0 = c + dπ, c, d ∈ Z, and β1 = e + fπ, e, f ∈ Z. Suppose β0 ∈ [π0] and

β1 ∈ [π1]. There exist q0, q1 ∈ Z and γ = g + fπ ∈ Z[π] such that

α = q0β0 + q1β1 + γ

where |g| < ϕ(β0) = |c| and γ ∈ [π0], or |h| < ϕ(β1) = |f | and γ ∈ [π1] .

Proof: From Lemma 5.2.1 we have that (c, d) and (e, f) are linearly independent, so

there exists x, y ∈ R such that

(a, b) = x(c, d) + y(e, f).

Let bxe be the nearest integer to x (if x = n+ 1/2 for some n ∈ Z , then let bxe = n).

Let x̄ = x− bxe. So 0 ≤ |x̄| ≤ 1/2. Similarly, 0 ≤ |ȳ| ≤ 1/2. Let

a0 + b0π = a+ bπ − bxe(c+ dπ)− bye(e+ fπ) = x̄(c+ dπ) + ȳ(e+ fπ).

We have a0 + b0π ∈ Z[π], a0 = x̄c+ ȳe, and b0 = x̄d+ ȳf . We now proceed by cases.

Case 1 |c| > |d| ≥ |f | ≥ |e|

If a0 + b0 ∈ [π0] , then let γ = a0 + b0π, q0 = bxe, q1 = bye. We have |a0| < |c|.

If a0 + b0π ∈ [π1] and |b0| < |f |, then let γ = a0 + b0π, q0 = bxe, q1 = bye.

If a0 + b0π ∈ [π1], and |b0| ≥ |f |, then we discuss the problem in the four cases.

Without loss of generality, we let c > 0, f > 0 and b0 ≥ 0. Also d 6= 0, otherwise

β1 = e+ fπ = 0.

For b0, f ∈ Z, there exist unique l, b′0 ∈ Z such that

b0 = lf + b′0,

where 0 ≤ b′0 < f and l ≥ 1.

We have four cases to consider based on the value of d and e.

1. d > 0 and e ≥ 0,

• If a0 ≥ 0, we let a1 + b1π = a0 + b0π− l(e+ fπ) = (a0− le) + b′0π. We

have

|a1| = |a0 − le| ≤ max{a0, le} ≤ max{a0, lf} ≤ max{a0, b0} = b0 < c.

Also, |b1| = |b′0| < f .

So in this case, we let q0 = bxe, q1 = bye+ l and γ = a1 + b1π.

80

• If a0 < 0, we can consider the following four cases.

– x̄ ≥ 0 and ȳ ≥ 0

a0 = x̄c+ ȳe ≥ 0. It is a contradiction that a0 < 0.

– x̄ ≥ 0 and ȳ < 0

x̄c ≥ x̄d ≥ −ȳf ≥ −ȳe.
This is a contradiction to a0 = x̄c+ ȳe < 0.

– x̄ < 0 and ȳ ≥ 0

b0 = x̄d+ ȳf ≤ ȳf < f . It is a contradiction that b0 ≥ f .

– x̄ < 0 and ȳ < 0

b0 = x̄d+ ȳf < 0. It is a contradiction.

So a0 can not less than 0 if d > 0 and e ≥ 0.

2. d > 0 and e ≤ 0

• If a0 > 0, we let a2 + b2π = a0 + b0π − (c+ dπ). So

|a2| = |a0 − c| = c− a0 > d− b0 = |b2|.

And |a2| < c. So q0 = bxe+ 1, q0 = bye and γ = a2 + b2π are what we

want.

• If a0 ≤ 0, we consider the following six cases.

– x̄ > 0 and ȳ > 0

b0 = x̄d+ ȳf < x̄c+ ȳf ≤ −ȳe+ ȳf = ȳ(|e|+ f) ≤ 2ȳf.

This is a contradiction to b0 ≥ f.

– x̄ > 0 and ȳ ≤ 0

It is contradiction that a0 = x̄c+ ȳe ≤ 0

– x̄ = 0 and ȳ ≥ 0.

b0 = ȳf < f . It is contradiction that b0 ≥ f .

– x̄ = 0 and ȳ < 0

b0 = ȳf < 0. It is contradiction that b0 ≥ 0.

– x̄ < 0 and ȳ > 0

b0 = x̄d+ ȳf < ȳf < f . It is contradiction that b0 ≥ f .

– x̄ < 0 and ȳ ≤ 0

b0 = x̄d+ ȳf < 0. It is contradiction that b0 ≥ 0.

So a0 ≤ 0 is not valid when d > 0 and e ≤ 0.

3. d < 0 and e ≥ 0

81

• If a0 < 0, we let a3 + b3π = a0 + b0π + (c+ dπ). So

|b3| = |b0 + d| = |d| − b0 < c− b0 ≤ c+ a0 = |a3|.

And |a3| = |c+ a0| = c− |a0| < c.

So q0 = bxe − 1, q0 = bye and γ = a3 + b3π are what we want.

• The inequality a0 ≥ 0 cannot happen because the following discussions

on x̄ and ȳ.

– x̄ > 0 and ȳ > 0

b0 = x̄d+ ȳf < ȳf < f . It is contradiction that b0 ≥ f .

– x̄ > 0 and ȳ ≤ 0

b0 = x̄d+ ȳf < 0. It is contradiction that b0 ≥ 0.

– x̄ = 0

b0 = ȳf < f . It is contradiction that b0 ≥ f .

– x̄ < 0 and ȳ ≥ 0

b0 = x̄d+ ȳf = |x̄||d|+ ȳf < |x̄|c+ ȳf ≤ ȳe+ ȳf ≤ f .

It is contradiction that b0 ≥ f .

– x̄ < 0 and ȳ < 0

a0 = x̄c+ ȳe < 0. It is contradiction that a0 ≥ 0.

4. d < 0 and e ≤ 0

• If a0 ≤ 0, we let a4 + b4π = a0 + b0π − l(e+ fπ) = (a0 − le) + b′0π.

We have

|a4| = |a0−le| ≤ max{|a0|, |le|} ≤ max{|a0|, lf} ≤ max{|a0|, b0} = b0 < c.

Also, |b4| = |b′0| < f .

So in the case, we let q0 = bxe, q1 = bye+ l and γ = a4 + b4π.

• The inequality a0 > 0 cannot happen because the following discussions

on x̄ and ȳ.

– x̄ ≤ 0 and ȳ ≥ 0

a0 = x̄c+ ȳe ≤ 0. It is a contradiction that a0 > 0.

– x̄ ≤ 0 and ȳ < 0

ȳe = |ȳ||e| ≤ |ȳ|f = −ȳf ≤ x̄d ≤ −x̄c.
It is a contradiction to a0 = x̄c+ ȳe > 0.

– x̄ > 0 and ȳ ≤ 0

b0 = x̄d+ ȳf < 0. It is a contradiction that b0 ≥ 0.

82

– x̄ > 0 and ȳ > 0

b0 = x̄d+ ȳf < ȳf < f . It is a contradiction that b0 ≥ f .

Case 2 |f | ≥ |e| ≥ |c| > |d| It is similar to Case 1.

Case 3 all other c,d,e,f

We have |c| > |e| and |f | > |d|, so |a0| = |x̄c + ȳe| ≤ 1
2
(|c| + |e|) < |c| and

|b0| = x̄d+ ȳf ≤ 1
2
(|d|+ |f |) < |f |. Let γ = a0 + b0π, q0 = bxe, q1 = bye.

2

83

Bibliography

[1] Random.org. https://www.random.org/.

[2] M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reduc-

tions. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of

Computing, STOC ’98, pages 10–19, New York, NY, USA, 1998. ACM.

[3] F. Arnault, T. Berger, and C. Lauradoux. Update on F-FCSR stream cipher.

In SASC, State of the Art of Stream Ciphers Workshop, Leuven, Belgium, pages

267–277, 2006.

[4] F. Arnault, T. Berger, C. Lauradoux, and M. Minier. X-FCSR–a new software

oriented stream cipher based upon FCSRs. In K. Srinathan, C. P. Rangan, and

M. Yung, editors, Progress in Cryptology–INDOCRYPT 2007, pages 341–350.

Springer, 2007.

[5] F. Arnault, T. Berger, C. Lauradoux, M. Minier, and B. Pousse. A new approach

for FCSRs. In M. Jacobson, V. Rijmen, and R. Safavi-Naini, editors, Selected

Areas in Cryptography, volume 5867, pages 433–448. Springer, 2009.

[6] F. Arnault and T. P. Berger. F-FCSR: design of a new class of stream ciphers. In

H. Gilbert and H. Handschuh, editors, Fast Software Encryption, pages 83–97.

Springer, 2005.

[7] F. Arnault, T. P. Berger, and A. Necer. Feedback with carry shift registers syn-

thesis with the Euclidean algorithm. IEEE Transactions on Information Theory,

50(5):910–917, May 2004.

[8] P. M. Cohn. Algebraic numbers and algebraic functions, volume 4. CRC Press,

1991.

[9] G. Cooke. A weakening of the Euclidean property for integral domains and

applications to algebraic number theory. Journal fr Mathematik. Band, 282:18,

1976.

[10] D. Coppersmith. Finding a small root of a univariate modular equation. In

U. Maurer, editor, Advances in cryptology—EUROCRYPT’96, pages 155–165.

Springer, 1996.

84

[11] D. Coppersmith and A. Shamir. Lattice attacks on ntru. In W. Fumy, editor,

Advances in Cryptology—EUROCRYPT’97, pages 52–61. Springer, 1997.

[12] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms.

MIT press, 2001.

[13] N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear

feedback. In E. Biham, editor, Advances in Cryptology—EUROCRYPT 2003,

pages 345–359. Springer, 2003.

[14] B. de Weger. Approximation lattices of p-adic numbers. Journal of Number

Theory, 24(1):70–88, 1986.

[15] C. Dwork. Lattices and their application to cryptography. Lecture Notes, Stan-

ford University, 1998.

[16] G. Feng and K. Tzeng. A generalized Euclidean algorithm for multisequence

shift-register synthesis. IEEE Transactions on Information Theory, 35(3):584–

594, 1989.

[17] P. FIBS. 140-1, Federal Information Processing Standards Publication,(Jan.

11, 1994) Security Requirements for Cryptographic Modules, US Department of

Commerce. Brown, Secretary, National Institute of Standards and Technology,

pages 1–51.

[18] S. Fischer, W. Meier, and D. Stegemann. Equivalent representations of the

F-FCSR keystream generator. In ECRYPT Network of Excellence-SASC Work-

shop, pages 87–94, 2008.

[19] A. M. Frieze, J. Hastad, R. Kannan, J. C. Lagarias, and A. Shamir. Reconstruct-

ing truncated integer variables satisfying linear congruences. SIAM Journal on

Computing, 17(2):262–280, 1988.

[20] C. F. Gauss. Disquisitiones Arithmeticae. reprinted in English translation by

Yale University Press, 1966.

[21] S. W. Golomb. Shift register sequences. Aegean Park Press, 1982.

[22] M. Goresky and A. Klapper. Feedback registers based on ramified extensions

of the 2-adic numbers. In A. De Santis, editor, Advances in Cryptology—

EUROCRYPT ’94, volume 950, pages 215–222. Springer, 1995.

85

[23] M. Goresky and A. Klapper. Fibonacci and Galois representations of

feedback-with-carry shift registers. IEEE Transactions on Information Theory,

48(11):2826–2836, 2002.

[24] M. Goresky and A. Klapper. Periodicity and correlation properties of d-FCSR

sequences. Designs, Codes and Cryptography, 33(2):123–148, 2004.

[25] M. Goresky and A. Klapper. Algebraic Shift Register Sequences. Cambridge

University Press, 2012.

[26] M. Hell and T. Johansson. Breaking the stream ciphers F-FCSR-H and F-

FCSR-16 in real time. Journal of Cryptology, 24(3):427–445, 2011.

[27] C. Hermite. Extraits de lettres de m. ch. hermite à m. jacobi sur différents objects

de la théorie des nombres. Journal für die reine und angewandte Mathematik,

40:261–277, 1850.

[28] N. Howgrave-Graham. Finding small roots of univariate modular equations re-

visited. In M. Darnell, editor, Crytography and Coding, pages 131–142. Springer,

1997.

[29] H. Hu, L. Hu, and D. Feng. On the expected value of the joint 2-adic complexity

of periodic binary multisequences. In G. Gong, T. Helleseth, H. Song, and

K. Yang, editors, Sequences and Their Applications–SETA 2006, pages 199–208.

Springer, 2006.

[30] A. Klapper and M. Goresky. Cryptanalysis based on 2-adic rational approxima-

tion. In D. Coppersmith, editor, Advances in Cryptology—CRYPTO’95, volume

963, pages 262–273. Springer, 1995.

[31] A. Klapper and M. Goresky. Feedback shift registers, 2-adic span, and combiners

with memory. Journal of Cryptology, 10(2):111–147, 1997.

[32] A. Klapper and J. Xu. Algebraic feedback shift registers. Theoretical Computer

Science, 226(1):61–92, 1999.

[33] A. Klapper and J. Xu. Register synthesis for algebraic feedback shift registers

based on non-primes. Designs, Codes and Cryptography, 31(3):227–250, 2004.

[34] N. Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions, volume 58.

Springer Science & Business Media, 2012.

86

[35] A. Korkine and G. Zolotareff. Sur les formes quadratiques. Mathematische

Annalen, 6(3):366–389, 1873.

[36] D. Lee, J. Kim, J. Hong, J. Han, and D. Moon. Algebraic attacks on summation

generators. In B. Roy and W. Meier, editors, Fast Software Encryption, pages

34–48. Springer, 2004.

[37] A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational

coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[38] W. LeVeque. Topics in number theory. Courier Corporation, 2002.

[39] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications.

Cambridge University Press, 1994.

[40] R. Lidl and H. Niederreiter. Finite fields, volume 20. Cambridge University

Press, 1997.

[41] W. Liu and A. Klapper. A lattice rational approximation algorithm for AFSRs

over quadratic integer rings. In K. Schmidt and A. Winterhof, editors, Sequences

and Their Applications-SETA 2014, pages 200–211. Springer, 2014.

[42] W. Liu and A. Klapper. AFSRs synthesis with extended euclidean rational

approximation algorithm. Advances in Mathematics of Communications, 2015.

Accepted.

[43] K. Mahler. On a geometrical representation of p-adic numbers. The Annals of

Mathematics, 41(1):8–56, 1940.

[44] J. L. Massey. Shift register synthesis and BCH decoding. IEEE Transactions on

Information Theory, 15(1):122–127, 1969.

[45] A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-

phy. CRC press, 1996.

[46] R. Merkle and M. Hellman. Hiding information and signatures in trapdoor

knapsacks. Information Theory, IEEE Transactions on, 24(5):525–530, 1978.

[47] F. Miller. Telegraphic code to insure privacy and secrecy in the transmission of

telegrams. CM Cornwell, 1882.

[48] H. Minkowski. Geometrie der zahlen. Teubner-Verlag, 1896.

87

[49] P. Q. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM

Journal on Computing, 39(3):874–903, 2009.

[50] P. Q. Nguyen and D. Stehlé. Low-dimensional lattice basis reduction revisited.

ACM Transactions on Algorithms (TALG), 5(4):46, 2009.

[51] P. Q. Nguyen and J. Stern. Lattice reduction in cryptology: An update. In

W. Bosma, editor, Algorithmic Number Theory, pages 85–112. Springer, 2000.

[52] H. Niederreiter. The probabilistic theory of linear complexity. In D. Barstow,

W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli,

G. Seegmüller, J. Stoer, N. Wirth, and C. G. Günther, editors, Advances in

Cryptology—EUROCRYPT’88, pages 191–209. Springer, 1988.

[53] H. Niederreiter. Sequences with almost perfect linear complexity profile. In

D. Chaum and P. W., editors, Advances in Cryptology—EUROCRYPT’87, pages

37–51. Springer, 1988.

[54] W. Qi and H. Xu. On the linear complexity of fcsr sequences. Applied

mathematics-A journal of Chinese universities, 18(3):318–324, 2003.

[55] A. Robert. A course in p-adic analysis, volume 198. Springer, 2000.

[56] R. A. Rueppel. Linear complexity and random sequences. In F. Pichler, editor,

Advances in Cryptology—EUROCRYPT’85, pages 167–188. Springer, 1985.

[57] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker. A statistical test suite

for random and pseudorandom number generators for cryptographic applications.

Technical report, DTIC Document, 2001.

[58] S. Ryshkov. Hermite, minkowski and venkov reduction of positive quadratic

forms of n variables. DOKLADY AKADEMII NAUK SSSR, 207(5):1054–1056,

1972.

[59] S. Sakata. Finding a minimal set of linear recurring relations capable of gen-

erating a given finite two-dimensional array. Journal of Symbolic Computation,

5(3):321–337, 1988.

[60] G. Schmidt and V. Sidorenko. Multi-sequence linear shift-register synthesis: The

varying length case. In Information Theory, 2006 IEEE International Symposium

on, pages 1738–1742, 2006.

88

[61] C. Seo, S. Lee, Y. Sung, K. Han, and S. Kim. A lower bound on the linear span

of an fcsr. Information Theory, IEEE Transactions on, 46(2):691–693, 2000.

[62] C. E. Shannon. Communication theory of secrecy systems. Bell System Technical

Journal, 28(4):656–715, 1949.

[63] V. Shoup. A computational introduction to number theory and algebra. Cam-

bridge University Press, 2008.

[64] P. Stankovski, M. Hell, and T. Johansson. An efficient state recovery attack on

X-FCSR-256. In O. Dunkelman, editor, Fast Software Encryption, pages 23–37.

Springer, 2009.

[65] P. Stankovski, M. Hell, and T. Johansson. An efficient state recovery attack on

the x-fcsr family of stream ciphers. Journal of cryptology, 27(1):1–22, 2014.

[66] J. Stern and P. Toffin. Cryptanalysis of a public-key cryptosystem based on

approximations by rational numbers. In I. B. Damg̊ard, editor, Advances in

Cryptology—EUROCRYPT’90, pages 313–317. Springer, 1990.

[67] G. S. Vernam. Secret signaling system, July 22 1919. US Patent 1,310,719.

[68] J. Von Zur Gathen and J. Gerhard. Modern computer algebra. Cambridge

university press, 2013.

[69] J. Walker. Hotbits: Genuine random numbers, generated by radioactive decay.

http://www.fourmilab.ch/hotbits/, September 2006.

[70] L. Wang and Y. Zhu. f [x]-lattice basis reduction algorithm and multisequence

synthesis. Science in China Series: Information Sciences, 44(5):321–328, 2001.

[71] M. Yang, D. Lin, and X. G. Generalized Fourier transform and the joint N -

adic complexity of a multisequence. IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, 97(9), 2014.

[72] L. Zhao and Q. Wen. On the joint 2-adic complexity of binary multisequences.

RAIRO-Theoretical Informatics and Applications, 46(03):401–412, 2012.

89

WEIHUA LIU

EDUCATION

Graduate Certificate in College Teaching and Learning December 2014

University of Kentucky, Lexington, KY

B.S. in Applied Mathematics June 2008

Southwest Jiaotong University, Chengdu, China

TEACHING EXPERIENCE

Primary instructor Summer, 2015

Course Title: Discrete Mathematics (CS 275)

• Developed the course syllabus, lecture notes, classroom activities, assignments

and tests independently.

• Lectured and kept classroom activities five days a week during eight weeks.

Primary instructor Spring, 2014

Course Title: Introduction to Computers (CS101)

• Participated in developing the course (syllabus, assignments, lecture slides,

demonstrations and projects).

• Lectured three hours a week and tutored lab sessions.

Lab instructor Fall, 2013; Fall, 2015

Course Title: Introduction to Computers (CS101)

• Lectured 5 lab sessions and tutored the students on lab projects.

• Participated in assigning homework, graded exams, proctored exams, and

maintained regular office hours.

Teaching Assistant Spring, 2013

Course Title: Algorithm Design and Analysis (CS315), Systems Programming (CS

485)

• Graded homework submissions, projects and exam papers.

• Tutored the students and maintained regular office hours.

Course Title: Introduction to Cryptology (CS378)

• Lectured during the professor’s absences.

RESEARCH EXPERIENCE

Graduate Research Assistant August 2010 till now

University of Kentucky

• Conducted research on cryptography, stream ciphers, and secure nonlinear

functions.

• Developed efficient algorithms for attacking pseudorandom sequences

generators.

• Participated in writing an NSF grant proposal.

Graduate Research Assistant August 2008 to July 2010

Southwest Jiaotong University

• Explored public key cryptography and lattice theory.

Research Intern

Summer, 2007

Hwadee Information Technology Co., Ltd, Chengdu, China

• Developed a hotel management System and a library management system.

Undergraduate Research Assistant 2007

Southwest Jiaotong University

• Designed questionnaires and investigated the factors that influence high-school

students’ higher education choice.

• Analyzed big data with different statistical methods, such as factor analysis and

regressions.

• The work was awarded the “Yanghua Cup” prize and published in an academic

journal of the university.

China Undergraduate Mathematical Contest in Modeling 2007

• Established a statistical model to study the relations between the population

growth rate and the fertility, mortality, and migration rate.

• Modified the Leslie growth model to predict the population growth in the next 50

years.

PUBLICATIONS

• Weihua Liu, and Andrew Klapper. "A Lattice Rational Approximation

Algorithm for AFSRs Over Quadratic Integer Rings." Sequences and Their

Applications-SETA 2014. Springer International Publishing, 2014. 200-211.

• Weihua Liu, and Andrew Klapper. "AFSRs synthesis with Extended Euclidean

Rational Approximation Algorithm." Accepted. Advances in Mathematics of

Communications. 2015

PRESENTATIONS AND TALKS

• Sequences and Their Applications-SETA 2014, Melbourne, Australia, November

2014.

• The 12th International Conference on Finite Fields and Their Applications,

Saratoga Springs, New York, July 2015.

• Invited Speaker, University of Tennessee at Martin, October 2015.

• Keep Current Seminar, Department of Computer Science, University of

Kentucky, September 2014.

• Crypto Seminar, Department of Computer Science, University of Kentucky,

multiple times.

AWARDS

• MIC Networking Fellowship, Department of Computer Science, University of

Kentucky, 2012.

• Conference and Research Student Support Funding, University of Kentucky,

2014.

• Student travel support from Computing Research Association-Women (CRA-W)

to attend Grad Cohort Workshop, 2012.

• National scholarship for graduate students, Southwest Jiaotong University, 2009.

• Graduation with Honor, Southwest Jiaotong University, 2008.

• “Yanghua Cup”, Southwest Jiaotong University, 2007.

• National fellowship, Southwest Jiaotong University, 2006.

SERVICE AND OUTREACH

• Invited Reviewer, Cryptography and Communications - Discrete Structures,

Boolean Functions and Sequences, 2014.

• Microteaching Group Leader, University of Kentucky TA Orientation, August

2015.

• Volunteer, University of Kentucky Engineering Day, February 2014.

• Volunteer Teacher, GEMS program (Girls Enjoy Math and Science), November

2013.

• Volunteer, Leestown Middle School’s Science Night, Lexington, KY, March

2013.

• Volunteer, Harrison Elementary School Science Night, Lexington, KY, March

2013.

• Member of UK Women’s Choir (2013-2015), The ACDA National Convention,

Dallas, Texas, 2013.

	Topics on Register Synthesis Problems
	Recommended Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Pseudorandom sequences
	The one-time pad and stream ciphers
	Sequence generators and their Properties
	Linear Feedback Shift Registers
	Feedback with Carry Shift Registers
	Algebraic Feedback Shift Registers and d-FCSRs

	Register Synthesis Problem
	Lattices and basis reduction
	The LLL lattice basis reduction
	Low-dimensional lattice basis reduction

	LFSR synthesis and linear complexity
	Previous works on LFSR synthesis algorithms
	Linear complexity of FCSR sequences
	Cyclotomic Polynomials
	Complementary properties and special cases

	FCSR synthesis
	Previous work on FCSR synthesis algorithms
	Rational approximation based on the extended Euclidean algorithm
	Rational approximation based on lattice approximation

	Multi-sequences and joint N-adic complexity
	Rational approximation for multi-sequences
	Multi-sequences FCSR synthesis via lattice approximation
	Rational approximation algorithm based on the lattice reduction greedy algorithm
	Rational approximation algorithm based on the LLL algorithm
	Comparison of ApproxGreedy and ApproxLLL

	AFSR Synthesis
	Xu's rational approximation algorithm
	Algebraic number fields
	AFSR synthesis via lattice rational approximation algorithm
	Size and -adic complexity
	k-th Approximation Lattices
	Lattice Approximation Algorithms

	 AFSR synthesis via the Extended Euclidean Rational Approximation Algorithm
	R-lattices
	Division Algorithm in R
	The Extended Euclidean Rational Approximation Algorithm

	Comparison
	ApproxLattice and Xu's algorithm
	EEAapprox and Xu's algorithm
	EEAapprox and ApproxLattice

	Conclusions and Future work
	The study of linear complexity
	Two-dimensional Euclidean algorithm and its applications to register synthesis
	AFSRs synthesis with the LLL algorithm

	Appendix
	Bibliography
	Vita

