2,151 research outputs found

    Brain-Computer Interfaces using Machine Learning

    Get PDF
    This thesis explores machine learning models for the analysis and classification of electroencephalographic (EEG) signals used in Brain-Computer Interface (BCI) systems. The goal is 1) to develop a system that allows users to control home-automation devices using their mind, and 2) to investigate whether it is possible to achieve this, using low-cost EEG equipment. The thesis includes both a theoretical and a practical part. In the theoretical part, we overview the underlying principles of Brain-Computer Interface systems, as well as, different approaches for the interpretation and the classification of brain signals. We also discuss the emergent launch of low-cost EEG equipment on the market and its use beyond clinical research. We then dive into more technical details that involve signal processing and classification of EEG patterns using machine leaning. Purpose of the practical part is to create a brain-computer interface that will be able to control a smart home environment. As a first step, we investigate the generalizability of different classification methods, conducting a preliminary study on two public datasets of brain encephalographic data. The obtained accuracy level of classification on 9 different subjects was similar and, in some cases, superior to the reported state of the art. Having achieved relatively good offline classification results during our study, we move on to the last part, designing and implementing an online BCI system using Python. Our system consists of three modules. The first module communicates with the MUSE (a low-cost EEG device) to acquire the EEG signals in real time, the second module process those signals using machine learning techniques and trains a learning model. The model is used by the third module, that takes control of cloud-based home automation devices. Experiments using the MUSE resulted in significantly lower classification results and revealed the limitations of the low-cost EEG signal acquisition device for online BCIs

    Enhancing brain-computer interfacing through advanced independent component analysis techniques

    No full text
    A Brain-computer interface (BCI) is a direct communication system between a brain and an external device in which messages or commands sent by an individual do not pass through the brain’s normal output pathways but is detected through brain signals. Some severe motor impairments, such as Amyothrophic Lateral Sclerosis, head trauma, spinal injuries and other diseases may cause the patients to lose their muscle control and become unable to communicate with the outside environment. Currently no effective cure or treatment has yet been found for these diseases. Therefore using a BCI system to rebuild the communication pathway becomes a possible alternative solution. Among different types of BCIs, an electroencephalogram (EEG) based BCI is becoming a popular system due to EEG’s fine temporal resolution, ease of use, portability and low set-up cost. However EEG’s susceptibility to noise is a major issue to develop a robust BCI. Signal processing techniques such as coherent averaging, filtering, FFT and AR modelling, etc. are used to reduce the noise and extract components of interest. However these methods process the data on the observed mixture domain which mixes components of interest and noise. Such a limitation means that extracted EEG signals possibly still contain the noise residue or coarsely that the removed noise also contains part of EEG signals embedded. Independent Component Analysis (ICA), a Blind Source Separation (BSS) technique, is able to extract relevant information within noisy signals and separate the fundamental sources into the independent components (ICs). The most common assumption of ICA method is that the source signals are unknown and statistically independent. Through this assumption, ICA is able to recover the source signals. Since the ICA concepts appeared in the fields of neural networks and signal processing in the 1980s, many ICA applications in telecommunications, biomedical data analysis, feature extraction, speech separation, time-series analysis and data mining have been reported in the literature. In this thesis several ICA techniques are proposed to optimize two major issues for BCI applications: reducing the recording time needed in order to speed up the signal processing and reducing the number of recording channels whilst improving the final classification performance or at least with it remaining the same as the current performance. These will make BCI a more practical prospect for everyday use. This thesis first defines BCI and the diverse BCI models based on different control patterns. After the general idea of ICA is introduced along with some modifications to ICA, several new ICA approaches are proposed. The practical work in this thesis starts with the preliminary analyses on the Southampton BCI pilot datasets starting with basic and then advanced signal processing techniques. The proposed ICA techniques are then presented using a multi-channel event related potential (ERP) based BCI. Next, the ICA algorithm is applied to a multi-channel spontaneous activity based BCI. The final ICA approach aims to examine the possibility of using ICA based on just one or a few channel recordings on an ERP based BCI. The novel ICA approaches for BCI systems presented in this thesis show that ICA is able to accurately and repeatedly extract the relevant information buried within noisy signals and the signal quality is enhanced so that even a simple classifier can achieve good classification accuracy. In the ERP based BCI application, after multichannel ICA the data just applied to eight averages/epochs can achieve 83.9% classification accuracy whilst the data by coherent averaging can reach only 32.3% accuracy. In the spontaneous activity based BCI, the use of the multi-channel ICA algorithm can effectively extract discriminatory information from two types of singletrial EEG data. The classification accuracy is improved by about 25%, on average, compared to the performance on the unpreprocessed data. The single channel ICA technique on the ERP based BCI produces much better results than results using the lowpass filter. Whereas the appropriate number of averages improves the signal to noise rate of P300 activities which helps to achieve a better classification. These advantages will lead to a reliable and practical BCI for use outside of the clinical laboratory

    Enhancement of group perception via a collaborative brain-computer interface

    Get PDF
    Objective: We aimed at improving group performance in a challenging visual search task via a hybrid collaborative brain-computer interface (cBCI). Methods: Ten participants individually undertook a visual search task where a display was presented for 250 ms, and they had to decide whether a target was present or not. Local temporal correlation common spatial pattern (LTCCSP) was used to extract neural features from response-and stimulus-locked EEG epochs. The resulting feature vectorswere extended by including response times and features extracted from eye movements. A classifier was trained to estimate the confidence of each group member. cBCI-assisted group decisions were then obtained using a confidence-weighted majority vote. Results: Participants were combined in groups of different sizes to assess the performance of the cBCI. Results show that LTCCSP neural features, response times, and eye movement features significantly improve the accuracy of the cBCI over what we achieved with previous systems. For most group sizes, our hybrid cBCI yields group decisions that are significantly better than majority-based group decisions. Conclusion: The visual task considered here was much harder than a task we used in previous research. However, thanks to a range of technological enhancements, our cBCI has delivered a significant improvement over group decisions made by a standard majority vote. Significance: With previous cBCIs, groups may perform better than single non-BCI users. Here, cBCI-assisted groups are more accurate than identically sized non-BCI groups. This paves the way to a variety of real-world applications of cBCIs where reducing decision errors is vital

    Identification of audio evoked response potentials in ambulatory EEG data

    Get PDF
    Electroencephalography (EEG) is commonly used for observing brain function over a period of time. It employs a set of invasive electrodes on the scalp to measure the electrical activity of the brain. EEG is mainly used by researchers and clinicians to study the brain’s responses to a specific stimulus - the event-related potentials (ERPs). Different types of undesirable signals, which are known as artefacts, contaminate the EEG signal. EEG and ERP signals are very small (in the order of microvolts); they are often obscured by artefacts with much larger amplitudes in the order of millivolts. This greatly increases the difficulty of interpreting EEG and ERP signals.Typically, ERPs are observed by averaging EEG measurements made with many repetitions of the stimulus. The average may require many tens of repetitions before the ERP signal can be observed with any confidence. This greatly limits the study and useof ERPs. This project explores more sophisticated methods of ERP estimation from measured EEGs. An Optimal Weighted Mean (OWM) method is developed that forms a weighted average to maximise the signal to noise ratio in the mean. This is developedfurther into a Bayesian Optimal Combining (BOC) method where the information in repetitions of ERP measures is combined to provide a sequence of ERP estimations with monotonically decreasing uncertainty. A Principal Component Analysis (PCA) isperformed to identify the basis of signals that explains the greatest amount of ERP variation. Projecting measured EEG signals onto this basis greatly reduces the noise in measured ERPs. The PCA filtering can be followed by OWM or BOC. Finally, crosschannel information can be used. The ERP signal is measured on many electrodes simultaneously and an improved estimate can be formed by combining electrode measurements. A MAP estimate, phrased in terms of Kalman Filtering, is developed using all electrode measurements.The methods developed in this project have been evaluated using both synthetic and measured EEG data. A synthetic, multi-channel ERP simulator has been developed specifically for this project.Numerical experiments on synthetic ERP data showed that Bayesian Optimal Combining of trial data filtered using a combination of PCA projection and Kalman Filtering, yielded the best estimates of the underlying ERP signal. This method has been applied to subsets of real Ambulatory Electroencephalography (AEEG) data, recorded while participants performed a range of activities in different environments. From this analysis, the number of trials that need to be collected to observe the P300 amplitude and delay has been calculated for a range of scenarios

    Adaptive Filtering Techniques for the Detection of User - Independent Single Trial ERPs in Brain Computer Interfaces

    Get PDF
    El trabajo desarrollado es una presentación de los sistemas Brain Computer Interface (BCI) e involucra el entendimiento tanto de su funcionamiento como de las señales cerebrales en las que este está basado. Para este proyecto, cada una de las partes que forman uno de los tipos de sistema BCI más ampliamente usado serán desarrolladas. Se estudiarán diversas técnicas de procesado de señal para ser aplicadas en varias partes del sistema. Además, una interfaz adecuada será creada para validar los métodos implementados y evaluar el rendimiento del sistema. El resultado final del trabajo será un sistema BCI completo

    Electroencephalogram Signal Processing For Hybrid Brain Computer Interface Systems

    Get PDF
    The goal of this research was to evaluate and compare three types of brain computer interface (BCI) systems, P300, steady state visually evoked potentials (SSVEP) and Hybrid as virtual spelling paradigms. Hybrid BCI is an innovative approach to combine the P300 and SSVEP. However, it is challenging to process the resulting hybrid signals to extract both information simultaneously and effectively. The major step executed toward the advancement to modern BCI system was to move the BCI techniques from traditional LED system to electronic LCD monitor. Such a transition allows not only to develop the graphics of interest but also to generate objects flickering at different frequencies. There were pilot experiments performed for designing and tuning the parameters of the spelling paradigms including peak detection for different range of frequencies of SSVEP BCI, placement of objects on LCD monitor, design of the spelling keyboard, and window time for the SSVEP peak detection processing. All the experiments were devised to evaluate the performance in terms of the spelling accuracy, region error, and adjacency error among all of the paradigms: P300, SSVEP and Hybrid. Due to the different nature of P300 and SSVEP, designing a hybrid P300-SSVEP signal processing scheme demands significant amount of research work in this area. Eventually, two critical questions in hybrid BCl are: (1) which signal processing strategy can best measure the user\u27s intent and (2) what a suitable paradigm is to fuse these two techniques in a simple but effective way. In order to answer these questions, this project focused mainly on developing signal processing and classification technique for hybrid BCI. Hybrid BCI was implemented by extracting the specific information from brain signals, selecting optimum features which contain maximum discrimination information about the speller characters of our interest and by efficiently classifying the hybrid signals. The designed spellers were developed with the aim to improve quality of life of patients with disability by utilizing visually controlled BCI paradigms. The paradigms consist of electrodes to record electroencephalogram signal (EEG) during stimulation, a software to analyze the collected data, and a computing device where the subject’s EEG is the input to estimate the spelled character. Signal processing phase included preliminary tasks as preprocessing, feature extraction, and feature selection. Captured EEG data are usually a superposition of the signals of interest with other unwanted signals from muscles, and from non-biological artifacts. The accuracy of each trial and average accuracy for subjects were computed. Overall, the average accuracy of the P300 and SSVEP spelling paradigm was 84% and 68.5 %. P300 spelling paradigms have better accuracy than both the SSVEP and hybrid paradigm. Hybrid paradigm has the average accuracy of 79 %. However, hybrid system is faster in time and more soothing to look than other paradigms. This work is significant because it has great potential for improving the BCI research in design and application of clinically suitable speller paradigm
    • …
    corecore