
Repositorio	de	la	Universidad	de	Zaragoza	–	Zaguan			http://zaguan.unizar.es	 	

	
	

Trabajo	Fin	de	Grado	
	
	
	

Adaptive	Filtering	Techniques	for	the	Detection	of	
User	–	Independent	Single	Trial	ERPs	in	Brain	

Computer	Interfaces	
	
	

Autor/es	

	
Cristina	Leza	Lahuerta	

	
	
	
	

Director/es	
	

Juan	Pablo	Martínez	Cortés	

	
	

Escuela	de	Ingeniería	y	Arquitectura	(EINA)	-	Zaragoza	
2016	

	

Resumen

Brain Computer Interface (BCI) es el término inglés dado a una tecnología
basada en el uso de señales cerebrales y su posterior procesado por diversos sis-
temas. Permiten, de esta forma, comunicación directa entre nuestro pensamiento y
el mundo exterior. Innumerables aplicaciones pueden derivarse de este tipo de sis-
temas, siendo especialmente importantes en el ámbito de la biomedicina. Pacientes
de severas enfermedades como esclerosis lateral amiotrófica (ELA), accidentes cere-
brovasculares, parálisis cerebral o lesiones de la médula espinal, pueden beneficiarse
de los sistemas BCI y recuperar la comunicación con su entorno.

Estos sistemas son altamente exigentes, teniendo principalmente tres problemas
fundamentales en su desarrollo: rapidez, precisión y adaptabilidad.
Con el objetivo de conseguir una comunicación lo más realista posible, esta tecnología
ha de ejecutarse rápidamente. Estos sistemas suelen precisar un tiempo considerable
tanto de entrenamiento como de prueba para validar su funcionamiento. Además,
se requiere una alta precisión para asegurar una correcta transimisión de informa-
ción. Finalmente, dada la complejidad de estos sistemas, una vez implementados es
conveniente que puedan adaptarse a distintos usuarios.

El objetivo de este trabajo será implementar un sistema BCI adaptativo que
minimice o incluso elimine el tiempo de setup previo requerido por esta tecnología.
Especificamente, el proyecto se centra en la detección de potenciales cerebrales rela-
cionados con estímulos externos presentados en una única fase, donde una rápida
adaptación a cada usuario es crucial para asegurar el éxito del sistema.

Existen diversos tipos de tecnología BCI dependiendo del paradigma usado. En
este contexto, paradigma se requiere a cómo se va a estimular el cerebro para obtener
señales de las cuales extraer la voluntad del usuario.
En este proyecto se desarrollará un sistema BCI basado en el potencial evocado
P300. Esta es una onda cerebral, registrada mediante electroencefalografía, que pre-
senta un voltaje positivo aproximadamente 300 ms después de que el estímulo sea
presentado al usuario.
Este método usa dos tipos de estímulo. Uno de ellos tiene una alta probabilidad
de ocurrencia mientras que el otro consituye un evento poco probable. Concreta-
mente, esta respuesta es desencadenada entorno a la región parietal por el evento
poco probable, que está relacionado de alguna forma con la voluntad del usuario.
Localizando dicha onda cerebral, el sistema será capaz de reconocer qué acción quiere

tomar quien esté usando la tecnología.

Un sistema BCI tiene varias partes fundamentales: adquisición de señal, pre-
procesado de señal, extracción de características, clasificación, interfaz y aplicación
concreta del sistema.
Entre los diversos métodos existentes para adquirir señales cerebrales, el más uti-
lizado es la electroencefalografía. La actividad eléctrica del cerebro puede ser medida
y grabada. Mediante esta técnica, dicha actividad es medida colocando electrodos
a lo largo del cuero cabelludo. Cada uno de los electrodos posicionados constituirá
un canal de entrada de datos. Las oscilaciones grabadas de los potenciales eléctricos
del cerebro son conocidas como electroencefalograma (EEG).
Siguiendo en el sistema, una parte crucial es el preprocesado de señal. Las señales
EEG presentan numerosos artefactos y baja relación señal a ruido (SNR). Los pasos
de preprocesado son entonces esenciales para eliminar o minimizar al máximo posi-
ble los artefactos y aumentar la SNR.
Existen numerosos tipos de sistemas BCI. En función de dicho tipo, varias carac-
terísticas pueden extraerse de una misma señal cerebral para identificar patrones y
separar los datos en diferentes clases. La elección de las características a extraer es
especialmente importante, tanto por su clase como por el número de características,
para el sistema ya que una decisión incorrecta podría llevar incluso a empeorar el
desarrollo del sistema BCI.
El siguiente paso es clasificar las características extraídas para obtener las inten-
ciones del usuario del sistema. Los principales problemas de los clasificadores son
dos: dimensionalidad (en inglés, curse of dimensionality) y compromiso entre sesgo
y varianza. El problema de la dimensionalidad se refiere a que la cantidad de datos
requeridos para obtener un rendimiento dado incrementa proporcionalmente con el
número de características usadas para caracterizar la señal cerebral.
Finalmente, la interfaz dependerá de la aplicación dada al sistema y es el medio de
interacción directa con el usuario.

Gran parte de este trabajo está centrada en el preprocesado de la señal cerebral
obtenida. Como se ha mencionado previamente, la capacidad de adaptación de un
sistema BCI es crucial para el desempeño del mismo. Así, se desarrollarán varias
técnicas para obtener una señal cerebral lo más limpia posible y en la cual los po-
tenciales buscados estén resaltados.
En primer lugar, se realizará un filtrado de la señal para mantener los componentes
frecuenciales donde se encuetran las señales de interés y reducir en la medida de lo
posible el ruido presente en la señal.
Después, varias técnicas cuyo objetivo principal es reducir la dimensionalidad de los
datos serán aplicadas a la señal filtrada.
El primer conjunto de métodos emplea análisis estadísticos para separar los datos o
bien en sus componentes principales y de mayor importancia, Análisis de Compo-
nentes Principales (ACP, en inglés, PCA), o en componentes independientes entre
sí, Análisis de Componentes Independientes (ACI, en inglés, ICA).
El siguiente grupo de técnicas evaluadas consisten en filtros espaciales que, además
de reducir la dimensionalidad de los datos, incrementan la SNR mediante una com-

binación lineal de los diferentes canales de entrada de datos originales. Los dos
procedimientos implementados en este proyecto son el filtro xDAWN y su mejora
adaptativa, el filtro axDAWN.
La idea básica tras ambas versiones es realzar la respuesta síncrona al estímulo
correspondiente al objetivo del usuario. Este proceso se divide en dos pasos funda-
mentales: primero se estiman las respuestas síncronas y después se diseñan los filtros
que realzan dichos potenciales.
El filtro axDAWN mejora el diseño de su predecesor incluyendo una adaptación de
los coeficientes de los filtros usados mediante el algoritmo Recursive Least Squares
(RLS).

Siguiendo el curso del sistema BCI, el siguiente paso es la extracción de carac-
terísticas de la señal cerebral ya preprocesada.
El principal método usado y en el cual se basa todo el sistema BCI es la trans-
formada Wavelet (en inglés, WT). Dicha transformada se diferencia de la clásica
transformada de Fourier en que esta es local tanto en tiempo como en frequencia.
Esta característica de la transformada la hace apropiada para el análisis de señales
cerebrales, que requieren una alta resolución tanto en tiempo como en frecuencia.
Concretamente, la WT será aplicada en un análisis en varias resoluciones conocido,
en inglés, como Multi Resolution Analysis (MRA). La gran ventaja de esta técnica
es la posibilidad de separar la señal en diferentes resoluciones frecuenciales. Esto es
de gran importancia cuando la señal a analizar es un EEG ya que distintas activi-
dades cerebrales se corresponden con diferentes bandas frecuenciales. En concreto,
el potencial P300, en el cual se basa el sistema BCI desarrollado en el trabajo, tiene
sus componentes más prominentes localizadas entre 0 y 4 Hz.
Una vez extraída la banda de interés para el sistema, se requiere una herramienta
capaz de resaltar la respuesta síncrona al estímulo buscado.
La entropía es una medida de la incertidumbre de una fuente de información in-
troducida por Shannon. Dada esta interpretación de la entropía, esta puede ser
considerada también una medida de desorden. Cuanto más caótica es una distribu-
ción, mayor es su entropía.
Aplicado al campo de BCI, es de esperar que la entropía de una señal cerebral tenga
valores altos ya que esta no tiene una distribución estadística establecida y puede
considerarse aleatoria.
Sin embargo, el potencial P300 puede verse como una transición de un estado desor-
denado a uno ordenado en la señal cerebral dado que las oscilaciones correspondientes
a dicho potencial están sincronizadas. De esta forma, la presencia de dicho potencial
podrá ser advertida en un decremento del valor de la entropía de la señal.
A partir de la definición de Shannon, diversas variantes de la entropía han sido
descritas. Concretamente, una variación que se ajusta mejor al sistema, dada la
distribución estadística de la aparición de estímulos en la señal cerebral, es la in-
troducida por Renyi. Esta nueva definición de entropía será la usada en este trabajo.

Dentro del gran repertorio de clasificadores usados en los sistemas BCI, en este
trabajo el algoritmo elegido será una máquina de vectores de soporte (en inglés,
Support Vector Machine, SVM). Una SVM será entrenada con parte de los datos

obtenidos para crear un modelo que sea capaz de predecir a qué clase pertenece cada
una de las muestras siguientes.

Finalmente, respecto a la interfaz y la aplicación concreta del sistema, en este
trabajo se desarrollará un deletreador.
La interfaz constará de una matriz 6x6 conteniendo tanto números como letras. La
finalidad de dicho sistema es que este sea capaz de detectar en qué letra o número el
usuario se está concentrando. De esta forma, cualquier persona con dificultades en
la comunicación será capaz de transmitir cualquier palabra o número simplemente
fijando su pensamiento en cada uno de los caracteres que lo formen.
Cada una de las filas y columnas de la matriz se iluminará de forma aleatoria, de-
jando un intervalo entre cada una de estas iteraciones (en inglés, Inter Stimulus
Interval, ISI). El intervalo ISI puede tener un gran impacto en el desarrollo del sis-
tema, y será estudiado en varios ensayos con diferentes valores ISI.
Entre una distribución tan aleatoria, el resalte de la fila o columna donde está con-
tenido el caracter en el que el usuario está pensando se corresponderá con un evento
poco probable. Así, esta ocurrencia será precisamente el tipo de estímulo que es
capaz de desencadenar el potencial P300.
Gracias a las técnicas brevemente descritas anteriormente, el sistema podrá encon-
trar dicha respuesta síncrona al estímulo y, en consecuencia, obtener el caracter en
el cual el usuario estaba centrando su atención.
Además de la interfaz, el sistema requiere un montaje experimental para poder
grabar las señales cerebrales a analizar. Dicho montaje se trata de un método no
invasivo, formado por 16 electrodos colocados a lo largo del cuero cabelludo en posi-
ciones específicas dictadas por el estándar internacional llamado, en inglés, 10-20
system.
Concretamente y dentro de todas las posiciones descritas en dicho estándar, los elec-
trodos estarán colocados principalmente en el lóbulo parietal, donde el potencial
P300 puede ser encontrado.
Entre dichos electrodos y el equipo encargado de analizar el EEG grabado, un am-
plificador tratará con la típica baja amplitud de las señales cerebrales.

Con el objetivo de evaluar todas las técnicas, tanto de preprocesado como de
análisis, y la interfaz propuesta, dos conjuntos de datos serán usados.
El primero de ellos se corresponde con señales previamente grabadas en un sistema
igual al descrito anteriormente, y pertenecientes al proyecto Brain Neural Computer
Interaction Horizon 2020 (BNCI Horizon 2020).
Además, un experimento involucrando al sistema específicamente desarrollado para
este trabajo se llevará a cabo con 10 voluntarios.
Este experimento consta de tres fases en las que cada uno de los voluntarios usará
el deletreador para dictar palabras predefinidas, de 5 letras cada una.
La primera fase presentará al usuario únicamente dos palabras con el objetivo de
asegurar que este ha entendido correctamente el funcionamiento del sistema.
Después, en la siguiente etapa, el voluntario deletreará tres palabras.
Finalmente y buscando evaluar el impacto del ISI en el sistema, la tercera y última
fase volverá a constar únicamente de dos palabras, esta vez con un intervalo entre

resaltes de filas y columnas más amplio que en las dos pruebas anteriores.

Para concluir el trabajo, se presentarán los resultados obtenidos para ambos con-
juntos de datos.
En primer lugar, las suposiciones teóricas acerca de la relación entre la entropía de las
señales cerebrales y la presencia de estímulo será validada. La descomposión MRA
y el cálculo de la entropía, sin ningún tipo de preprocesado, es capaz de mostrar
la presencia de estímulos en las señales grabadas. Así, las técnicas de extracción
de características descritas prueban ser válidas para un sistema BCI basado en el
potencial P300.
Posteriormente, el efecto de los diferentes métodos de preprocesado será mostrado.
La ya evidente relación teórica previamente descrita se verá realzada gracias a los
métodos implementados. Gracias al preprocesado, el desempeño del sistema será
ampliamente mejorado.
Vistos estos primeros resultados, el sistema será finalmente evaluado por medio de
porcentajes de precisión de acierto del caracter pensado por el usuario.
Dichos porcentajes probarán que el rendimiento del sistema es prácticamente per-
fecto para todos los casos evaluados.

El trabajo desarrollado es una presentación de los sistemas BCI e involucra el
entendimiento tanto de su funcionamiento como de las señales cerebrales en las que
este está basado.
Para este proyecto, cada una de las partes que forman un sistema BCI serán desar-
rolladas.
Se estudiarán diversas técnicas de procesado de señal para ser aplicadas en varias
partes del sistema.
Además, una interfaz adecuada será creada para validar los métodos desarrollados
y evaluar el desempeño del sistema.
El resultado final del trabajo será un sistema BCI completo con una alta tasa de
acierto y, por tanto, con gran potencial de aplicabilidad.

TECHNICAL UNIVERSITY OF DENMARK

Bachelor Thesis

Adaptive Filtering Techniques for the Detection of
User - Independent Single Trial ERPs in Brain

Computer Interfaces

Supervisor
Sadasivan Puthusserypady

Author
Cristina Leza Lahuerta

June 2016

Adaptive Filtering Techniques for the Detection of User - Independent Single Trial

ERPs in Brain Computer Interfaces

This report was prepared by:

Cristina Leza Lahuerta, s150802

Supervisor:

Sadasivan Puthusserypady, Associate Professor, Ph.D.

Department of Electrical Engineering

Technical University of Denmark
2800 Kgs. Lyngby
Denmark

Project period: February 1st 2016- June 17th 2016

ECTS: 15

Education: Bachelor of Science

Field: Biomedical Engineering

Class: Open Source

Copyrights: ©Cristina Leza Lahuerta, 2016

Signature

Cristina Leza Lahuerta

Acknowledgments

In relation to this thesis, I would like to thank a number of people.
First of all, I would like to thank my supervisor, Sadasivan Puthusserypady, for his
help and guidance.
I would also like to thank all the fellow students who have helped me with the
project.
Finally, a special thanks goes to my family and friends for their support during all
the development of the thesis.
Without you, this would have not been possible.
Thank you.

V

Abstract

Brain Computer Interfaces (BCI) are systems that use directly brain signals to
communicate with the external world. They are challenging systems in constant
evolution. The main three problems to address in such systems are: speed, accuracy
and adaptability.
The understanding of di�erent types of BCIs, EEG signals and how these two are
connected to each other is essential to design a perfect system.
P300 based BCI systems are known by its ease of implementation and use. However,
adaptive techniques would significantly improve their performance. Studies are con-
ducted on di�erent existing techniques and their performance are evaluated. Also,
new features for P300 based systems are researched.
A P300 speller was designed and an experiment conducted with 10 subjects was used
to evaluate the system proposed.
All in all, a complete P300 based BCI system was the subject of this thesis.

VII

Contents

List of Figures XI

List of Tables XIII

1 Introduction 1

1.1 Objectives . 1
1.2 Contributions . 2
1.3 Overview of the Thesis . 2

2 Clinical Background 3

2.1 Brain Physiology . 3
2.2 Electroencephalogram . 4
2.3 Conclusions . 6

3 Brain Computer Interface 7

3.1 Overview . 7
3.1.1 Signal Acquisition . 8
3.1.2 Signal Preprocessing . 8
3.1.3 Feature Extraction . 8
3.1.4 Classification . 9
3.1.5 Application Interface . 9
3.1.6 Application . 9

3.2 BCI Paradigms . 9
3.2.1 Motor Imagery . 10
3.2.2 Visual Evoked Potentials . 11
3.2.3 P300 . 11

4 State of the Art 13

4.1 Review on Signal Processing . 13
4.2 Review on the Interface . 15
4.3 Conclusions . 15

5 EEG Processing 17

5.1 Preprocessing . 17

IX

CONTENTS CONTENTS

5.1.1 Frequency Filtering . 17
5.1.2 Component Based Methods 18
5.1.3 Spatial Filtering . 21

5.2 Feature Extraction . 26
5.2.1 Time - Frequency . 26
5.2.2 Entropy . 29
5.2.3 Wavelet and Entropy . 31

5.3 Classification . 33
5.3.1 Peak Detection . 33
5.3.2 Support Vector Machine . 34
5.3.3 Voting Process . 36

5.4 Conclusion . 36

6 Experimental Setup 39

6.1 P300 Speller . 39
6.2 Design of the Interface . 40
6.3 Recording . 41
6.4 Experiment . 43
6.5 Conclusion . 44

7 Results 45

7.1 Wavelet and Entropy . 45
7.2 Selected Features . 49
7.3 Classification Performance . 51

8 Discussion 53

8.1 Wavelet and Entropy . 53
8.2 Classification Performance . 54

9 Conclusion 55

Bibliography 57

A MATLAB Code 61

B P300 Speller Pre-Experiment Questionnaire 93

C P300 Speller Post-Experiment Questionnaire 95

X

List of Figures

2.1 Horizontal section of the cerebrum (Gray’s Anatomy [1]) 3
2.2 Brain Lobes (Gray’s Anatomy [1]) 4
2.3 Electrode Placement System (Source: BCI org) 5

3.1 Overview of a BCI system . 7
3.2 EEG Power Spectrum with SSVEP stimulus at 6 Hz 11
3.3 P3a and P3b responses . 12

5.1 Magnitude Response of the Butterworth Bandpass Filter 18
5.2 Magnitude Response of the 50 Hz Notch Filter 18
5.3 MRA Block Diagram (Matlab) . 28
5.4 SVM finds the optimal hyperplane for generalization [5] 35

6.1 P300 Speller . 40
6.2 g.USBamp (g.tec Technologies) . 41
6.3 g.GAMMAsys (g.tec Technologies) 42
6.4 Electrodes placement for the experiment 42
6.5 Subject using the speller . 43

7.1 Energy within each decomposition level: (a) Delta Band - Detail; (b)
Theta Band; (c) Alpha Band; (d) Beta band 45

7.2 PDF of each decomposition level: (a) Delta Band - Detail; (b) Theta
Band; (c) Alpha Band; (d) Beta band 46

7.3 Renyi’s Entropy and Stimulus Onset 47
7.4 Zoomed view of Renyi’s Entropy and Stimulus Onset 47
7.5 Renyi’s Entropy and Delta Band Energy 48
7.6 Improved Feature Extraction . 48
7.7 Entropy Variance . 49
7.8 Scaled Entropy . 50
7.9 Inverse Entropy . 50

XI

List of Tables

2.1 Brain waves in EEG . 6

5.1 MRA Decomposition Levels . 29

7.1 Algorithms used in the project . 51
7.2 Results from BNCI Data . 51
7.3 Results from recorded data . 52

XIII

Chapter 1

Introduction

It is a truth universally acknowledged, that communication is a key tool for
every human being. Technological progress has led to a new and outstanding con-
ception of communication. Nevertheless, nothing can compare to sharing thoughts
and intentions with the brain itself.

Over the past years, a promising yet maybe unnoticed technology has been under
development: Brain Computer Interface (BCI). Countless applications, ranging from
medical purposes to leisure, can benefit from BCI. These systems read signals directly
from the brain, allowing communication and control over one’s surroundings. This
ability has a radical impact on people su�ering from severe neuromuscular disorders
such as amyotrophic lateral sclerosis (ALS), brainstem stroke, cerebral palsy or spinal
cord injury. BCI opens the door to new ways of therapy and even rehabilitation.

1.1 Objectives

How to get the most out of this technology? BCI systems usually require a
significant amount of training and testing time since their calibration steps di�ers
from one user to another. Huge improvements could be made if the system would
adapt to the particular subject making use of it.

The purpose of this project is to develop an adaptive system so as to minimize,
and even remove, this setup time. Specifically, the project will focus on single-trial
detection of Event Related Potentials (ERPs) where fast adaptation to the user is
essential.

This thesis also includes the development of a real BCI system. An experiment
on this system will be conducted, acquiring o�ine data to test its validity.

Within the wide field of BCI, this project is focused on P300 based systems,
characterized by their ease of implementation. Besides, they are known to require
little or no training from the user so adaptive schemes could highly improve their
applicability to users. Specifically, the tested system will be a P300 Speller.

All in all, the aim of this project is to improve BCIs by including adaptation
for detection of user. The resulting systems will not only be faster, but also more
accurate since all the detection process will be personalized to each subject.

1

Introduction Contributions

1.2 Contributions
As it has been previously mentioned, two of the most important aspects to be

fulfilled by a BCI system are: speed and minimal training and calibration. In this
thesis, several techniques will be proposed to:

• Implement an adaptive BCI system with little or no calibration time require-
ments.

• Seek new features to characterize the P300 response.

• Improve the existing P300 based BCI system paradigms so as to make them
both user-friendly and more suitable for computation.

1.3 Overview of the Thesis
The thesis is structured as follows:

• Chapter 2: the reader will have a general insight into the human brain, how
it works and how BCI systems can extract information from it.

• Chapter 3: BCI systems will be introduced. An overview of the whole system
is presented, followed by an introduction of the main paradigms used.

• Chapter 4: a literature review will present some of the main techniques
currently being employed in BCI systems.

• Chapter 5: the methods developed for this thesis will be explained in detail.

• Chapter 6: presentation of the most commonly used tool for P300 based BCI
systems. Following this introduction, the interface design for the project will
be illustrated. Last, the conducted experiment will be explained.

• Chapter 7: the results acquired from the techniques developed in the thesis
will be presented.

• Chapter 8: based on the previous chapter, a comparison between the di�erent
implemented methods and a discussion on the results will be provided in the
eighth chapter.

• Chapter 9: summing up the conclusions obtained from research work carried
out.

2

Chapter 2

Clinical Background

Human brain is the central point to every BCI system. To understand how such
systems work, it is then required to have some basic knowledge about the background
they work on. Accordingly, this chapter will first deal with a short description of the
brain physiology, explaining its functionalities. Following this, a brief description of
the EEG, main tools of BCI systems will be presented.

2.1 Brain Physiology
No organ can be compared to the brain. It controls all body functions and

allows for communication with the external world, by receiving and transmitting
information. The complexity of the brain is immense, containing more than 100
billion neurons which are highly interconnected. The brain can be divided into
several parts, each of them having its own function: cerebrum, cerebellum and
brainstem. The most refined functions of the brain are performed in the cerebrum,
which is divided into two hemispheres connected by the Corpus Callosum.

Figure 2.1: Horizontal section of the cerebrum (Gray’s Anatomy [1])

The cerebral cortex is the outermost layer of the cerebrum controls most of the
information processing. It can be divided in four major lobes, which can be depicted
in figure 2.2, each of them dealing with specific functions [2]:

3

Clinical Background Electroencephalogram

Figure 2.2: Brain Lobes (Gray’s Anatomy [1])

1. The frontal lobe is responsible for behaviour, such as judgment and decision
making.

2. The parietal lobe processes sensory input. Therefore, they manage the infor-
mation coming from eyes, ears, tongue or skin; dealing with spatial sense and
navigation.

3. The temporal lobe manages the sensory input and retains visual and auditory
information as memory.

4. The occipital lobe represents the brain’s visual processing center.

As it will be later seen, the BCI system developed in this project deals with
visual stimuli. Therefore, the occipital region is the most important one for this
project.

2.2 Electroencephalogram
The electrical activity of the brain can be measured and recorded. Electroen-

cephalography is the neurophysiological technique that measures this activity by
placing electrodes on the scalp. It is a widely used non-invasive method that is
useful not only to monitor normal brain activity, but also to detect neurological
disorders and assist brain activity studies such as sleep analysis. The recorded oscil-
lations of such brain electric potentials are known as electroencephalogram (EEG),
and they are caused by the synchronous electrical charge activity of a huge number
of brain cells called neurons. Since this activity has to be synchronized, neurons need
to have similar spatial orientation so as to create waves to be detected. Pyramidal
neurons of the cortex are usually seen as the ones to produce the most prominent
EEG signals since they are well-aligned and they fire-up together. The recorded
signal is then the summation of the potentials provoked by these neurons. Using
appropriate devices, these potentials can be measured, constituting the EEG signals.

4

Electroencephalogram Clinical Background

EEG is usually recorded using the standard 10-20 system, where ‘10’ and ‘20’
refers to the distance between electrodes. The following figure illustrates the system.

Figure 2.3: Electrode Placement System (Source: BCI org)

The first letters of the electrodes placement indicate the region of the scalp where
the electrode is located: Fp - prefrontal, F - frontal, C - central, P - parietal, O -
occipital and T - temporal. As it can be seen, C does not stand for any lobe, but it
is rather used for identification. The midline is represented by the letter ‘z’ and the
numbers accompanying the lobe, or central, positions represent electrodes on the
right (even numbers) or the left (odd numbers) hemispheres.

After the EEG signal is recorded, typically at a rate of 256 Hz, it needs to be
amplified due to the low voltage amplitude of brain signals (usually µV or mV)

Most BCIs systems use the EEG as the modality. However, there are BCI sys-
tems based on other modalities such as Magnetoencephalograhy (MEG), functional
magnetic resonance imaging (fMRI) and near infrared spectroscopy (NIRS) as well.
MEG measures small changes in the magnetic field associated with brain activity.
fMRI measures the blood oxygenation level-dependent (BOLD) signals, which are
also associated with cortical activation. Another hemodynamic technique is NIRS,
based on the di�erent oxygen levels of the blood. As mentioned, these techniques
have also been used in BCIs. Nevertheless, they su�er from serious drawbacks that
make using electrodes to measure EEG a better choice. MEG and fMRI are quite
expensive techniques and also, both fMRI and NIRS have poor temporal resolu-
tion[3].

EEG signals can be classified in two main categories depending on how the brain
signals are generated: Event-Related Potentials (ERPs) and Spontaneous EEG ac-
tivity. ERPs or Evoked Potentials are stereotypical responses to external stimuli.
These stimuli can be either sensory, cognitive or motor events. These evoked poten-
tials are usually obtained by applying such stimulus to a subject, and can be later

5

Clinical Background Conclusions

recorded and applied to a number of applications. Within the field of BCI, ERPs
are of utmost importance and will be later described in more detail. Spontaneous
brain activity, which can be triggered by any outside activity, in the absence of any
specific task or stimuli.

EEG waves have characteristic frequency ranges, each of them corresponding to
specific spatial distributions and associated with di�erent brain functions.

The delta waves are associated with the lowest frequency of oscillation, 0-4 Hz.
Delta waves are characterized by their high amplitude and are commonly associated
with deep sleep.

The theta waves can be found in the 4-7.5 Hz range and it is related to light
sleep or relaxation.

Alpha waves, found in the 7.5-12.5 Hz range, are associated with awake state
but with little mental activity. Also, alpha waves can be found when a person closes
his/her eyes. Mu waves, also within the 7.5-12.5 Hz range correspond to the syn-
chronized patterns found in the part of the brain that controls voluntary movement.
Beta waves, within 12.5-30 Hz, are related to full consciousness. Therefore, insu�-
cient beta activity can be a sign of neurological disorders such as insomnia. Finally,
gamma waves, also in the 25-100 Hz are associated with various types of learning
processings in the brain[2].

Type of Activity Band Typical Waveforms
” 0 - 4 Hz
◊ 4 - 7.5 Hz
– 7.5 - 12.5 Hz
µ 7.5 - 12 Hz
— 12.5 - 30 Hz
“ 25 - 100 Hz

Table 2.1: Brain waves in EEG

2.3 Conclusions
This chapter presented some basic concepts about the human physiology BCI

systems are based on. The following chapter will introduce these systems, their
components and how they operate.

6

Chapter 3

Brain Computer Interface

This chapter will begin with an introduction to a complete BCI system. The
most commonly used paradigms used in BCI systems, being the one used for this
project the P300 potential, will be also described briefly in this chapter.

3.1 Overview

BCI is a revolutionary technology that allows communication with the external
world only with the help of our thoughts. This will not be possible without all the
essential components forming a BCI system, depicted in the figure 3.1 below. The
components of the system include signal acquistion, signal preprocessing, feature
extraction, classification, application interface and application.

	

Feature	
Extrac+on	

Classifica+on	

Applica+on	
Interface	

Applica+on	

Signal	
Acquis+on	

Signal		
Pre-Processing	

Brain	Signal	EEG	

Feedback	

Figure 3.1: Overview of a BCI system

7

Brain Computer Interface Overview

3.1.1 Signal Acquisition

This consists of the EEG electrodes, along with an adequate amplifier, are ca-
pable of digitizing and storing brain signals. As mentioned in previous chapters,
there are several forms of brain signal acquisition. However, EEG electrodes are the
most widely used technique. Specifically, real-life applications mostly use gel based
electrodes since they provide more robust signal quality. Nevertheless, they have
two main disadvantages: long montage time and need of washing both cap and head
afterwards. An alternative to gel based electrodes is the use of dry electrodes. This
technology, still under study, is inferior to the other one in the sense of obtained sig-
nal quality and user comfort. Recent studies have though proved that dry electrodes
are acquiring more and more importance in the BCI field [4].

3.1.2 Signal Preprocessing

Raw EEG signals present two main problems to be solved: artifacts and low
Signal to Noise Ratio (SNR). Processing steps are essential to remove/minimize the
artifacts as well as to improve the SNR.

• Artifacts: EEG signals are often contaminated from electrical activity pro-
duced by non-brain sources. These signals can come from ocular movements
(electrooculogram, EOG), electromyography (EMG) or even heartbeat (elec-
trocardiogram, ECG). Among these sources, it can be considered that, due to
its proximity to the scalp, ocular movements are the most significant artifacts
of all the above mentioned.

• Low SNR: while recording EEG signals, there are a wide number of noisy
sources that can a�ect the quality of the recorded signals. Besides, brain
signals have significantly lower amplitude compared to the noise and so, the
acquired SNR for raw EEG signals is not su�cient to process them correctly.
The main source of noise the project will be dealing with is the power line
interference (found at 50 or 60 Hz).

3.1.3 Feature Extraction

In order to achieve the best BCI performance, an appropriate choice of features
needs to be performed. The features extracted from EEG signals allows to recognize
specific patterns and separate the data into di�erent classes. Not every feature is
relevant for the task of classification and, in fact, an excessive number of features
could worsen the performance of the system [5]. There are many techniques for
feature extraction in BCI systems, some of the most important will be described in
subsequent chapters.

8

BCI Paradigms Brain Computer Interface

3.1.4 Classification

Given a set of extracted features, they have to be later classified to detect
the user’s intentions. Classifiers can be divided into many categories. Generative-
discriminative classifiers di�erentiate from each other because the former computes
the likelihood between di�erent classes while the latter discriminate classes. Clas-
sifiers can also be either static, if they do not have temporal evolution, or dynamic
if they do. Finally, stable classifiers have low complexity and small variations in
the training data set do not excessively a�ect their performance. On the contrary,
unstable classifiers are highly dependent on changes on the training set.

The two main problems that a�ect classifiers are the curse of dimensionality
and the bias-variance tradeo�. The curse of dimensionality refers to the increas-
ing amount of data required to achieve a good classification performance when the
dimensionality of the feature vectors increments. The bias of a classifier is the di�er-
ence between the expected value of its output and the actual value of the parameter
being estimated. The variance represents the sensitivity of the classificator to small
changes in the training set. Stable classifiers tend to have high bias and low variance,
and vice versa. EEG signals are known to be non-stationary. Therefore, it is pre-
ferred to choose a classification technique that yields the lowest variance as possible
[5] The most widely used classification methods will be later explained, along with
the method chosen for this project.

3.1.5 Application Interface

Once the EEG signals have been correctly classified, the application interface
decides what to do next, depending on the kind of purpose the specific type of BCI
has. In the case of o�ine BCI systems, this could be the last step of the procedure,
when the results of the processing are evaluated.

3.1.6 Application

This last step is specially important for online BCIs since it is now when the
results of the system can be assessed. For example, a BCI system controlling a
wheelchair will now be able to move it in the direction of the user’s desire thanks to
all of the previous acquisition and processing of the EEG signals.

3.2 BCI Paradigms

This section describes briefly the most commonly used paradigms that are used
in BCI systems.

9

Brain Computer Interface BCI Paradigms

3.2.1 Motor Imagery

Movement a�ects brain activity, but also the imagination of movement can elicit
a response in the brain. Just by di�erently imagining the kinesthetic movement of
somatic body parts (left or right hand, for example), discriminative brain patterns
can be obtained. Sensorimotor rhythms (SMR) refer to oscillations in brain activity
recorded from somatosensory areas. A specific event can either decrease or increase
the SMR, being those events called Event-Related Desynchronization (ERD) and
Event-Related Synchronization (ERS), respectively. These patterns can be produced
solely by the imagination of movement. During those intervals of imagination, the
EEG will show activity especially in the mu and beta bands.

The key to this paradigm is that the patterns provoked by imagination are similar
in their topography and spectral behavior to those elicited by actual movements.
One of the major drawbacks of motor imagery is that, since each somatic body part
generates a di�erent brain pattern, an e�ective classification algorithm is required
[3].

10

BCI Paradigms Brain Computer Interface

3.2.2 Visual Evoked Potentials

Visual Evoked Potentials (VEP) are fixed delayed changes in the electrical poten-
tials in the brain created by a visual stimulus (e.g. a flickering square). Therefore,
these systems can identify a target the user is looking at. In such a system, each tar-
get needs to be identified with a unique sequence that will provoke a unique pattern
in the brain signal [6].

Steady State Visual Evoked Potentials (SSVEP) are especially important within
the field of VEP based BCIs. The main characteristic of such systems is that the
stimulus consists of a repetitive visual stimulus. Typically, the frequency range of the
stimulus varies from 3.5 to 75 Hz[7]. These stimuli will generate electrical activity
at the frequency of stimuli and its harmonics. Therefore, SSVEP systems are quite
easy to implement just by inspecting the power spectrum of the EEG.

Figure 3.2: EEG Power Spectrum with SSVEP stimulus at 6 Hz

3.2.3 P300

The P300 response is an ERP response characterized by being a large positive
wave appearing approximately 300 ms after the stimulus. Its amplitude is dependent
on the attention required to process the given stimulus: the more focus needed, the
higher the amplitude. The P300 wave has been traditionally elicited by the “oddball
paradigm” [8].

This method presents the subject with two types of stimuli. One of them has a
large probability of appearance and the other one is a low probability event. The
P300 response will be triggered precisely by those low probability occurrences. Self-
relevant targets are found to provoke higher amplitude responses, as well as explicitly
instructed targets [9].

11

Brain Computer Interface BCI Paradigms

Figure 3.3: P3a and P3b responses

This last scenario is precisely the basis of the experiment conducted in this thesis
to test the algorithms that have been developed. Behavioral tests have proved that
this response can be found even 400-600 ms after the stimulus is presented [9]. The
P300 latency also provides information about the duration of the stimulus since
this wave shows the modifications in the neuronal activity taking place during the
cognitive process [10]. This latency will also be involved in the amplitude of the
response, as it has been found that higher inter stimulus interval yields larger P300
wave amplitudes [11].

As for the scalp distribution of the P300 wave, it is often described as the ampli-
tude change over the midline electrodes, increasing from the frontal to the parietal
lobe [11].

The P300 wave is known to have two subcomponents: P3a and P3b. The first
potential, P3a has been commonly considered to be related to frontal lobe acti-
vation. The initial target requiring frontal attention then elicits this P3a wave.
Subsequently, the P3b potential is presented when the attentional resources are al-
located for memory updating in association cortex. Therefore, the P3b response is
correlated to the temporal and parietal lobes[12].

This project will be focusing only in the P300 wave and not in its subcompo-
nents.

12

Chapter 4

State of the Art

A BCI is an alternative pathway for an individual’s thoughts and intentions.
Therefore, its functionality is completely based on EEG signals. The system process
goes from signal acquisition to their translation into appropriate commands. How-
ever, this last step cannot be reached without adequate feature extraction and later
classification of the analyzed patterns.

In the specific scenario of adaptive BCI systems, several combination of signal
processing and classification methods have been researched. Some of the newest and
most innovative will be described in this section, as well as other non-adaptive but
e�ective methods.

This chapter will also cover a study on the di�erent implementation of P300 based
BCI systems and the impact di�erent design parameters have on their performance.

4.1 Review on Signal Processing

Sykacek et al. [13] propose the use of variational Kalman filtering as a technique
to perform and also adaptive Bayesian classifier. The non-stationary nature of EEG
signal represents a problem to every BCI systems. Their algorithm is based on the
probabilities of di�erent cognitive states present in the EEG to adapt the classifier.
An adaptive classifier responding to changes in the brain activity statistically im-
proved the performance of BCI systems. However, the results are unclear about the
cognitive tasks performed during the experiments.

Kim and Jo [14] developed a real-time motion artifact detection for ambulatory
BCI. Their approach is also based on adaptive Kalman filtering. Nevertheless, the
filters are adapted to remove motion-related noise. The results showed that the
adaptive filtering was able to improve the accuracy of BCI systems. However, this
approach is designed for wireless BCI applications and, consequently, it does not

13

State of the Art Review on Signal Processing

have much relevance in a static P300 speller.

Tu et al. [15] present a combination of Common Spatial Filter (CSP) as a spatial
filter and a wavelet filtering to enhance the SNR of single trial VEPs. The resulting
system was significantly improved for the same subject but it still needed further
amelioration in between-subjects trials.

Sun and Zhang [16] show a full subject-adaptive BCI system. In their system,
a subject-oriented training procedure is implemented before the actual controlling
of the system begins. The use of preprocessing techniques such as FastICA yields
good results both in o�ine and online analysis. Nonetheless, a training setup is still
necessary.

Turnip et al. [17] performed an real-time feature extraction for P300 waves based
on adaptive non-linear filtering: adaptive non-linear principal component analysis
(ANPCA). The experiment also tried di�erent ISI to test the performance of their
method. The results showed that the mixed sources were succesfully separated and
an ISI value of 350 ms provided the most accurate results.

Bougrain et al. [18] conducted a study on the appropriate band pass filter to
be used in the preprocessing step. According to their study, a band pass filter with
upper cuto� frequency of 15 Hz improved the performance of the system. This
represents a compromise between removing as much noise as possible without losing
important information about the signal.

Woehrle et al. [19] designed an adaptive spatial filter, specially suited for ERPs
like the P300 wave. They base their algorithm on a previously described spatial
filter, xDAWN [20]. Then, they include the adaptivity by means of Recursive Least
Squares (RLS) updates of the filters coe�cients. This algorithm will be explained in
detail in following chapters. The experiment performed to assess this method was
a labyrinth game and the users were trained in the task. The subjects wore a head
mounted display (HMD), displaying the labyrinth as well as stimuli symbols for the
oddball task. The Inter Stimulus Interval (ISI) was significantly high (1000 ms).
The results showed that the system improved with the inclusion of adaptation in
the xDAWN filter. The conclusion of the study was that this regularized version was
specially beneficial in the initialization of the algorithm when few data is available.

Krell et al. [21] further improved the two previous spatial filtering techniques.
Their technique is a regularized version of aXDAWN (raXDWAN). Other filtering
techniques, such as CSP, use regularization techniques to further remove noise and
avoid overfitting. rAXDAWN modification over the previous system is based only
in the initialization of the system. Therefore, it is quite easy to implement and
could be relevant in this project. This study showed the great importance of the
initialization parameter in this family of filters.

14

Review on the Interface State of the Art

4.2 Review on the Interface

Regarding the interface used in the project, P300 Speller, several studies have
been looking into the impact the ISI has on the performance of the system. Farwell
and Donchin [22] claim that systems with higher ISI are more e�cient. In their study,
they find the P300 response based on peak detection. Some training is performed
prior the actual trials, where the height of the P300 response is estimated for each
subject. This article is relevant for this thesis since it proves that it is possible to
detect the P300 just by peak detection.

Lu et al. [23] research on the impact ISI, target duration and ISI to target
duration ratio has on the performance of the system. According to their study,
higher ISI obtained the most accurate results. Besides, longer target duration also
improved the accuracy. As for the ratio, experiments with high ratio also proved to
be more accurate. As for the P300 waveform, greater ISI resulted in higher peak
amplitude.

Finally and regarding possible features for P300 bases BCI systems, there are
little but consistent studies on the use of a combination of wavelet decomposition
and entropy [24][25] Perseh and Sharafat [25] decompose the EEG signal via Multi
Resoution Analysis to retrieve the freqeuncy bands where the P300 response can be
found.

Quiroga et al. [24] performed a study on the relationship between wavelet decom-
position of EEG signals and its entropy. The results did show correlation between
event-related oscillations and entropy variations.

4.3 Conclusions

The literature review showed that the two main paths of investigation in P300
based BCI systems are: adaptability of the system and interface design parameters
impact on its performance.

The following chapter will go through the techniques that were developed for
this thesis. Some of them are based on the state of the art here discussed.

15

Chapter 5

EEG Processing

As it was already described in the previous chapter, EEG processing is the central
part of every BCI system.

In this chapter, the preprocessing techniques used in this project will be pre-
sented. The feature extraction methods researched and implemented for the project
will also be described. The classification scheme followed will conclude the chapter.

It must be noticed that all of the algorithms hereby presented have been designed
and implemented for a P300 based BCI system. Consequently, all of the following
sections are based on this approach.

5.1 Preprocessing

5.1.1 Frequency Filtering

As seen in the first chapter, EEG activity takes place in a specific range of fre-
quencies. In the same, the noise introduced by, for example power line interference,
has also its specific frequency band of appearance. This situation can be taken as an
advantage to improve the SNR of the EEG signal. Regarding ocular movement, its
frequency range varies from 0.1 to 10 Hz.Consequently, a frequency filtering will not
get rid of this artifact and other solutions must be sought. On the contrary, ECG
has a wider frequency range (0.01 - 300 Hz). Therefore, a band pass filter will be
e�ective in this case. This project is focused on the P300 wave, which is known to be
more prominent in the lower frequency bands[24][18]. The selected band pass filter
will be then a fourth-order Butterworth filter. Cuto� frequencies are set to 1 and
20 Hz. A Butterworth filter has flat frequency response within the band pass, which
represents a highly desirable feature so as not to distort the EEG signal within the
band of interest.

17

EEG Processing Preprocessing

0 5 10 15 20 25 30

Frequency (Hz)

-20

-15

-10

-5

0

5

M
a
g
n
itu

d
e
 (

d
B

)

Butterworth Filter

Figure 5.1: Magnitude Response of the Butterworth Bandpass Filter

As for the power line interference, it can be seen at 50 or 60 Hz, depending on
the specific power installation of the environment the measurements are being taken
at. In the concrete sceneario of this project, the power line interference acts at 50
Hz. To overcome this problem, a Notch filter with such cuto� frequency is used
to filter the EEG signal. A Notch filter is a band stop filter with a highly narrow
band stop frequency band. Therefore, it is highly e�ective when removing a specific
frequency from a signal.

0 10 20 30 40 50 60

Frequency (Hz)

-50

-40

-30

-20

-10

0

10

M
a

g
n

itu
d

e
 (

d
B

)

Notch Filter

Figure 5.2: Magnitude Response of the 50 Hz Notch Filter

After the frequency filtering, the signals were standardized, i.e. substracted its
mean and divided by their standard deviation.

5.1.2 Component Based Methods

These methods attempt to separate the artifacts from the EEG signal by iden-
tifying certain patterns in the data. In general, all these techniques project the
original signal into a subspace that is capable of retaining more e�ectively the in-
formation of interest to the system. Consequently, Component Based Methods help

18

Preprocessing EEG Processing

reduce the computational requirements of the system, since less input data will be
able to produce better results.

Principal Component Analysis

Principal Component Analysis (PCA) aims to reduce the dimension of data
without much loss of information. The recorded signals are correlated with each
other and, therefore, information coming from all channels can be redundant and
decrease the classification performance[26].

PCA goal is to uncorrelate this set of vectors, maximizing the variance of the
data. Consequently, the result will consist of a set of vectors that retain the most
important information for the BCI system[27].

The PCA algorithm is now presented for an input signal X[28]:

1. Standardize the data

2. Perform Singular Value Decomposition (SVD)

3. Sort eigenvalues in descending order and choose the k eigenvectors correspond-
ing to the k largest eigenvalues, being k the new dimension of the data subspace

4. Construct the projection matrix W, which is just a concatenation of those
largest eigenvectors.

5. Transform the original signal X via W

This procedure is also known as prewhitening of the input data and can be
regarded as a first step to a complete separation of vectors [29]

Independent Component Analysis

Independent Component Analysis (ICA), as PCA, is a technique that seeks the
maximum independence of the input components. While PCA relies on second order
statistics, i.e. covariance, ICA can be seen as a generalization of PCA which does
not require orthogonality. To this purpose, ICA will find a transformation matrix
that minimizes the mutual information between the di�erent sources [27]. There
are many interpretations of independence and, therefore, several ways of computing
ICA can be found in the literature: Maximum Likelihood Estimation (ML), En-
tropy Maximization and Maximization of non-Gaussianity [29]. The last mentioned
method is the most commonly seen in BCI systems.

The central limit theorem states that the summation of two or more statistically
independent variables tend to have a Gaussian distribution but this summation

19

EEG Processing Preprocessing

becomes less Gaussian when it resembles one of those independent components.
Consequently, maximizing the nonGaussianity of a summation of sources (each of
the EEG channels in this project), we will be able to estimate one of them [29].

There are many ways for measuring nonGaussianity. The one used in this project
is called Negentropy. Negentropy is a measure of the distance of a random variable
from the Gaussian distribution [29]. It is the evident that maximizing nonGaussian-
ity is equivalent to maximizing negentropy. Negentropy is based on the information
measurement called entropy, which will be later explained in the "Feature Extrac-
tion" section.

Prior the ICA method, two procedures are usually followed: centering and
whitening. Centering simply means to subtract the signal its mean. This is not
a necessary step for ICA but it does simplify the method. Whitening obtains a new
vector whose components are uncorrelated and have unity variance. The simplest
way to perform whitening is the eigenvalue decomposition (EVD) of the covariance
matrix of the input vector:

X̂ = ED≠ 1
2 ET X (5.1)

Where D is the diagonal matrix of eigenvalues, E is the orthogonal matrix of
eigenvectors and X is the input signal.

The ICA method will be implemented in this project in a more e�cient way,
called FastICA.

FastICA

FastICA [30] is a fixed-point algorithm to maximize nonGaussianity. This method
has considerable advantages in comparison to the technique it is based on, ICA. First
of all, the convergence of the algorithm is really fast and consequently suitable for
online purposes. The algorithm does not rely on step size parameters. Therefore, it
is easy to use and not susceptible to wrong criterion when selecting those parame-
ters. Also, there is no need to estimate the probability density function (PDF) of the
input data, as it is required for Negentropy based ICA. This is specially important
in the field of BCI since EEG signals are far from having a established PDF.

In this project, the implemented FastICA for several units was implemented
due to the fact that the input EEG signal comes from di�erent channels. The
procedure to be followed is identical to the algorithm for one unit or dimension,
with a remarkable exception. To prevent the transformation vector components to
converge to the same value, they need to be decorrelated after every iteration of the
algorithm.

To measure nonGaussianity, FastICA relies on a non-quadratic non-linearity

20

Preprocessing EEG Processing

function f(u), its first derivative g(u) and its second derivative gÕ(u). The non-
linearity chosen is:

f(u) = ≠e≠ u2
2 , g(u) = ue≠ u2

2 , and gÕ(u) = (1 ≠ u2)e≠ u2
2 (5.2)

FastICA algorithm steps are now presented, where W œ Rn◊c, n being the
number of dimensions of X and c the number of dimensions of the new subspace, is
the transformation matrix and W

i

is a column vector of this matrix, , which projects
the input signal X into its principal components. This is the algorithm to be followed
for every dimension [29], where X œ Rn◊m, n being the number of dimensions and
m the number of samples.

Algorithm 1 FastICA algorithm
1: Begin with a random initial normalized W

i

2: Update W
i+1 Ω E{Xg(wT

i

X)} ≠ E{gÕ(wT

i

X)}X
3: Correct W

i+1 Ω W
i+1≠

q
p

j=1 W T

i

W
j

W
j

4: Normalize W
i+1

5: Go to step 3 until W
i

has converged

Convergence here means that W
i+1 and W

i

point in the same direction, i.e. their
dot product is almost equal to 1.

5.1.3 Spatial Filtering

These processing techniques aims to reduce the dimensionality of data while
improving the SNR by linearly combining the original data channels, obtaining a set
of di�erent pseudo-channels.

A wide variety of Spatial Filters (SFs) have been described in the literature.
Among them, the most successful ones are the Common Spatial Patterns (CSP)
filters, fiSF or the xDAWN filter.

Some BCI approaches were based on prior training of the subject to achieve a
high system performance. On the contrary, SFs focus on calibrating the system itself
so as to adapt to each user [31].

This calibration does have some drawbacks though. These techniques are of
course subject-dependent and therefore they need to acquire a certain degree of
user-independence to achieve a good performance.

Besides, since many classification algorithms are dependent on the data set, if
new data is included in the training data set, the whole classification will have to be
computed once again. These kind of algorithms are called batch algorithms because

21

EEG Processing Preprocessing

they have to store the whole data set before training the classifier.

The need for adaptive SFs is then evident. If adaptive, not only the performance
will be seen improved but also the speed and computational requirements of the
system will be superior. Specially in the field of online BCI systems, adaptive SFs
are of prior importance.

In this section two algorithms will be described. First, the xDAWN algorithm
will be explained. Then, its adaptive and improved version, adaptive xDAWN (aX-
DAWN) will be presented.

xDAWN

The basic idea behind the xDAWN is to enhance the synchronous response to
target stimuli. The process can be then divided into two steps: estimate the syn-
chronous responses and design spatial filters that enhance such potentials. The
recorded EEG signal is then defined as:

X = (DA)T + N (5.3)

Where X œ Rn◊m, n being the number of dimensions and m the number of
samples, is the recorded signal. A œ Re◊n, e being the number of samples of the ERP
and n the number of dimensions, represents the ERP response itself. N œ Rn◊m, n
being the number of dimensions and m the number of samples, stands for the noise
and D œ Rm◊e, m being the number of samples and e the number of ERP samples,
is a Toeplitz matrix whose first column elements are all null except for the time
instants where there is a stimulus onset.

Minimizing the least square error between the recorded EEG signal, X, and the
product of D a the ERP response, A, will yield an estimation of this last signal.

Â = arg min
A

||X ≠ (DA)T ||22 (5.4)

However, the least squares estimation gives a very redundant solution and, there-
fore, another scheme must be followed. The technique chosen is precisely the idea
of a set of spatial filters, enhancing the synchronous responses: U œ Rn◊c, n being
the number of original dimensions and c the number of dimension of the projection.
ui then represents each spatial filter, i.e. each column of U .

(X)T U = DAU + (N)T U (5.5)

The first approach is to perform a PCA analysis of the estimated A and then

22

Preprocessing EEG Processing

project the signal X on the largest singular values of the Nf filters.

Since the noise is not directly taken into account when estimating the spatial
filters, this estimation has to be further improved to increase the SNR.

The final solution will go through the computation of the QR decomposition of
both D and X and a singular value decomposition.

The QR decomposition decomposes a given signal into an orthogonal matrix, Q,
and a triangular matrix, R. It is a commonly method used to solve least squares
problems. Being Q

D

œ Rm◊e, R
D

œ Re◊e, Q
X

œ Rm◊n and R
X

œ Rn◊n.

The Nf largest eigenvalues of the matrix formed by the Q segments of both
matrices will be later selected.

QT

D

Q
X

= ���T (5.6)

� and � represent the matrices of left and right singular values („
i

and Â
i

),
respectively, and � the matrix of singular values, ⁄

i

.

The xDAWN algorithm will be now summarized in six steps to estimate the
evoked subspace.

Algorithm 2 xDAWN algorithm to estimate evoked subspace
1: Compute QR factorisation of X ∆ X = Q

X

R
X

2: Compute QR factorisation of D ∆ D = Q
D

R
D

3: Compute SVD of QT

D

Q
X

∆ QT

D

Q
X

= ���T

4: Select the I couples of singular vectors (�
i

�
i

) associated with the I largest
singular values ⁄

i

5: Finally ’ 1 Æ i Æ I, (u
i

, aÕ
i

) = (R≠
X

1Â
i

, R≠
D

1„
i

⁄
i

)
6: Estimate sources ’ 1 Æ i Æ I, x̂

i

(n) = ûT

i

x(n)

Where aÕ
i

stands for each column of the ERP matrix, A and n is the time index.

aXDAWN

The xDAWN algorithm improves its predecessor, xDAWN, by including a re-
cursive least squares (RLS) adaptation of the spatial filter coe�cients. The RLS
method not only allows to introduce new data into the training set, but also change
the spatial filter coe�cients upon changing conditions on the input EEG signal.

Being performed on each incoming window of data, the computational complexity
and memory requirements are obviously reduced in comparison to the previously
described method.

23

EEG Processing Preprocessing

The aXDAWN introduces the temporal dimension, and iteratively obtains the
spatial coe�cients by maximizing the current state of the signal-to-signal-plus-noise-
ratio using generalized eigenvalue decomposition (GED)

Û(n) = arg max
W (n)

U(n)T R1
1(n)U(n)

U(n)T R1
2(n)U(n) (5.7)

Where the estimate uses both the current autocorrelation of the signal estima-
tion R1

1(n) = Â(n)T D̂(n)T D̂(n)Â(n), R1
1 œ Rn◊n, and the autocorrelation of the

noise-plus-signal estimation R1
2(n) = X(n)T X(n), R1

2 œ Rn◊n. Each column of the
estimated spatial filter, û

i

will be then computed following the equation:

û

i

(n) = uT

i

(n ≠ 1)Ri

1(n)u
i

(n ≠ 1)
uT

i

(n ≠ 1)Ri

2(n)u
i

(n ≠ 1)
· Ri

2(n)≠1Ri

1(n)u
i

(n ≠ 1) (5.8)

For numerical reasons, in each iteration these coe�cients must be normalized.
Moreover, to obtain similar values to those extracted from the regular xDAWN
algorithm, the final estimation of each one of the spatial filters will be subtracted
from the following scaling function:

S = diag(ÛT R1
2Û) (5.9)

u
i

Ω
Û

1
s

ii

û
i

(5.10)

Where

s
ii

= diag(ûT

i

Ri

2û
i

) (5.11)

Since it is not feasible to invert the noise autocorrelation in every step, an alter-
native method following the Sherman-Morrison-Woodbury formula [19].

On its behalf, the lower order filters will be calculated using a deflation technique
in order for them to be uncorrelated.

Ri

1(n) =
5
I ≠

Ri≠1
1 (n)u

i≠1(n)uT

i≠1(n)
uT

i≠1(n)Ri≠1
1 (n)u

i≠1(n)

6
· Ri≠1

1 (n) (5.12)

Ri

2(n) = Ri≠1
2 (n) (5.13)

24

Preprocessing EEG Processing

Finally, A needs to be estimated. If the ERPs are not overlapped, the solution
would be as simple as an averaging procedure. However, this condition is not always
met. Again, the Sherman-Morrison-Woodbury [19] formula will be used, combined
with the mentioned averaging procedure. Due to the adaptive nature of the filter
being described, this last procedure will be performed iteratively as the other steps
previously presented.

In order to adapt the filters, there are two di�erent possibilities of action: track-
ing the ERP response or the noise autocorrelation. In this project, the first option
was chosen and, thereby, the presented formulae to be followed will only be the ones
corresponding to such method.

Â(n) = ⁄
A

Â(n ≠ 1) + X̂(n) ≠ Â(n)
k

(5.14)

R1
1(n) = Â(n)ÂT (n) (5.15)

Where k is the k the ERP and ⁄
A

œ [0, 1] is the update coe�cient and I is the
identity.

The raXDAWN [21] variation introduced in the literature review was imple-
mented in the system. The only di�erence between both method is the initialization:

• R1
1(0) = 2≠15I

• R1
2(0)≠1 = 215I

The initialization parameter was chosen after several experimental trials.

The complete algorithm is now stated.

25

EEG Processing Feature Extraction

Algorithm 3 The aXDAWN spatial filter
Initialization: Û(0) Ω small random numbers
Â(0), R1

1(0), R1
2(0) Ω 0 R1

2(0)≠1 Ω I

1: begin

2: while more data available do

3: Receive data window X(n)
4: if X(n)”target” then

5: Update Â(n)
6: Update R1

1(n)
7: end if

8: Update R1
2(n)

9: Update R1
2(n)≠1

10: for i œ [1...n
f

] do

11: if i > 1 then

12: Apply deflation technique to get Ri

1(n)
13: end if

14: u
i

(n ≠ 1) Ω column of Û(n ≠ 1)
15: Calculate u

i

(n) using the RLS update
16: Normalize u

i

(n)
17: Save u

i

(n) in Û(n)
18: end for

19: Get U(n) by de-normalizing Û(n)
20: end while

21: end

5.2 Feature Extraction

Once the EEG signal has been appropriately preprocessed, the next step to follow
is to perform an adequate feature extraction that reflects the information sought in
the EEG. This section will cover the methods used in this projects.

5.2.1 Time - Frequency

Spectral methods, such as Fourier Transform (FT) or Short Time Fourier Trans-
form (STFT), have been widely used in signal processing due to its simplicity and
computational speed. These techniques, however, imply important disadvantages in
the analysis of ERP signals. FT yields a representation of the signal with perfect
spectral resolution but retains no temporal information.

STFT, a Fourier-related transform commonly used in the analysis of non-stationary
signals, demands a constant time windowing of the signal, which eventually a�ects
frequency resolution [27].

26

Feature Extraction EEG Processing

Wavelet transform (WT), on the contrary, is local in both time and frequency
and therefore it allows a thorough analysis of the time-varying spectral content of the
signals. WT distinguishes between continuous (CWT) and discrete (DWT) mode.
CWT can be a highly redundant representation of the analyzed signal. Besides, it
is computationally impossible to use the whole infinite set of wavelet coe�cients.
Consequently, a discrete set of parameters can be selected and perform a DWT
instead of a CWT. The result is a simpler and faster operation, which can also be
implemented via digital filtering techniques.

The basic idea behind DWT is a projection of the input signal into di�erent
basis functions built from translations and scaling of a set of functions called mother
wavelets (MVs). By definition, mother wavelets are finite energy, fast decay signals
whose time-width adapts to their frequency: high frequency wavelets correspond to
narrow functions while low frequency are much broader. Di�erent resolutions are
achieved using both scaling and mother wavelet functions. The scaling and mother
wavelet functions are defined, respectively, in [32] as :

„(X) =
Nÿ

k=≠N

a
k

„(2X ≠ k) (5.16)

Â(X) :=
Nÿ

k=≠N

(≠1)ka1≠k

„(2X ≠ k) (5.17)

Where N is the number of samples.

Multi Resolution Analysis

Multi Resolution Analysis (MRA) is an e�cient tool to analyze the time-frequency
content of a given signal in di�erent resolutions and scales. Multiresolution consists
of a series of nested approximation spaces, V.

All of these spaces are scaled versions of one space, which reflects precisely the
multiresolution aspect of the wavelet transform [32].

MRA can be easily implemented via dyadic filter bank. Two filter and two
down samplers compose each decomposition stage. A mother wavelet and a scaling
function represent the two filters: high-pass and low-pass, respectively. The process
is quite simple; the input signal is low-pass filtered to obtain the approximation
coe�cients and high-pass filtered to obtain the detail coe�cients. Then both output
signals, detail and approximation, are down sampled. The decomposition further
continues by taking the approximation coe�cients as the input signal for the next
stage.

27

EEG Processing Feature Extraction

Figure 5.3: MRA Block Diagram (Matlab)

The most important steps in a MRA process are the proper selection of the
mother wavelet and decomposition level. The choice of the mother wavelet will be
highly dependent on the sought feature. Daubechies MVs are characterized by their
extreme phase and highest number of vanishing moments. Consequently, they are
a great choice when smoothness is required. On their behalf, Shannon MVs are
analytically defined, infinitely di�erentiable and sharply bounded in the frequency
domain. These properties provide pretty good location of energy in the spectral
domain. It has been widely reported in the literature that Daubechies 4 is the best
choice to detect changes in EEG signals. Moreover, this function resembles the P300
component in ERPs so they make the perfect and adequate option for this project
[25] .

The number of decomposition levels will determine which frequency sub-bands
are retained in the wavelet coe�cients. So as to retrieve all the e�ective frequency
components in the ERPs, a su�cient number of levels must be computed. The
frequency scale of the k detail decomposition levels follows the pattern:

• f
k

= [0, fs

2k]

• f
k≠n

= [fs

2(k≠n) , fs

2(k≠(n+1))]

Where f
s

is the sampling frequency.

The most prominent component of the P300 response has been found in the delta
frequency range and, consequently, the highest decomposition level must contain fre-
quencies within 0 and 4 Hz. Given the sampling frequency of 256 Hz, both of the
amplifier used in this project experiment and in the o�ine data tested, the appro-
priate number of decomposition stages is six. The resulting sub-bands correspond
then to the following frequencies:

28

Feature Extraction EEG Processing

Frequency Range Decomposition Level
0 - 4 Hz 6
4 - 8 Hz 6 - Approximation
8 - 16 Hz 5
16 - 32 Hz 4
32 - 64 Hz 3
64 - 128 Hz 2
128 - 256 Hz 2

Table 5.1: MRA Decomposition Levels

All frequencies, except explicitly stated, correspond to the detail level.

Each decomposition level represents the same temporal interval but, due to the
downsampling performed in the decomposition, the higher the level, the less coef-
ficients a given level has. As a consequence, the length of the input signal to be
decomposed has to be wisely chosen. The reason is that further operations on the
wavelet decomposition will have, at most, a time resolution equal to that of each
coe�cient of the highest decomposition level. Being the timing extremely important
in a P300 BCI system, the MRA was computed each 1.5 seconds so as to obtain a
time resolution of 125 ms.

5.2.2 Entropy

In the field on Information Theory, entropy was first introduced by Shannon
[33]. Entropy is a measurement of the amount of information retained in any time
series. Regarding information theory, entropy is based on the PDF of such series [34].
With this measurement, Shannon introduced a way of measuring the uncertainty.
Consequently, it can also be regarded as a measure of the spread of the data. Flat
PDFs will have high entropy values will narrow PDFs will have low entropy values
[35]. The reason is obvious: a narrow PDF indicates that all of the possible values
a time series can present are focused on a small range of a values. Therefore, there
is not much uncertainty and the entropy will be low.

Entropy can also be regarded as a measure of disorder and chaos. The more
chaotic a distribution is, the higher its entropy. Applied to the field of BCI systems,
it should be expected that EEG signals have high entropy values. Nevertheless, the
P300 response can be regarded as a transition from a disordered state in the brain
signal to an ordered state. In this case, the entropy will be subject to decrease when
this response is present.

Once discussed the potential importance of entropy in BCI systems, this mea-
surement will be now explained.

29

EEG Processing Feature Extraction

First of all, entropy, from now on being referred to as H was described as a
measurement with the following main properties [34]:

1. H should be a continuous function

2. If all n observations in a time series have equal probabilities, then H should
be a monotonic increasing function of the number of n

3. The entropy of a summation of two independent probability distributions
should be the sum of the individual entropy of each distribution

The function that satisfies such conditions is [34]:

H(X) = ≠
ÿ

k

p(X
k

) log2(p(X
k

)) (5.18)

Where p(X
k

) is the probability of each observation in a time series X
k

.

Renyi proposed another family of entropy measurements based on Shannon’s
word [34]. Shannon’s is the simplest of all entropy measures and it is considered to
be the averaged information in the usual sense[34]. Renyi’s entropy is defined as:

H
–

(X) = 1
1 ≠ –

log2(
ÿ

k

p(X–

k

)) (5.19)

The placement of the – makes Renyi’s entropy more flexible than Shannon’s
since it enables several measurements of uncertainty for a given PDF. In the case
where – equals one, Renyi’s entropy is equivalent to Shannon’s.

The – power allows to control the contribution of the tails of the PDF to the
entropy. This is important, for example, in the case that weak signal components
overlapped with stronger ones must be distinguished from the latter.

A large positive value of – will provide a measure much more sensitive to events
that occur often. On the contrary, large negative values will give measurements
more sensitive to events which happen seldom.

In this project, the entropy measurement chosen is Quadratic Renyi’s Entropy,
– = 2

Once the concept of entropy is understood, the next section will describe how
both the ideas of wavelet decomposition and entropy are combined in this project
as a feature.

30

Feature Extraction EEG Processing

5.2.3 Wavelet and Entropy

As discussed in the previous section, entropy can reveal ordered states in EEG
signals. Also, MRA provides a good time-frequency analysis of the input signal.
Consequently, a combination the concepts of MRA and entropy can be used as a
feature to characterize the state of EEG signal and determine if the P300 response
is present or not.

Entropy is fairly easy to compute, provided the probability density function of
the signal under consideration is known. Of course, EEG signals are non-stationary
and no PDF fits them appropriately. Therefore, it is not appropriate to estimate
entropy with a parametric PDF model and it is required to choose a non-parametric
estimation.

The first method attempted was entropy estimation via kernel function. The
kernel (Parzen) estimate of the PDF using an arbitrary function Ÿ

‡

(.) is given by
[34]:

p̂
X

(X) = 1
N

‡

Nÿ

i=1
Ÿ

1X ≠ X
i

‡

2
(5.20)

where N is the number of independent variables and ‡ is the size of the kernel
size or bandwidth parameter. The kernel size a�ects the bias and the variance of
the estimation in opposite ways. Therefore, it should be wisely selected.

A Gaussian function was chosen as kernel function due to its ease of implemen-
tation. Using eq. (5.19), the estimation of the quadratic Renyi entropy will be
followed as[34]:

Ĥ2(X) = ≠ log
⁄ Œ

≠Œ

1 1
N

Nÿ

i=1
G

‡

(X ≠ X
i

)
22

dx (5.21)

Where G
‡

is the Gaussian kernel function and X(n) is the input signal data.

The result of this operation is easily computed since the product of two Gaussians
can be exactly evaluated as a Gaussian computed at the di�erence of the arguments
and whose variance is the sum of the variances of the two original Gaussian functions
[34]:

Ĥ2(X) = ≠ log
Nÿ

i=1

Nÿ

j=1

1 1
N2 G

‡

Ô
2(X

j

≠ X
i

)
22

dx (5.22)

With this method of entropy estimation, the step of estimating the PDF of the

31

EEG Processing Feature Extraction

input data has been avoided. It is widely considered as a good decision to choose
this parameter accordingly to the dimension of the data, following Silverman’s rule
[34]:

‡
opt

= ‡
X

(4N≠1(2d + 1)≠1)
1

(d+4) (5.23)

Where ‡
X

is the standard deviation of the input data, N is the number of samples
and d is the dimensionality of the data.

This process, although accurate, was time consuming and presented too high
computational requirements. Consequently, this approach needed to be discarded
since BCI systems require accuracy but also speed.

Accordingly, wavelet spectral entropy was the selected feature to be used. Spec-
tral entropy quantifies the spectral complexity of an input signal[35], EEG in this
project. The basic idea behind spectral entropy is to compute this value from the
PDF of each wavelet decomposition level. This PDF is defined as the ratio of each
level’s energy to the total mean energy.

On its behalf, the energy for each level was obtained by squaring its wavelet
coe�cients. Some relevant facts must be taken into consideration before proceeding
to calculate this energy.

As discussed, each resolution level has a di�erent number of coe�cients and, as
a consequences, what must be computed is the mean energy in the decomposition
level rather that its total value. The mean energy will be computed by averaging
the total energy over a time window long enough to include at least one coe�cient
in every level [24]:

E
k

= 1
N

ÿ

i

C2
i,k

(5.24)

Where E
k

is the energy of each decomposition level in each window, C
i,k

the
wavelet coe�cients and N is the number of wavelet coe�cients in that specific win-
dow.

The total energy for each time window will be then:

E
tot

=
ÿ

k

E
k

(5.25)

The PDF of each level will simply be computed as the ratio of each decomposition
level energy to the total energy:

32

Classification EEG Processing

p
k

= E
k

E
tot

(5.26)

Finally, Renyi’s entropy can now be calculated with eq.(5.19)

Of course, this method is less accurate than the previous one. Nevertheless,
the computational requirements are considerably decreased, achieving a faster and
enough accurate method for this project purposes.

5.3 Classification

Once the feature extraction has been completed, this information must be pro-
cessed by a classifier. The aim of the classifier is to find, as accurately as possible,
the P300 response elicited by the low-probability target event.

5.3.1 Peak Detection

Peak Detection is the first classification algorithm attempted in this thesis. Both
adaptive and non-adaptive schemes have been developed. The peak detection for
both of them are similar. This subsection will first explain the features used in both
techniques, and lastly the di�erences in the implementation will be presented.

Apart from the computed wavelet entropy which can reveal ordered states in
EEG signals, i.e. P300 responses, this ERP is shown as an increase in the delta
band power. It is then expected to have significant peaks in that frequency sub-
band.

Consequently, the selected features for this project will be both the wavelet
entropy and the delta energy.

The wavelet entropy is expected to rapidly decrease on the appearance of a stim-
ulus. Although the entropy will be constantly varying due to the non-stationary
nature of the EEG signal, this variation will be approximately constant. Therefore,
until the presence of an ERP, the variance should be kept more or less stable. How-
ever, during such stimulus episodes, the entropy will find its minimum value and,
consequently, the entropy variance will be maximum [36]. The first feature will be
then the variance of the wavelet entropy, compute over consecutive time windows
(these windows being the minimum time resolution level of the MRA)

The other feature will not consist only on the delta energy itself. The relation
between the delta increase and the wavelet decrease must be taken into account since
an increase in the energy of this frequency band can be caused not only because of the
presence of an external target stimulus. To compute this feature, first, the entropy

33

EEG Processing Classification

will be substracted its maximum value. Next, its absolute value will be taken so as
to convert the previous local minimum to local maxima. Finally, the energy will be
scaled by this value. In this way, the energy increments will now coincide with the
entropy decrements.

Due to the nature of the computed features, the classifying decision will be solely
based on peak detection. Each of the obtained features will undergo a peak analysis,
where the threshold will be adaptive for each of them. Consequently, this threshold
will be adaptive for each trial and each user. The reasons for the threshold to be
adaptive are quite obvious. Although the features are all normalized, their shape are
completely dissimilar and some of them need more strict values as a threshold. That
is the case of the entropy, for example. Regarding the adaptivity between trials and
users, the stimulus sequence changes in every trial so it cannot be expected that the
brain signals will behave similarly, less between di�erent subjects.

Based on experimental procedure, the threshold selected for the entropy variance
equals its mean. As for the energy feature Also, consecutive peaks cannot be closer
than the ISI.

Knowing the interval in which the P300 response can appear, 200-400 ms, every
row/column that has appeared from 125 to 375 ms prior the peak will be considered
as target stimulus.

The classification procedure for the aXDAWN filter is slightly di�erent. Since in
each iteration the filter needs to know if the input signal corresponds to an ERP or
not, the classification must be computed for each input segment of the filter. First,
the considered threshold is zero since in such small time windows there is not enough
data to select an appropriate threshold.

Also, instead of considering every peak higher than the threshold to correspond
to an ERP response, the classification algorithm for aXDAWN only considers as
target those peaks found both in the entropy and energy feature. This ensures the
condition that a decrease in the entropy must be followed by an increase in the
energy. The position of this peak will be saved and, in order to minimize errors,
the same procedure followed for the non-adaptive methods is followed: rows and
columns appearing from 125 to 375 ms before the ERP are considered target.

Due to the interval appearance of the P300 wave, it is quite easy to choose a
non-target row/column as stimulus. Although, the stimulus sequence is randomized,
this variation led to many misclassifications and, as a consequence, the classification
method was changed.

5.3.2 Support Vector Machine

This classifier uses a discriminant hyperplane which maximizes the margins be-
tween di�erent types of data. Non-linear decision boundaries can be created with

34

Classification EEG Processing

only a low increase of complexity by mapping the data to another space of much
higher dimensionality. The pros of these classifiers are their good generalization
properties and insensitivity to overtraining. However, they su�er from low speed of
execution[5][37].

Figure 5.4: SVM finds the optimal hyperplane for generalization [5]

Given the results obtained from the previous classifier, which will be later pre-
sented in the following chapter, it was decided to change the classification scheme
and implement a more complex algorithm.

Although the combination of wavelet and entropy is able to highlight the presence
of the P300 response, there is a huge problem with its delay of appearance. Since
the ISI is similar to the stimulus duration, consecutive rows and columns are too
close to each other. Consequently, a slight variation in the time interval where the
P300 response is being searched can highly a�ect the performance of the system.
If the P300 wave had a constant delay after the presence of the stimulus, the peak
detection classifier would work almost perfectly. However, this is not the case and
other classifier had to be implemented.

The previously described properties of the SVM classifier made it the selected
next classifier. The features used for this classifier are the same two ones previously
described, plus one other feature that was found to show the presence of the P300
response.

This other feauture is simply the inverse of the wavelet entropy. Huge decreases
in this time series will be seen as huge peaks in the inverse signal.

The training set of the classifier consists then of the features:

1. Entropy variance over consecutive samples

2. Entropy scaled by delta energy

3. Inverse of the entropy

35

EEG Processing Conclusion

After a set of trials, the selected features for the SVM are here presented:

1. Kernel Function: Gaussian

2. Box Constraint : parameter controlling the penalty imposed on margin-
violation observations - the higher, the longer training time - 5

3. Kernel Scale : 20

In the context of the P300 Speller, the classifier was trained in every case for
10% of the duration of a single letter trial.

5.3.3 Voting Process

The final step of the classification consists of a voting process. The results of
every trial will be analyzed and the most frequent one will be selected as the target
stimulus.

Each row and column of the matrix has been labeled from 1 to 12. Indices from
1 to 6 represent columns and indices from 7 to 12 rows. As it has been previously
explained, the output of the classifier is a series composed by those indices that have
been considered to be target stimulus. Being the test a sucesion of trials, by the end
of the test the classifier will have obtained multiple outputs. Some of them will be
correct but some of them will not.

The mentioned voting process has to be performed in two steps. This is necessary
because both the correct row and column index are needed so as to extract the
character the subject had in mind. Therefore, the classifier cannot give two row
indices or two column indices as an output.

Following this reasoning, the voting will be first done for the rows and then for
the columns, or viceversa.

The voting process is quite simple. The classifier will have a count on how many
times a row or a column has been selected as a target. Once all the trial have
undergone the analysis, the row or column with higher score will be chosen as the
target.

Finally, the target letter will be the intersection of the guessed row and column.

5.4 Conclusion

This chapter presented the processing techniques used in this thesis for each of
the BCI system stages. Next chapter will present the experimental procedure that

36

Conclusion EEG Processing

was designed to test these algorithms.

37

Chapter 6

Experimental Setup

In order to assess the validity of the algorithms presented in this thesis, they
ought to be tested. For this purpose, an interface was developed and an experiment
was conducted on several subjects. This chapter will describe the interface, its
developing process and the experimental procedure that was followed.

6.1 P300 Speller

The paradigm chosen to test the presented algorithms is the P300 Speller. The
speller is a simple system based on visual stimuli that allows a subject to spell a
letter, consequently being able to form words and communicate with the external
word simply by thought. Therefore, the speller is a potential communication tool,
specially useful for people su�ering from disabilities such as ALS.

The interface consists of a 6x6 matrix, containing both letters and numbers.
While functioning, each row and column is randomly intensified, leaving a small
time between those occurrences. The time interval between two consecutive row
or column intensifications is called Inter Stimulus Interval (ISI) and it can have
a high impact in the system’s performance [9]. Within such random sequence of
highlights, the appearance of the letter the subject is thinking about will represent
a low-probability event. This situation will consequently trigger a P300 response,
which will be recognized by the system. Then, the intersection of the ERP wave
elicited by a row and the one stimulated by a column will reveal which letter the
user was focusing on[37].

39

Experimental Setup Design of the Interface

Figure 6.1: P300 Speller

6.2 Design of the Interface

To be able to present a visual stimulus, an appropriate toolbox had to be chosen.
Being the paradigm based on visual stimulus, it was crucial to achieve synchroniza-
tion between the images presented on the screen and its refresh rate. The toolbox
selected for this purpose was the Cogent Graphics toolbox for MATLAB. This tool-
box allows the programmer to draw di�erent images and display them when desired
on the screen. The basic command that makes this images, called ‘sprites’ by the
toolbox, is ‘cgflip’ and it waits until displaying the picture fits the monitor refresh
rate. Four di�erent screens were needed for this project. All of them contained the
mentioned matrix but each of them had a slightly di�erent purpose. In order to
synchronize the recording with the beginning of the interface, the first screen pre-
sented showed the matrix along with the text message “Press space bar to start”.
The interface will then enter in a loop until that key is pressed. Then, the second
sprite, consisting solely on the matrix, appears and the random order of the row and
columns will be extracted via the coded ‘speller’ function. After some seconds, the
sprite changes again. The remaining two sprites exhibit the matrix and the word to
be spelled, followed by the specific letter the subject is supposed to be focusing on.
One of these sprites will be static and change only to display the following letter
and/or word. The other one will also do so, but in addition it will be the one in
charge of changing the row and column colours that represent the above mentioned
intensifications. The timing of the interface is controlled by the built-in MATLAB
functions ‘tic’ and ‘toc’, which provided the most accurate timing results. Once the
trial is over, the interface will return as an output the random sequence the matrix
has followed, which is critical for the system, both to classify the P300 responses

40

Recording Experimental Setup

and to check the algorithms’ results.

Being the matrix fixed, the main changes to be introduced in the interface are
the following:

• Intensification time of each row or column

• ISI

• Number of words

• Letters in each word

• Time interval between letters

• Time interval between words

The selection of these parameters will be later explained in the ‘Experiment’
section.

6.3 Recording

The EEG recordings were performed with the g.tec amplifier. The specific hard-
ware tool used was the amplifier g.USBamp, along with the included MATLAB API
that allows the recording from MATLAB.

Figure 6.2: g.USBamp (g.tec Technologies)

Besides, the g.GAMMAsys provided the 16 electrodes used for the measure-
ments and the g.GAMMAbox was the power supply and driver that connected such
electrodes to the amplifier.

41

Experimental Setup Recording

Figure 6.3: g.GAMMAsys (g.tec Technologies)

The electrodes placement followed the 10-20 system and they were chosen as
follows: Fc3, P0z, Fz, Fc2, Fc4, P3, P08, Cz, C2, C4, Oz, P07, Cpz, Cp2, P4, Pz.
The ground was placed on the forehead and the reference on the right ear lobe.

Figure 6.4: Electrodes placement for the experiment

To perform the measurements, a MATLAB script was coded. This script first
initializes the amplifier, selecting 16 channels and a sampling frequency of 256 Hz.
Synchronization between the interface and the recording script is crucial. Therefore,

42

Experiment Experimental Setup

a User Datagram Protocol (UDP) connection is established between the recording
and the interface scripts and both scripts are running in di�erent MATLAB sessions.
Just before initializing the interface itself, each interface scripts sends the duration
of the trial to the recording script. Then, the recording will wait until the space
bar key is pressed. The seconds between this occurrence and the appearance of the
first word, concretely five seconds, will be discarded and the real EEG recording will
start and be stored after this time interval. This time period is necessary mainly for
two reasons. First of them is to assure a correct synchronization between recording
and interface. The second one is to allow the EEG recording to stabilize, since the
first recorded samples can be quite inaccurate due to the setup time.

6.4 Experiment

The experiment was carried out with 10 healthy voluntary subjects aged from
20 to 26 (5 females and 5 males) without any neurological disorder known to a�ect
the EEG recording. One subject was left-handed and six out of the ten subjects
described to have any of the following optical defects: myopia, astigmatism. The
trials were conducted in an isolated and barely illuminated room so as to assure
the quality of the recordings. The conducted experiment consisted of three di�erent
trials. In every one of them, each subject was facing the speller matrix, sitting
comfortably approximately one meter apart from the screen.

Figure 6.5: Subject using the speller

The speller presented predefined five-letter words in every one of the trials. For
each letter, each row and column was randomly intensified 10 times for 125 ms,
being then each element in the matrix highlighted 20 times. Every element in the
matrix should be highlighted a su�cient amount of times so as to assure the system’s
performance, but that number should also be kept below a reasonable value. The
reason for that last assumption is that the P300 wave is based on low-probability
events and the sight of the desired letter for an excessive number of times could
make the brain used to it, consequently not triggering the P300 response anymore.
The chosen number of letters for each word was selected as five so as to obtain
enough data to test the algorithms. As for the ISI, two di�erent values were tested
throughout the experiment. The first two trials kept the same ISI value: 250 ms.

43

Experimental Setup Conclusion

Consequently, the interval between row or column intensifications was 125 ms. The
third and last trial however had an ISI of 375 ms, leaving 250 ms between row or
column highlights. The first impact that this change could have in the system could
be an improvement in the classification. The P300 response has no fixed delay from
the stimulus, ranging typically from 200 to 400 ms. Given the classification algorithm
used in the system, a higher interval between row or column intensifications could
lead to less misclassifications. On the other hand, increasing the ISI also increments
the trial duration, which can have a negative e�ect on the subject.

The first trial, presenting only two words ("juice" and "clock"), was regarded as
a test experiment to make the subject used to the system. In this way, the following
and longer trials could be conducted with the certainty that the user really knew
how to use the speller, enhancing then the quality of the recordings. The second trial
included one more word ("phone", "eight" and "shoes"), increasing then the amount
of data available to test the algorithms. The third trial ("mouse" and "beach"), being
increased the duration of each word due to the ISI increment, presented only two
words to the subject.

As a general feedback from the subjects, the least comfortable trial was the
second one, most likely due to its higher duration. As for the most convenient,
opinions were divided. Some of them preferred the first one, probably because it
was the shortest trial, and others liked better the last one. The reason to this last
choice was that the higher ISI made the trial easier on their eyes.

Finally, the time interval between consecutive letters was three seconds and the
resting time between words was five seconds. It was considered that three seconds
was enough for the subject to focus his or her attention on a di�erent letter. Nev-
ertheless, a new word could require longer adaptation time and so the time interval
between words was chosen to be five seconds.

6.5 Conclusion

This chapter exposed the design for the P300 based BCI system that was imple-
mented in this thesis. The following chapter will present the results obtained from
this setup and other o�ine data.

44

Chapter 7

Results

This section will present the results obtained from this thesis. The algorithms
were first tested with existing data sets from BNCI Horizon 2020. Once the experi-
ment was conducted, the techniques developed were also tested in the data recorder
specifically for the project.

7.1 Wavelet and Entropy

As it was discussed in the previous chapter, the delta energy and the wavelet
entropy interact with each other at the presence of the P300 wave.

First, the contribution of each individual decomposition level was examined.

Figure 7.1: Energy within each decomposition level: (a) Delta Band - Detail; (b)
Theta Band; (c) Alpha Band; (d) Beta band

45

Results Wavelet and Entropy

The above figure presents only the lowest 4 decomposition level, ranging from 0
to 32 Hz, since EEG activity, specially during a cognitive task eliciting a P300 wave,
takes place in that spectrum range.

The theoretical assumption about the predominance of the delta band during an
external stimulus is then proved to be correct: the order of the delta energy is one
order superior to the other levels.

This contribution can also be seen in the PDF of the wavelet. Since the delta
level retains most of the energy, being computed the PDF as the ratio of each level
power to the total power, it is expected that this level also has higher PDF.

Figure 7.2: PDF of each decomposition level: (a) Delta Band - Detail; (b) Theta
Band; (c) Alpha Band; (d) Beta band

Next, Renyi’s entropy was computed. The figure below depicts the entropy value
over a time window of 30 seconds, were several target stimuli took place.

46

Wavelet and Entropy Results

Figure 7.3: Renyi’s Entropy and Stimulus Onset

Focusing on the first 3.5 seconds of the previous figure, the entropy decrease due
to the stimulus is evident.

Figure 7.4: Zoomed view of Renyi’s Entropy and Stimulus Onset

Finally, the direct relation between delta power and entropy will be presented in
the following picture.

47

Results Wavelet and Entropy

Figure 7.5: Renyi’s Entropy and Delta Band Energy

The figure shows a specific time window of 3.5 seconds, it can be clearly seen
that the delta peak coincides with the entropy decrease.

It should be noticed that these figures show the entropy and wavelet results
preprocessed only with a band-pass filter and later standardization. Also, they
correspond to the Fz channel, which showed the best results of all the channels
recorded.

In order to prove the improvement on the P300 detection with spatial filtering,
the following picture will present the major improvement achieved by performing
FastICA and the xDAWN on the signal.

Figure 7.6: Improved Feature Extraction

More minimum values can be seen in this last figure. This represents that the

48

Selected Features Results

preprocessing steps followed have correctly projected the signal into a subspace where
the P300 components are highlighted. This is, precisely, the aim of xDAWN spatial
filter.

7.2 Selected Features

Once the potential of wavelet entropy for P300 detection has been proved, this
section will present the corresponding extracted features.

The first feature to be analyzed is entropy variance. As it was seen in the previous
section figures, the entropy is expected to keep a variance more or less stable expect
in those P300 response.

Figure 7.7: Entropy Variance

The second feature is the scaled entropy, which takes advantage of the informa-
tion provided both from the entropy and the delta energy.

49

Results Selected Features

Figure 7.8: Scaled Entropy

Lastly, the inverse entropy will be depicted in the next figure.

Figure 7.9: Inverse Entropy

By inspecting all the previous figures, some conclusions can be extracted.

First, all of the features are able to show the presence of the P300 wave. Although
the entropy variance shows more prominent peaks after stimuli, a very fine selection
of a threshold for peak selection must be performed for this feature. Regarding the
scaled entropy, it reduces the probability of misclassification since all those intervals
where the delta energy is not su�ciently high will not be considered target stimulus.
On the other hand, energy can increased due to many other external stimulus and
therefore some scaled entropy peaks would lead also to misclassification. Finally,
the inverse does show the decrease in its value but it is also a�ect by the intrinsic
variance of the entropy.

50

Classification Performance Results

Due to all of these reasons, the peak detection was not successful, as it will be
seen in the next section.

7.3 Classification Performance

In this section, the final results of the system extracted from the classifier will
be presented.

Since several methods were tried out in this thesis, the results here presented
will consist of a series of accuracy rates achieved by di�erent combinations of the
algorithms.

The following acronyms are used in the table:

• Bandpass æ BP

• Standardization æ ST

• Entropy Variance æ EV

• Scaled Entropy æ SE

• Inverse Entropy æ IV

Table 7.1: Algorithms used in the project

Preprocessing Features Selected Classification
1 BP + ST EV + SE + IE SVM
2 BP + ST + FastICA EV + SE + IE SVM
3 BP + ST + FastICA + xDAWN EV + SE + IE SVM
4 BP + ST + axDAWN EV + SE + IE SVM

And the results for the o�ine data acquired from BNCI, corresponding to eight
subjects, are the following:

Table 7.2: Results from BNCI Data

Rows Accuracy Columns Accuracy Letter Accuracy

1 98.10 % 97.14% 97.14%
2 100% 97.14% 97.14%
3 98.57% 98.57% 98.75%
4 100% 100% 100%

51

Results Classification Performance

As it can be seen, the results from existing data sets are almost perfect for every
single algorithm implemented.

Specially, aXDAWN is the perfect algorithm for the system since it makes no
mistake and the accuracy is perfect.

Table 7.3: Results from recorded data

Rows Accuracy Columns Accuracy Letter Accuracy

Two words 90% 100% 90%
Three words 90% 90% 90%
Two words - higher ISI 100% 100% 100%

Results for the recorder data from the P300 Speller designed for the project are
also remarkable. These last results correspond to the fourth algorithm, which used
the spatial filter axDAWN.
As it was discussed in the literature review, it has been proved that higher ISI
increases the performance of the system.

52

Chapter 8

Discussion

8.1 Wavelet and Entropy

The results presented in the previous chapter showed the theoretically discussed
interaction between delta wavelet energy and its entropy. It could be seen that the
results assessed the theoretical assumptions.

MRA allowed to adequately separate the EEG signal components. In the specific
case of P300 based BCI systems, this is of great importance since the interesting
EEG activity takes place in an specific frequency range.

The relationship between the EEG and ERP was identified in the presented re-
sults. An ERP corresponds to a transition from a disordered state in the brain
signals to an ordered state and so, the entropy consequently decreases [24]. An
ordered state provides less information in the context of Information Theory. The
EEG resonances upon stimulation can be found only in some of the EEG compo-
nents. This fact can be easily seen in Figure 7.1 where the energy corresponding to
the most relevant decomposition levels is depicted. These oscillations will be also
synchronized, which is precisely the reason why an ERP is considered to provoke
a more ordered state in the EEG. The spectrum of the EEG will be consequently
narrower and the entropy lower.

The family of entropy chosen was the Quadratic Renyi Entropy. This choice
was not arbitrary. As discussed in the EEG Processing chapter, the α parameter
in Renyi’s Entropy allows control over the contributions of the PDF to the entropy.
Specifically, higher values make the measurement more sensitive to events which
occur more often. This fact could be mistaken when thinking about ERPs since they
are low-probability events, specially regarding P300 based BCI systems. However,
the wavelet PDF was computed as the ratio of energy between different levels. It
has been proved that the delta band has the highest probability of all of the levels.
Therefore, in order to highlight the increments of delta energy, α should be selected

53

Discussion Classification Performance

as a high value, at least higher than the unity, which corresponds to Shannon’s
entropy. During this project, several values of – were also tested. No di�erence in
the results could be found for values higher than 2.

The preprocessing steps implemented in this thesis highly improved the SNR
and managed to project the input signals into a subspace were the P300 components
were evident. The better results were provided by the xDAWN filter, in its static
or adaptive form. This result was expected since the algorithm is based on seeking
a projection of the signal that ressembles the ERPs. Combined with FastICA, the
results were further improved.

8.2 Classification Performance

Many algorithms were tested in this thesis and they were combined in a number
of ways. All of them were tested with o�ine data coming from a P300 Speller
experiment. Therefore, the accuracy rate will be computed for rows, columns and
letters.

All of the systems based on peak detection classification had very poor perfor-
mance. The reason to this result is, as it has been discussed, the varying delay
of time of appearance of the P300 wave. Although the features selected reflect cor-
rectly the ERP, this time delay, combined with the small ISI leads to an unacceptable
performance for any real-life BCI system.

The introduction of the SVM classifier supposed an increased performance for
every one of the algorithms combination. Of course, this improvement is at the
expense of higher computational complexity and low speed of execution. However,
the accuracy rate is still too low for a BCI system.

The major problem in the classification performance via peak detection was the
di�erent rate of accuracy for rows and columns. Only when guessed right together,
the letter can be correctly retrieved. Then, a bad combination of rows and column
guesses leads to a excessively low rate of success.

Nevertheless, the results showed an accuracy almost perfect for every method
thanks to the SVM. The training features for the SVM are those previously ex-
plained. As for the training setup time, only 10% of each trial was necessary to
train the classifier. The adequate choice of the Gaussian function and the kernel size
were the key to the success of the algorithms presented in this thesis. The major
drawback of this classifier, as mentioned, is the low speed of execution.

54

Chapter 9

Conclusion

The aim of this thesis was to develop adaptive filtering techniques to improve
the performance of BCI systems. These systems need to be accurate, fast and user
adaptive.

The paradigm chosen to develop the BCI system was P300. This ERP is based on
low-probability target events that trigger responses in the human brain. Although
easy to implement, such a system constitutes a challenge due to the varying nature
of the P300 response itself. Not only its amplitude can vary, but also its latency
with respect to the stimulus.

An adaptive system seems to be then the appropriate choice for such a varying
paradigm. In this thesis several existing algorithms were tested and compared.
These algorithms are a combination of existing techniques, which have not been
tested together before. Every algorithm had an adaptive scheme, being the spatial
filter or the classifier.

Regarding feature extraction, every system was based on the wavelet spectral
entropy idea. This feature is a novelty in the BCI field, since there has been little
research on its use as a feature for BCI systems. This thesis proved the feature to
be e�ective to detect the P300 wave. Besides, the preprocessing adaptive methods
used in the project further improved the wavelet spectral entropy qualities as an
P300 estimator.

The developed system was tested in a P300 speller designed for the project.
Results showed that the combination of features selected and the SVM classifier
represent an almost perfect P300 based BCI system. The only drawback: the exe-
cution time.

All in all, this thesis has proved that a combination of adaptive filtering tech-
niques and wavelet spectral entropy has a huge potential for BCI systems. Moreover,
the thesis has validated its accuracy in a real BCI-system.

55

Bibliography

[1] Susan Standring, Gray’s Anatomy, Churchill Livingstone.
[2] Abou Ella Hassanien and Ahmad Taher Azar, Brain-Computer Interfaces,

Current Trends and Applications, Springer, 2014.
[3] Bernhard Graimann, Brendan Allison, and Gert. Pfurtscheller, Brain-computer

interfaces : revolutionizing human-computer interaction, Springer, 2010.
[4] Christoph Guger et al., “Comparison of dry and gel based electrodes for P300

brain–computer interfaces”, in: Frontiers in Neuroscience 6 (2012).
[5] F Lotte, “A review of classification algorithms for EEG-based brain-computer

interfaces”, in: Journal of Neural Engineering 4 (2007).
[6] Guangyu Bin, Xiaorong Gao, and Yijun Wang, “VEP-Based Brain-Computer

Interfaces: Time, Frequency, and Code Modulations”, in: Ieee Computational
Intelligence Magazine (2009).

[7] Fabrizio Beverina, “User adaptive BCIs: SSVEP and P300 based interfaces”,
in: Psychnology Journal 1 (2003).

[8] Gregory McCarthy Scott A. Huettel, “What is odd in the oddball task? Pre-
frontal cortex is activated by dynamic changes in response strategy”, in: Else-
vier Academic Press (2003).

[9] Heather M. Gray, “P300 as an index of attention to self-relevant stimuli”, in:
Journal of Experimental Social Psychology (2003).

[10] Hansenne N, “The P300 cognitive event-related potential. I. Theoretical and
psychobiologic perspectives”, in: Neurophysiol Clin. (2000).

[11] John Polich, “Updating p300: An integrative theory of P3a and P3b”, in:
Clinical Neurophysiology 117 (2007).

[12] John Polich and Jose R. Criado, “Neuropsychology and neuropharmacology of
P3a and P3b”, in: International Journal of Psychophysiology (2006).

[13] P Sykacek, SJ Roberts, and M Stokes, “Adaptive BCI Based on Variational
Bayesian Kalman Filtering: An Empirical Evaluation”, in: Ieee Transactions
on Biomedical Engineering 51 (2004).

[14] Byung Hyung Kim and Sungho Jo, “Real-time motion artifact detection and
removal for ambulatory BCI”, in: International Winter Conference on Brain-
Computer Interface (2015).

57

BIBLIOGRAPHY BIBLIOGRAPHY

[15] Yiheng Tu et al., An automated and fast approach to detect singletrial visual
evokedpotentials with application to braincomputer interface, Elsevier, 2014.

[16] Han Sun and Liqing Zhang, Subject-Adaptive Real-Time BCI System, Elsevier,
2014.

[17] Arjon Turnip, Keum-Shik Hong, and Myung-Yung Jeong, “Real-time feature
extraction of P300 component using adaptive nonlinear principal component
analysis”, in: BioMedical Engineering OnLine 10 (2011).

[18] Laurent Bougrain, Carolina Saavedra, and Radu Ranta, “Finally, what is the
best filter for P300 detection?”, in: TOBI Workshop lll- Tools for Brain-
Computer Interaction (2012).

[19] Hendrik Woehrle, “An Adaptive Spatial Filter for User-Independent Single
Trial Detection of Event-Related Potentials”, in: IEEE Transactions on Biomed-
ical Engineering (2015).

[20] Bertrand Rivet, Antoine Souloumiac, and Virginie Attina, “xDAWN Algo-
rithm to Enhance Evoked Potentials: Application to Brain-Computer Inter-
face”, in: Ieee Transactions on Biomedical Engineering 16 (2009), pp. 2035–
2043.

[21] Mario Michael Krell, Hendrik Wöhrl, and Anett Seeland, “raxDAWN: Circum-
venting Overfitting of the Adaptive xDAWN”, in: Neurotechnix 2015 (2015),
pp. 68–75.

[22] Farwell and Donchin, “Talking o� the top of your head: toward a mental
prosthesis utilizing event-related-potential”, in: Elsevier Scientific (1988).

[23] Jessica Lu, William Speier, and Xiao Hu, “The E�ects of Stimulus Timing Fea-
tures on P300 Speller Performance”, in: Clinical Neurophysiology 124 (2013).

[24] R Quian Quiroga, O A Rosso, and E Ba�ar, “Wavelet entropy: a measure of
order in evoked potentials”, in: Electroencephalography and Clinical Neuro-
physiology (1999).

[25] Bahram Perseh and Ahmad R. Sharafat, “An E�cient P300-based BCI Using
Wavelet Features and IBPSO-based Channel Selection”, in: Journal of Medical
Signals and Sensors 2 (2012).

[26] Virginia R. Hammon Paul S.and de Sa, “Preprocessing and Meta-Classification
for Brain-Computer Interfaces”, in: Ieee Transactions on Biomedical Engineer-
ing 54 (2007).

[27] Grzegorz Rutkowski, Krzysztof Patan, and Pawe≥ Leúniak, “Comparison of
Time-Frequency Feature Extraction Methods for EEG Signals Classification”,
in: Lecture Notes in Computer Science (2013).

[28] Sebastian Raschka, Principal Component Analysis in 3 Simple Steps.
[29] Nikolaos Mitianoudis, “Audio Source Separation Analysis”, MA thesis, 2008.
[30] Aapo Hyvärinen and Erkki Oja, “Independent Component Analysis: Algo-

rithms and Applications”, in: Neural Networks Research Centre (2000).

58

BIBLIOGRAPHY BIBLIOGRAPHY

[31] Benjamin Blankertz, “Optimizing Spatial Filters for Robust EEG Single-Trial
Analysis”, in: IEEE Signal Processing Magazine (2007).

[32] Ingrid Daubechies, Ten Lectures on Wavelets, SIAM.
[33] Claude E Shannon, “The Mathematical Theory of Communication”, in: J.

Clin. Neurophysiol. (1997).
[34] José Principe, Information Theoretic Learning - Renyi’s Entropy and Kernel’s

Perspective, Springer.
[35] PK Sadasivan et al., “Entropies for detection of epilepsy in EEG”, in: Com-

puter Methods and Programs in Biomedicine (2005).
[36] Giorgos A. Giannakakis, Nikolaos N. Tsiaparas, and Monika-Filitsa S. Xenikou,

“Wavelet Entropy Di�erentiations of Event Related Potentials in Dyslexia”,
in: 8th Ieee International Conference on Bioinformatics and Bioengineering
(2008).

[37] Zachary Cashero, “Comparison of EEG Preprocessing Methods to Improve the
Classification of P300 trials”, MA thesis.

59

Appendix A

MATLAB Code

function [U] = xDAWN(X, Fs, stimulus)
2 % X(Nt,Ns) ≠> Input data, Nt is the no of samples and Ns is the no of

% sensors (channels)
4 % D(Nt,Ne) ≠> Toeplitz Matrix, Ne is the no of samples of the ERP

% (tipically 600 ms or 1s)
6 % D(tk,1) = 1 ≠> tk is the stimulus onset of the target kth target stimulus

% Stimulus ≠> start of the stimulus
8

%% xDAWN Algorithm
10 [Nt, Ns] = size(X);

ERP_l = 1;
12 Ne = round(ERP_l�Fs);

col = zeros(1,Nt);
14 row = zeros(1,Ne);

col(stimulus) = 1;
16 row(1) = col(1);

D = toeplitz(col , row);
18

%% QR Decomposition
20 [Qx, Rx] = qr(X,0);

[Qd, Rd] = qr(D,0);
22

%% SVD of Qd’�Qx
24 prod = Qd’�Qx;

[phi,lambda,psi] = svd(prod,0);
26 %% Largest singular values

s_d = diag(lambda);
28 var_s = s_d.�(100/sum(s_d));

perc = 0;
30 no_sing = 0;

while (perc < 85)
32 no_sing = no_sing + 1;

perc = perc + var_s(no_sing);
34 end

%% Keep at most i eigenvectors
36 phi = phi (:,1: no_sing);

lambda = lambda(1:no_sing, 1:no_sing);
38 psi = psi (:,1: no_sing);

61

MATLAB Code

%% Spatial Filters
40 U = Rx\psi;

A = Rd\phi�lambda;
42 end

Code A.1: xDAWN Filter

62

MATLAB Code

function [X_stand] = zcore_standardization_segments(X, n_subsegments)
2

l_subsegments = floor(length(X)/n_subsegments);
4 s = 1;

e = l_subsegments;
6

for i = 1:n_subsegments
8 X_stand(s:e) = X(s:e) ≠ mean(X(s:e));

X_stand(s:e) = X_stand(s:e)./(std(X(s:e)));
10 s = e + 1;

e = e + l_subsegments;
12 if (i == n_subsegments)

e = length(X);
14 end

end
16

end

Code A.2: ZCore Standardization computed in segments

function [X_stand] = zcore_standardization(X)
2 X_stand = X ≠ mean(X);

X_stand = X_stand./(std(X));
4 end

Code A.3: ZCore Standardization

63

MATLAB Code

% Quadratic Renyi Entropy Estimator
2 % Inputs

% coe�cients : wavelet coe�cients
4 % c_length: no. of coe�cients in each level

% n_subsegments: no. of subsegments to compute the WT
6 % n_channels: no. of channels recorded

% length_t: time duration of each segment
8 function [H, E, T, PDF] = renyi_spectral_entropy_2(coe�cients, c_length, n_subsegments,

n_channels, length_t)
n_dec = length(c_length(:,1,1)) ≠ 1;

10 n_subsegments_h = min(c_length(:,1,1));
E = zeros(n_dec, n_subsegments�n_subsegments_h, n_channels);

12 T = zeros(n_subsegments�n_subsegments_h, n_channels);
PDF = zeros(n_dec, n_subsegments�n_subsegments_h, n_channels);

14 H = zeros(n_subsegments�n_subsegments_h, n_channels);
steps = zeros(n_dec, 2);

16 overlap = zeros(n_dec,2);
t_length = zeros(n_dec,1);

18 for i = 1:n_dec
t_length(i) = (length_t/c_length(i,1,1))�1000;

20 steps(i ,1) = floor(c_length(i ,1,1)/n_subsegments_h);
steps(i ,2) = c_length(i,1,1) ≠ (n_subsegments_h ≠ 1)�steps(i,1);

22 overlap(i ,1) = t_length(1) ≠ steps(i,1)�t_length(i);
overlap(i ,2) = t_length(i) ≠ overlap(i,1) ;

24 overlap(i ,1) = overlap(i ,1)�100/t_length(i);
overlap(i ,2) = overlap(i ,2)�100/t_length(i);

26 end
s = 1;

28 e = c_length(1,1,1);
for j = 1:n_channels

30 for k = 1:n_subsegments
s = 1;

32 e = c_length(1,k,j);
for i = 1:n_dec

34 if overlap(i ,1) ~= 0
st = s;

36 E(i,n_subsegments_h�(k ≠ 1) + 1 ,j) = ...
sum(coe�cients (st : st+steps(i,1) ≠ 1,k,j).^2)/steps(i ,1) + ...

38 overlap(i ,1)�sum(coe�cients (st+steps(i,1) : st+2�steps(i,1) ≠ 1,k,j)
.^2)/(overlap(i ,1)�steps(i ,1)) ;

T(n_subsegments_h�(k ≠ 1) + 1, j) = T(n_subsegments_h�(k ≠ 1) + 1, j) +
...

40 E(i,n_subsegments_h�(k ≠ 1) + 1 ,j);
for l = 2:(n_subsegments_h ≠ 1)

42 E(i,n_subsegments_h�(k ≠ 1) + l ,j) = ...
overlap(i ,2)�sum(coe�cients (st : st+steps(i,1) ≠ 1,k,j).^2)/(overlap(

i ,2)�steps(i ,1)) + ...
44 overlap(i ,1)�sum(coe�cients (st+steps(i,1) : st+2�steps(i,1) ≠ 1,k,j)

.^2)/(overlap(i ,1)�steps(i ,1)) ;;
T(n_subsegments_h�(k ≠ 1) + l, j) = T(n_subsegments_h�(k ≠ 1) + l, j)

+ ...
46 E(i,n_subsegments_h�(k ≠ 1) + l ,j);

st = st+steps(i,1) ;
48 end

l = n_subsegments_h;
50 E(i,n_subsegments_h�(k ≠ 1) + l ,j) = ...

64

MATLAB Code

overlap(i ,2)�sum(coe�cients (st : st+steps(i,2) ≠ 1,k,j).^2)/(overlap(
i ,2)�steps(i ,2)) ;

52 T(n_subsegments_h�(k ≠ 1) + l, j) = T(n_subsegments_h�(k ≠ 1) + l, j) + ...
E(i,n_subsegments_h�(k ≠ 1) + l ,j);

54 s = s + c_length(i,k,j) ;
e = e + c_length(i+1,k,j);

56 else
st = s;

58 for l = 1:(n_subsegments_h ≠ 1)
E(i,n_subsegments_h�(k ≠ 1) + l ,j) = ...

60 sum(coe�cients (st : st+steps(i,1) ≠ 1,k,j).^2)/steps(i ,1) ;
T(n_subsegments_h�(k ≠ 1) + l, j) = T(n_subsegments_h�(k ≠ 1) + l, j)

+ ...
62 E(i,n_subsegments_h�(k ≠ 1) + l ,j);

st = st+steps(i,1) ;
64 end

l = n_subsegments_h;
66 E(i,n_subsegments_h�(k ≠ 1) + l ,j) = ...

sum(coe�cients (st : st+steps(i,2) ≠ 1,k,j).^2)/steps(i ,2) ;
68 T(n_subsegments_h�(k ≠ 1) + l, j) = T(n_subsegments_h�(k ≠ 1) + l, j) + ...

E(i,n_subsegments_h�(k ≠ 1) + l ,j);
70 s = s + c_length(i,k,j) ;

e = e + c_length(i+1,k,j);
72 end

74 end
end

76 end
%% PDF as the ratio of the power of the segment to the total power

78 for j = 1:n_channels
for k = 1:n_subsegments�n_subsegments_h

80 for i = 1:n_dec
PDF(i,k,j) = E(i,k, j)/T(k,j) ;

82 end
H(k,j) = ≠log(sum(PDF(:,k,j).^2));

84 end
end

86 end

Code A.4: Quadratic Renyi Estimator

65

MATLAB Code

% FastICA method based on Gaussian Negentropy
2 function [X_out, W] = fastICA(X)

eps = 1e≠3; % Convergence criteria
4 maxIters = 1000; % Max no. of iterations

X = center(X);
6 X = whiten(X);

% X = X’;
8 [n,m] = size(X); % n:dimensions; m:samples

10 % Random initial weights
c = n;

12 W = zeros(n,c);
one = ones(m,1);

14
% FastICA w/ Gaussian negentropy

16 for i = 1:c
w = rand(n,1);

18 w = w./sqrt(sum(w.^2));
k = 0;

20 err = inf;
while (err > eps) && (k < maxIters)

22
ws = zeros(n,1);

24 k = k + 1;
wlast = w;

26 u = w’�X;
g = u.�exp(≠0.5�u.^2);

28 g1 = (1 ≠ u.^2).�exp(≠0.5�u.^2);
w = (1/m)�X�g’ ≠ (1/m)�g1�one�w;

30
% Decorrelate

32 for j = 1:(i≠1)
ws = ws + (w’�W(:,j))�W(:,j);

34 end
w = w ≠ ws;

36
% Normalize

38 w = w./sqrt(sum(w.^2));

40 % Compute the error
err = 1 ≠ dot(w,wlast);

42 end
W(:,i) = w;

44
end

46 X_out = W’�X;

48 X_out = X_out’;
end

Code A.5: FastICA

66

MATLAB Code

% This script evaluates all of the trials in the BNCI file. It uses the
2 % function ’evaluate_trial_svm.m’, which performs the second method

% proposed in the thesis
4 close all

clear all
6 clc

% Load any BNCI file
8 load A02.mat

[X, y, trial , y_stim, Fs] = obtain_data(data);
10 %% Find real targets for every trial to check the classification accuracy

real_target = find_targets(data);
12 %% Obtain results for each trial

rows_correct = 0;
14 cols_correct = 0;

letter_correct = 0;
16

number_of_trials = length(trial);
18 n_channels = size(X,2);

duration = 30;
20

% Evaluate each trial
22 for i = 1:number_of_trials

24 n_trial = i;

26 % Get the result for every trial as an array containing the guessed
% rows and columns

28 [result] = evaluate_trial_svm(X, y, y_stim, trial, n_trial, duration, n_channels, Fs);

30 % A voting process counts how many times a row or a column has appeared
[rows, cols] = voting_svm(result);

32
% Find targets as the row/column with the highest score to check the

34 % accuracy of the algorithm
t_row = find(rows == max(rows));

36 t_col = find(cols == max(cols));
% Check if the system guessed correctly

38 r = real_target(n_trial ,:) ;
if any(t_row == r(1))

40 rows_correct = rows_correct + 1;
end

42 if any(t_col == r(2))
cols_correct = cols_correct + 1;

44 end
if any(t_row == r(1)) && any(t_col == r(2))

46 letter_correct = letter_correct + 1;
end

48 end

Code A.6: Test Method 2

67

MATLAB Code

% This script evaluates all of the trials in the BNCI file. It uses the
2 % function ’evaluate_trial_svm.m’, which performs the third method

% proposed in the thesis
4 close all

clear all
6 clc

% Load any BNCI file
8 load A01.mat

[X, y, trial , y_stim, Fs] = obtain_data(data);
10 %% Find real targets for every trial to check the classification accuracy

real_target = find_targets(data);
12 %% Obtain results for each trial

rows_correct = 0;
14 cols_correct = 0;

letter_correct = 0;
16

number_of_trials = length(trial);
18 n_channels = size(X,2);

duration = 30;
20

% Evaluate each trial
22 for i = 1:number_of_trials

24 n_trial = i;

26 % Get the result for every trial as an array containing the guessed
% rows and columns

28 [result] = evaluate_trial_xdawn_svm(X, y, y_stim, trial, n_trial, duration, n_channels,
Fs);

30 % A voting process counts how many times a row or a column has appeared
[rows, cols] = voting_svm(result);

32
% Find targets as the row/column with the highest score to check the

34 % accuracy of the algorithm
t_row = find(rows == max(rows));

36 t_col = find(cols == max(cols));
% Check if the system guessed correctly

38 r = real_target(n_trial ,:) ;
if any(t_row == r(1))

40 rows_correct = rows_correct + 1;
end

42 if any(t_col == r(2))
cols_correct = cols_correct + 1;

44 end
if any(t_row == r(1)) && any(t_col == r(2))

46 letter_correct = letter_correct + 1;
end

48 end

Code A.7: Test Method 3

68

MATLAB Code

% This script evaluates all of the trials in the BNCI file. It uses the
2 % function ’evaluate_trial_svm.m’, which performs the fourth method

% proposed in the thesis
4 close all

clear all
6 clc

load A01.mat
8 [X, y, trial , y_stim, Fs] = obtain_data(data);

%%
10 real_target = find_targets(data);

n_channels = size(X,2);
12 duration = 30;

final = duration�Fs ≠ 1;
14 samples_run = (final+1)/10;

X_st = X;
16 %% Initialize aXDAWN algorithm

18 % Update coe�cients
lambda_a = 0.2;

20 lambda_x = 2^(≠15);

22 Nt = Fs;
d = size(X_st,2);

24 ERP_l = 1; % Length of the ERP, chosen to be 1 second
e = round(ERP_l�Fs);

26 f = n_channels;
W_est = randn(d,f)�1e≠4;

28 W = randn(d,f);
A = zeros(e,d);

30 R11 = lambda_x�eye(d,d);
R12 = zeros(d,d);

32 R12i = (lambda_x^(≠1))�eye(d,d);
X_ERP = zeros(e,d);

34
rw = zeros(length(trial) ,6) ;

36 cl = zeros(length(trial) ,6) ;
for p = 1:3

38 %% aXDAWN
st = 1;

40 en = samples_run;

42 for m = 1:length(trial)

44 svm = train_svm(m);

46 j = 1;
k = 1;

48
rws = [];

50 cls = [];
for j = 1:10

52
x = X_st(st:en,:);

54 y_trial = y(st:en ,:) ;
y_stimtrial = y_stim(st:en,:);

56

69

MATLAB Code

if j > 1
58 x = x�W;

end
60 [istarget , result , res , target] = evaluate_axdawn_svm(x, y_stimtrial, Fs, n_channels

, svm);

62 if istarget

64 [rows, cols] = voting_svm(result);
rws = [rws rows];

66 cols = [cls cols];
in = find(target ~= 0);

68 i_st = in(1) ≠ round(0.1�Fs);
if i_st < 1

70 i_st = in(1) + 1;
i_en = in(1) + round(ERP_l�Fs);

72 else
i_en = i_st + e ≠ 1;

74 if i_en > length(x)
i_en = length(x);

76 i_st = i_en ≠ e + 1;
end

78 end
X_ERP = x(i_st:i_en,:);

80
A = lambda_a�A + (X_ERP≠A)/k;

82 k = k + 1;
R11 = (A’)�A;

84
end

86
R12 = (x’)�x;

88 for i = 1:f
if i == 1

90 Ri1 = R11;
end

92 if i>1
Ri1 = (eye(d,d) ≠ (Ri1�(wi)�wi’)/(wi’�Ri1�wi))�Ri1;

94 end
wi = W_est(:,i);

96 wi = ((wi’�R12�wi)/(wi’�Ri1�wi))�R12i�Ri1�wi;
wi = wi./sqrt(sum(wi.^2));

98 W_est(:,i) = wi;
W(:,i) = ((sqrt(1/((wi’)�R12�wi)))�(wi’));

100 end

102 st = st + samples_run;
en = en + samples_run;

104
end

106 end
end

108 % Check the results
guess_row = zeros(length(trial),1) ;

110 m_rw = max(rws,[],2);
guess_col = zeros(length(trial) ,1) ;

112 m_cl = max(cls,[],2);

70

MATLAB Code

for i = 1:length(trial)
114 ind = find(rw(i ,:) == m_rw(i));

if ind == real_target(i,1)
116 guess_row(i) = 1;

end
118 ind = find(cl(i ,:) == m_cl(i));

if ind == real_target(i,1)
120 guess_col(i) = 1;

end
122 end

sum(guess_row)
124 sum(guess_col)

Code A.8: Test Method 4

71

MATLAB Code

% This function trains the SVM for the first samples of a given trial
2 function svm = train_svm(n_trial)

load A01.mat
4 [X, y, trial , y_stim, Fs] = obtain_data(data);

%% Retrieve the trial
6 duration = 30;

n_channels = 8;
8 %% Retrieve the trial

final = (duration�Fs ≠ 1)/10;
10 st = n_trial ≠ 1;

if st == 0
12 st = 1;

else
14 st = st�duration + 1;

end
16 nd = st + final ;

X = X(st:nd,:);
18 y = y(st:nd,:) ;

y_stim = y_stim(st:nd,:);
20 %% Preprocessing

for i = 1:n_channels
22 X(:, i) = EEG_preprocessing(X(:,i),Fs,0);

end
24 %% 1. Standardize data

for i = 1:n_channels
26 X_st(:,i) = zcore_standardization(X(:,i));

end
28 [X_out, W] = fastICA(X_st);

n_channels = size(X_out,2);
30 %% 2. Feature extraction ≠> Multi≠Resolution Analysis (Wavelet)

mother_w = ’db4’;
32 n_levels = 6;

34 length_t = 1.5;
length_subsegments = length_t�Fs;

36 n_subsegments = floor(length(X_out)/length_subsegments);

38 C = [];
L = [];

40 for i = 1:n_channels
[C (:,:, i) , L (:,:, i)] = multi_resolution_analysis(X_out(:,i), mother_w, n_levels,
n_subsegments);

42 end
%% Spectral Entropy

44 [H, E, T, PDF] = renyi_spectral_entropy_2(C, L , n_subsegments, n_channels, length_t);
for i = 1:n_channels

46 H(:, i) = H(:,i)/max(H(:,i));
end

48 % Normalize the energy
for i = 1:n_channels

50 for k = 1:(size (L,1)≠1)
E(k ,:, i) = E(k,:, i)/max(E(k,:,i)) ;

52 end
end

54 %% Find targets
target_pos = find(y == 2);

72

MATLAB Code

56 target_time = (target_pos./Fs)�1000; % Target time in ms
res = (length_t/min(L(:,1,1)))�1000;

58 target_seg = target_time/res;
target_plot = zeros(size(H,1),1) ;

60 target_plot(ceil (target_seg)) = 1;
%% Train SVM

62 H_var = entropy_variance(H, 1);
EH = abs((H(:,1)≠max(H(:,1))).�E(1,:,1)’);

64 hh = H(:,1).^(≠1);
svm = fitcsvm([hh, H_var, EH],[target_plot], ’boxconstraint’ , 5, ’KernelFunction’, ’ rbf ’ , ’

KernelScale’, 20);
66 [label , score] = predict(svm,[hh,H_var,EH]);

find(label==target_plot);
68 end

Code A.9: Train SVM Classifier

73

MATLAB Code

% This function evaluates each trial and classifies the data with an svm
2 % classifier .

% For the first samples of the trial , the svm classifier is trained. Then,
4 % it computes the feature extraction and later it classifies the data.

6 function [result] = evaluate_trial_svm(X, y, y_stim, trial, n_trial, duration, n_channels,
Fs)

% % Input
8 % X: data to be analyzed

% y: target/non≠target
10 % y_stim: stimulus

% trial : starting points of the di�erent trials
12 % n_trial: no of the trial to be analyzed

% Fs: sampling frequency
14 % duration: length, in seconds, of the trial

% n_channels: no of recorded channels
16 %% Train svm for the trial

svm = train_svm(n_trial);
18 %% Retrieve the trial

final = duration�Fs ≠ 1;
20 st = n_trial ≠ 1;

if st == 0
22 st = 1;

else
24 st = st�duration + 1;

end
26 nd = st + final ;

X = X(st:nd,:);
28 y = y(st:nd,:) ;

y_stim = y_stim(st:nd,:);
30 %% Preprocessing

for i = 1:n_channels
32 X(:, i) = EEG_preprocessing(X(:,i),Fs,0);

end
34 %% 1. Standardize data

for i = 1:n_channels
36 X_st(:,i) = zcore_standardization(X(:,i));

end
38 [X_out, W] = fastICA(X_st);

n_channels = size(X_out,2);
40 %% 2. Feature extraction ≠> Multi≠Resolution Analysis (Wavelet)

mother_w = ’db4’;
42 n_levels = 6;

44 length_t = 1.5;
length_subsegments = length_t�Fs;

46 n_subsegments = floor(length(X_out)/length_subsegments);

48 C = [];
L = [];

50 for i = 1:n_channels
[C (:,:, i) , L (:,:, i)] = multi_resolution_analysis(X_out(:,i), mother_w, n_levels,
n_subsegments);

52 end
%% Spectral Entropy

54 [H, E, T, PDF] = renyi_spectral_entropy_2(C, L , n_subsegments, n_channels, length_t);

74

MATLAB Code

for i = 1:n_channels
56 H(:, i) = H(:,i)/max(H(:,i));

end
58 % Normalize the energy

for i = 1:n_channels
60 for k = 1:(size (L,1)≠1)

E(k ,:, i) = E(k,:, i)/max(E(k,:,i)) ;
62 end

end
64 %% Positions of target stimulus

target_pos = find(y == 2);
66 target_time = (target_pos./Fs)�1000; % Target time in ms

res = (length_t/min(L(:,1,1)))�1000;
68 target_seg = target_time/res;

target_plot = zeros(size(H,1),1) ;
70 target_plot(ceil (target_seg)) = 1;

%% Resolution obtained with the Wavelet Decomposition
72 res = (length_t/min(L(:,1,1)))�1000;

%% Start Feature Extraction & Classification for every remaining channel
74 target = zeros(length(H),1);

for i = 1:n_channels
76 ch_t = i;

%% First feature & Threshold
78 EH = abs((H(:,ch_t)≠max(H(:,ch_t))).�E(1,:,ch_t)’);

%% Statistical Trials ≠ Channel Fz(1)
80 % Entropy variance between consecutive samples

band = 1;
82 H_var = entropy_variance(H, ch_t);

h = H(:,ch_t).^(≠1);
84 [label , score] = predict(svm,[h,H_var,EH]);

target = target + label;
86 end

step = res�1e≠3�Fs;
88 y_stim_res = y_stim(1:step:length(y_stim));

result = [];
90 for i = 1:length(y_stim_res)

if target(i) ~=0
92 result = [result ; repmat(y_stim_res(i),target(i),1)];

end
94 end

end

Code A.10: Evaluate Trial with SVM

75

MATLAB Code

% Function to retrieve all data from the BNCI data sets
2 function [X, y, trial , y_stim, Fs] = obtain_data(data)

Fs = 256;
4 channels = data.channels;

X_in = data.X;
6 y_in = data.y;

trial = data. trial ;
8 y_stim_in = data.y_stim;

%%
10 duration = 30; %30 Seconds per trial

%%
12 X = [];

y = [];
14 y_stim = [];

for i = 1:length(trial)
16 final = duration�Fs ≠ 1;

X = [X; X_in(trial(i): trial (i) + final ,:)];
18 y = [y; y_in(trial (i) : trial (i) + final ,:)];

y_stim = [y_stim; y_stim_in(trial(i):trial(i) + final ,:)];
20 end

end

Code A.11: Obtain Data from BNCI data sets

76

MATLAB Code

%% Save Info
2 close all

clear all
4

% Change these variables for each trial
6 no_subject = ’S10’;

name = ’Cristina Leza’;
8 % Specify the trial

no_trial = ’2wordslong’;
10 % Save the channels

channels = {’Fc3’; ’P0z’; ’Fz’ ; ’Fc2’; ’Fc4’; ’P3’; ’P08’; ’Cz’; ’C2’; ’C4’; ’Oz’; ’P07’; ’Cpz’; ...
12 ’Cp2’;’P4’; ’Pz’};

filename = [no_subject, ’_’, no_trial, ’ .mat’];
14

%% Record
16

Fs = 256; % Sampling Frequency
18

ai = USBAmp(Fs); % Initialize Amplifier
20

eeg = []; % Store Data
22

% Receive duration of the trial
24 duration = 0;

seconds = 0;
26 fprintf (’Receive duration of the trial \n’)

try
28 duration = (udp_connection(’receive’));

catch
30 end

duration = str2num(duration)
32 fprintf (’Waiting for the interface to begin \n’)

34 mssg = ’’;
try

36 mssg = (udp_connection(’receive’));
catch

38 end

40 start (ai) ;

42 % Discard first five seconds
while ai .SamplesAcquired < Fs�5

44 end
seconds = seconds + 5;

46 discard = getdata(ai,Fs);

48 fprintf (’Real data \’)

50 while seconds < duration

52
while ai .SamplesAcquired < Fs

54 end
eeg = [eeg; getdata(ai ,Fs)];

56 seconds = seconds + 1;

77

MATLAB Code

fprintf (’Time: %d \n’, seconds)
58 end

60 fprintf (’Recording finished\n’)

62 %% Save data

64 eegdata = struct(’File ’ , filename, ’Name’, name, ’SubjectNumber’, no_subject,...
’TrialNumber’, no_trial , ’Channels’, channels, ’Data’, eeg);

66 save(filename, ’eegdata’) ;

Code A.12: P300 Speller Record Script

78

MATLAB Code

% Function to initialize the amplifier
2 function [ai] = USBAmp(Fs)

4 ai = analoginput(’guadaq’,1);
n_channels = 16;

6 addchannel(ai,1:n_channels);

8 set(ai , ’SampleRate’,Fs,’SamplesPerTrigger’,inf);
set(ai , ’TriggerRepeat’,inf , ’TriggerType’,’Immediate’);

10 set(ai , ’Mode’,’Normal’,’SlaveMode’,’O�’);

12
end

Code A.13: Initialize the amplifier

79

MATLAB Code

function [varargout] = udp_connection(actionStr,varargin)
2

import java.io .�
4 import java.net.DatagramSocket

import java.net.DatagramPacket
6 import java.net.InetAddress

8 port = 5555;
addr = InetAddress.getByName(’localhost’);

10

12
if strcmpi(actionStr, ’send’)

14 mssg = varargin{1};
mssg = int8(mssg);

16 try
packet = DatagramPacket(mssg, length(mssg), addr, port);

18 socket = DatagramSocket;
socket.setReuseAddress(1);

20 socket.send(packet);
socket. close ;

22 catch sendPacketError
try

24 socket. close ;
catch closeError

26 % do nothing.
end % try

28 error(’%s.m≠≠Failed to send UDP packet.\nJava error message follows:\n%s’,mfilename
,sendPacketError.message);

end % try
30 varargout{1} = ’’;

32 else

34

36 try
packetLength = 200;

38 socket = DatagramSocket(port);
socket.setReuseAddress(1);

40 packet = DatagramPacket(zeros(1,packetLength,’int8’),packetLength);
socket. receive (packet);

42 socket. close ;
mssg = packet.getData;

44 mssg = char((mssg(1:packet.getLength)))’ ;
inetAddress = packet.getAddress;

46 sourceHost = char(inetAddress.getHostAddress);
varargout{1} = mssg;

48

50
catch receiveError

52
try

54 socket. close ;
catch closeError

80

MATLAB Code

56 % do nothing.
end % try

58
end % try

60
end

Code A.14: UDP Connection to communicate interface and recording scripts

81

MATLAB Code

function sequence = P300Speller(words, intensified , ISI)
2

cgloadlib
4 cgopen(1,0,0,2)

cgpencol(0,0,0)
6 cgalign(’ l ’ , ’c’)

cgmakesprite(4,800,800,0,0,0) % Original matrix
8 cgmakesprite(3,800,800,0,0,0) % Start Matrix

10
initializeMatrix (4) ;

12 initializeMatrix (3) ;

14
% ��

16 S1 = cgflip ;
% Set sprite zero

18 %
cgsetsprite (0)

20 %
% Wait until Space is pressed

22 kd(57) = 0;

24 while ~kd(57)
kd = cgkeymap;

26 end
cgdrawsprite(4,4,0)

28
% Initialize cell to store the order of each iteration

30 %
n = length(words);

32 m = length(words{1});
sequence = cell(n,m);

34

36 % Start Recording

38 udp_connection(’send’,’start ’) ;

40 sumtime = 0;
tic

42 stop = toc+3;
while toc<stop

44 end
sumtime = sumtime + stop;

46 for l = 1:n
word = words{l};

48 for j = 1:m
letter = word(j);

50 order = speller () ;
sequence{l, j} = order;

52 cgmakesprite(1,800,800,0,0,0) % Original Matrix with word
cgmakesprite(2,800,800,0,0,0) % Flashing Matrix with word

54
text = [word ’ ≠ ’ letter];

56 initializeMatrix (2, text) ;

82

MATLAB Code

initializeMatrix (1, text) ;
58 if j == 1

tic
60 stop = toc+2;

while toc<stop
62 end

sumtime = sumtime + stop;
64 end

66 kd(1) = 0;
i = 1;

68 index = order(i) ;
flash (index, 0);

70 %
while (i <= length(order)) && ~kd(1)

72 kd = cgkeymap;
cgflip (0,0,0)

74 flash (index, 1) % Go white
cgdrawsprite(2,4,0)

76 tic
stop = toc+intensified;

78 while toc<stop
end

80 sumtime = sumtime + stop;
cgflip (0,0,0)

82 flash (index, 0); % Go almost black
cgdrawsprite(2,4,0)

84 tic
stop = toc+ISI;

86 while toc<stop
end

88 sumtime = sumtime + stop;
if i ~= length(order)

90 i = i + 1;
index = order(i) ;

92 else
i = i + 1;

94 end
end

96 cgflip (0,0,0)
cgdrawsprite(2,4,0)

98 tic
stop = toc+3;

100 while toc<stop
end

102 sumtime = sumtime + stop;
end

104 end
tic

106 stop = toc+2;
while toc<stop

108 end
sumtime = sumtime + stop

110 cgshut
return

Code A.15: P300 Speller

83

MATLAB Code

function initializeMatrix (Key, varargin)
2

matrix = {’A’, ’B’, ’C’, ’D’, ’E’, ’F’; ’G’, ’H’, ’ I ’ , ’J’ , ’K’, ’L’; ...
4 ’M’, ’N’, ’O’, ’P’, ’Q’, ’R’; ’S’ , ’T’, ’U’, ’V’, ’W’, ’X’; ...

’Y’, ’Z’, ’1’ , ’2’ , ’3’ , ’4’ ; ’5’ , ’6’ , ’7’ , ’8’ , ’9’ , ’≠’};
6 coordinates = [≠160 ≠100 ≠40 20 80 140; 140 80 20 ≠40 ≠100 ≠160];

8 cgsetsprite (Key)
cgpencol (0.5,0.5,0.5)

10 cgalign(’c’ , ’c’)
cgfont(’Arial ’ ,35)

12 % First Column
cgtext(matrix{1,1},coordinates(1,1) ,coordinates(2,1))

14 cgtext(matrix{2,1},coordinates(1,1) ,coordinates(2,2))
cgtext(matrix{3,1},coordinates(1,1) ,coordinates(2,3))

16 cgtext(matrix{4,1},coordinates(1,1) ,coordinates(2,4))
cgtext(matrix{5,1},coordinates(1,1) ,coordinates(2,5))

18 cgtext(matrix{6,1},coordinates(1,1) ,coordinates(2,6))
% Second Column

20 cgtext(matrix{1,2},coordinates(1,2) ,coordinates(2,1))
cgtext(matrix{2,2},coordinates(1,2) ,coordinates(2,2))

22 cgtext(matrix{3,2},coordinates(1,2) ,coordinates(2,3))
cgtext(matrix{4,2},coordinates(1,2) ,coordinates(2,4))

24 cgtext(matrix{5,2},coordinates(1,2) ,coordinates(2,5))
cgtext(matrix{6,2},coordinates(1,2) ,coordinates(2,6))

26 % Third Column
cgtext(matrix{1,3},coordinates(1,3) ,coordinates(2,1))

28 cgtext(matrix{2,3},coordinates(1,3) ,coordinates(2,2))
cgtext(matrix{3,3},coordinates(1,3) ,coordinates(2,3))

30 cgtext(matrix{4,3},coordinates(1,3) ,coordinates(2,4))
cgtext(matrix{5,3},coordinates(1,3) ,coordinates(2,5))

32 cgtext(matrix{6,3},coordinates(1,3) ,coordinates(2,6))
% Fourth Column

34 cgtext(matrix{1,4},coordinates(1,4) ,coordinates(2,1))
cgtext(matrix{2,4},coordinates(1,4) ,coordinates(2,2))

36 cgtext(matrix{3,4},coordinates(1,4) ,coordinates(2,3))
cgtext(matrix{4,4},coordinates(1,4) ,coordinates(2,4))

38 cgtext(matrix{5,4},coordinates(1,4) ,coordinates(2,5))
cgtext(matrix{6,4},coordinates(1,4) ,coordinates(2,6))

40 % Fifth Column
cgtext(matrix{1,5},coordinates(1,5) ,coordinates(2,1))

42 cgtext(matrix{2,5},coordinates(1,5) ,coordinates(2,2))
cgtext(matrix{3,5},coordinates(1,5) ,coordinates(2,3))

44 cgtext(matrix{4,5},coordinates(1,5) ,coordinates(2,4))
cgtext(matrix{5,5},coordinates(1,5) ,coordinates(2,5))

46 cgtext(matrix{6,5},coordinates(1,5) ,coordinates(2,6))
% Sixth Column

48 cgtext(matrix{1,6},coordinates(1,6) ,coordinates(2,1))
cgtext(matrix{2,6},coordinates(1,6) ,coordinates(2,2))

50 cgtext(matrix{3,6},coordinates(1,6) ,coordinates(2,3))
cgtext(matrix{4,6},coordinates(1,6) ,coordinates(2,4))

52 cgtext(matrix{5,6},coordinates(1,6) ,coordinates(2,5))
cgtext(matrix{6,6},coordinates(1,6) ,coordinates(2,6))

54
if Key == 3

56 cgfont(’Arial ’ ,20)

84

MATLAB Code

cgpencol(1,1,1)
58 cgtext(’Press space bar to start ’,≠10,≠220)

60 elseif Key == 1 || Key == 2
word = varargin{1};

62 cgfont(’Arial ’ ,30)
cgpencol(1,1,1)

64 cgtext(word,≠10,200)
end

66 cgsetsprite (0)
cgflip (0,0,0)

68 cgdrawsprite(Key,4,0)

70 return

Code A.16: Function to initialize the P300 Speller Matrix

85

MATLAB Code

function flash (index, stop)
2

% ��
4 matrix = {’A’, ’B’, ’C’, ’D’, ’E’, ’F’; ’G’, ’H’, ’ I ’ , ’J’ , ’K’, ’L’; ...

’M’, ’N’, ’O’, ’P’, ’Q’, ’R’; ’S’ , ’T’, ’U’, ’V’, ’W’, ’X’; ...
6 ’Y’, ’Z’, ’1’ , ’2’ , ’3’ , ’4’ ; ’5’ , ’6’ , ’7’ , ’8’ , ’9’ , ’≠’};

coordinates = [≠160 ≠100 ≠40 20 80 140; 140 80 20 ≠40 ≠100 ≠160];
8

% x spacing, y spacing
10 % ��

cgsetsprite (2)
12 if stop == 0

cgpencol (0.5,0.5,0.5)
14 elseif stop == 1

cgpencol(1,1,1) % White
16 end

cgfont(’Arial ’ ,35)
18

i = mod(index,6);
20 if i == 0

i = 6;
22 end

if index > 6 % Changing column
24 cgtext(matrix{1,i},coordinates(1, i) ,coordinates(2,1))

cgtext(matrix{2,i},coordinates(1, i) ,coordinates(2,2))
26 cgtext(matrix{3,i},coordinates(1, i) ,coordinates(2,3))

cgtext(matrix{4,i},coordinates(1, i) ,coordinates(2,4))
28 cgtext(matrix{5,i},coordinates(1, i) ,coordinates(2,5))

cgtext(matrix{6,i},coordinates(1, i) ,coordinates(2,6))
30 else % Changing row

cgtext(matrix{i,1},coordinates(1,1) ,coordinates(2, i))
32 cgtext(matrix{i,2},coordinates(1,2) ,coordinates(2, i))

cgtext(matrix{i,3},coordinates(1,3) ,coordinates(2, i))
34 cgtext(matrix{i,4},coordinates(1,4) ,coordinates(2, i))

cgtext(matrix{i,5},coordinates(1,5) ,coordinates(2, i))
36 cgtext(matrix{i,6},coordinates(1,6) ,coordinates(2, i))

end
38

cgsetsprite (0)
40

return

Code A.17: Flash of the P300 Speller matrix

86

MATLAB Code

%% Interface Script
2 %% Save data

close all
4 clear all

6 % Change these variables for each trial
no_subject = ’S10’;

8 name = ’Cristina Leza’;
type = ’3wordstest’;

10
filename = [no_subject, ’_’, type, ’data’ , ’ .mat’];

12 %% Trial
Fs = 256;

14 words = {’PHONE’; ’EIGHT’; ’SHOES’};
intensified = 0.125;

16 ISI = 0.125;
int_l = 3; % Interval between letters

18 int_w = 5; % Interval between words
n_w = size(words,1);

20 n_l = length(words{1});
duration = (intensified +ISI)�120�n_l�n_w + (n_l≠1)�int_l�n_w + n_w�int_w + 5;

22 udp_connection(’send’, num2str(duration));
seq = P300Speller(words, intensified , ISI) ;

24 sequence = cell(size (seq,1) , size (seq,2)) ;
targets = cell(size (seq,1) , size (seq,2)) ;

26 % Assign targets
targets{1,1} = [4 9];

28 targets{1,2} = [2 8];
targets{1,3} = [3 9];

30 targets{1,4} = [2 9];
targets{1,5} = [5 7];

32 targets{2,1} = [5 7];
targets{2,2} = [3 8];

34 targets{2,3} = [1 8];
targets{2,4} = [2 8];

36 targets{2,5} = [2 10];
targets{3,1} = [1 10];

38 targets{3,2} = [2 8];
targets{3,3} = [3 9];

40 targets{3,4} = [5 7];
targets{3,5} = [1 10];

42 for i = 1:size(seq,1)
for j = 1:size(seq,2)

44 order = [];
target = [];

46 s = seq{i, j };
for k = 1:120

48 order = [order; repmat(s(k), intensified �Fs,1)];
istarget = any(eq(s(k), targets{i , j})) ;

50 target = [target ; repmat(istarget, intensified �Fs,1)];
order = [order; zeros(ISI�Fs,1)];

52 target = [target ; zeros(ISI�Fs,1)];
end

54 sequence{i, j} = order;
stimulus{i , j} = target;

56 end

87

MATLAB Code

end
58 %% Save data

%% Save data
60

data = struct(’ File ’ , filename, ’Name’, name, ’SubjectNumber’, no_subject, ...
62 ’TypeTrial’, type, ’Sequence’, sequence, ’Targets’ , targets , ’Stimulus’, ...

stimulus);
64 save(filename, ’data’) ;

Code A.18: P300 Matrix with 3 words

88

MATLAB Code

%% Interface Script
2 %% Save data

close all
4 clear all

6 % Change these variables for each trial
no_subject = ’S10’;

8 name = ’Cristina Leza’;
type = ’2 wordsfirsttrial ’ ;

10
filename = [no_subject, ’_’, type, ’data’ , ’ .mat’];

12 %% Trial
Fs = 256;

14 words = {’JUICE’; ’CLOCK’};
intensified = 0.125;

16 ISI = 0.125;
int_l = 3; % Interval between letters

18 int_w = 5; % Interval between words
n_w = size(words,1);

20 n_l = length(words{1});
duration = (intensified +ISI)�120�n_l�n_w + (n_l≠1)�int_l�n_w + n_w�int_w + 5;

22 udp_connection(’send’, num2str(duration));
seq = P300Speller(words, intensified , ISI) ;

24 sequence = cell(size (seq,1) , size (seq,2)) ;
targets = cell(size (seq,1) , size (seq,2)) ;

26 % Assign targets
targets{1,1} = [4 8];

28 targets{1,2} = [3 10];
targets{1,3} = [3 8];

30 targets{1,4} = [3 7];
targets{1,5} = [5 7];

32 targets{2,1} = [3 7];
targets{2,2} = [6 8];

34 targets{2,3} = [3 9];
targets{2,4} = [3 7];

36 targets{2,5} = [5 8];
for i = 1:size(seq,1)

38 for j = 1:size(seq,2)
order = [];

40 target = [];
s = seq{i, j };

42 for k = 1:120
order = [order; repmat(s(k), intensified �Fs,1)];

44 istarget = any(eq(s(k), targets{i , j})) ;
target = [target ; repmat(istarget, intensified �Fs,1)];

46 order = [order; zeros(ISI�Fs,1)];
target = [target ; zeros(ISI�Fs,1)];

48 end
sequence{i, j} = order;

50 stimulus{i , j} = target;
end

52 end
%% Save data

54
data = struct(’ File ’ , filename, ’Name’, name, ’SubjectNumber’, no_subject, ...

56 ’TypeTtrial’, type, ’Sequence’, sequence, ’Targets’ , targets , ’Stimulus’, ...

89

MATLAB Code

stimulus);
58 save(filename, ’data’) ;

Code A.19: P300 Speller with 2 words

90

MATLAB Code

%% Interface Script
2 %% Save data

close all
4 clear all

6 % Change these variables for each trial
no_subject = ’S10’;

8 name = ’Cristina Leza’;
type = ’2wordslong’;

10
filename = [no_subject, ’_’, type, ’data’ , ’ .mat’];

12 %% Trial
Fs = 256;

14 words = {’MOUSE’; ’BEACH’};
intensified = 0.125;

16 ISI = 0.250;
int_l = 3; % Interval between letters

18 int_w = 5; % Interval between words
n_w = size(words,1);

20 n_l = length(words{1});
duration = (intensified +ISI)�120�n_l�n_w + (n_l≠1)�int_l�n_w + n_w�int_w + 5;

22 udp_connection(’send’, num2str(duration));
seq = P300Speller(words, intensified , ISI) ;

24 sequence = cell(size (seq,1) , size (seq,2)) ;
targets = cell(size (seq,1) , size (seq,2)) ;

26 stimulus = cell(size (seq,1) , size (seq,2)) ;

28 % Assign targets
targets{1,1} = [9 1];

30 targets{1,2} = [3 9];
targets{1,3} = [3 10];

32 targets{1,4} = [1 10];
targets{1,5} = [5 6];

34 targets{2,1} = [2 7];
targets{2,2} = [5 7];

36 targets{2,3} = [1 7];
targets{2,4} = [3 7];

38 targets{2,5} = [2 8];
for i = 1:size(seq,1)

40 for j = 1:size(seq,2)
order = [];

42 target = [];
s = seq{i, j };

44 for k = 1:120
order = [order; repmat(s(k), intensified �Fs,1)];

46 istarget = any(eq(s(k), targets{i , j})) ;
target = [target ; repmat(istarget, intensified �Fs,1)];

48 order = [order; zeros(ISI�Fs,1)];
target = [target ; zeros(ISI�Fs,1)];

50 end
sequence{i, j} = order;

52 stimulus{i , j} = target;
end

54 end
%% Save data

56

91

MATLAB Code

data = struct(’ File ’ , filename, ’Name’, name, ’SubjectNumber’, no_subject, ...
58 ’TypeTrial’, type, ’Sequence’, sequence, ’Targets’ , targets , ’Stimulus’, ...

stimulus);
60 save(filename, ’data’) ;

Code A.20: P300 Speller with two long ISI words

92

93

P300 Speller Pre-Experiment Questionnaire

Appendix B

P300 Speller Pre-Experiment
Questionnaire

P300 Speller Questionnaire

Name

Gender, Age and Nationality

E-mail

Handedness

Do you suffer from any neurological disorders?

Do you have any optical defects? If so, please describe.

Have you participated in any experiment like this one before?

I have been informed that my participation is voluntary and that I can withdraw
my participation agreement at any point.

Date

Participant’s Signature

94

95

P300 Speller Post-Experiment Questionnaire

Appendix C

P300 Speller Post-Experiment
Questionnaire

P300 Speller Questionnaire

Did you find it difficult to follow the instructions to do the experiment?

Do you think the interface was appropriate for the experiment’s purpose?

Did you find the experiment too long or too short?

The experiment consisted of three trials, which one did you feel most
comfortable with? And least?

Would you improve or change anything about the experiment?

Would you be willing to participate in further experiments if you were contacted
again?

Any other feedback

96

	Resumen
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Objectives
	Contributions
	Overview of the Thesis

	Clinical Background
	Brain Physiology
	Electroencephalogram
	Conclusions

	Brain Computer Interface
	Overview
	Signal Acquisition
	Signal Preprocessing
	Feature Extraction
	Classification
	Application Interface
	Application

	BCI Paradigms
	Motor Imagery
	Visual Evoked Potentials
	P300

	State of the Art
	Review on Signal Processing
	Review on the Interface
	Conclusions

	EEG Processing
	Preprocessing
	Frequency Filtering
	Component Based Methods
	Spatial Filtering

	Feature Extraction
	Time - Frequency
	Entropy
	Wavelet and Entropy

	Classification
	Peak Detection
	Support Vector Machine
	Voting Process

	Conclusion

	Experimental Setup
	P300 Speller
	Design of the Interface
	Recording
	Experiment
	Conclusion

	Results
	Wavelet and Entropy
	Selected Features
	Classification Performance

	Discussion
	Wavelet and Entropy
	Classification Performance

	Conclusion
	Bibliography
	MATLAB Code
	P300 Speller Pre-Experiment Questionnaire
	P300 Speller Post-Experiment Questionnaire

