1,558 research outputs found

    Calibrating Generative Models: The Probabilistic Chomsky-Schützenberger Hierarchy

    Get PDF
    A probabilistic Chomsky–Schützenberger hierarchy of grammars is introduced and studied, with the aim of understanding the expressive power of generative models. We offer characterizations of the distributions definable at each level of the hierarchy, including probabilistic regular, context-free, (linear) indexed, context-sensitive, and unrestricted grammars, each corresponding to familiar probabilistic machine classes. Special attention is given to distributions on (unary notations for) positive integers. Unlike in the classical case where the "semi-linear" languages all collapse into the regular languages, using analytic tools adapted from the classical setting we show there is no collapse in the probabilistic hierarchy: more distributions become definable at each level. We also address related issues such as closure under probabilistic conditioning

    Parametrized Stochastic Grammars for RNA Secondary Structure Prediction

    Full text link
    We propose a two-level stochastic context-free grammar (SCFG) architecture for parametrized stochastic modeling of a family of RNA sequences, including their secondary structure. A stochastic model of this type can be used for maximum a posteriori estimation of the secondary structure of any new sequence in the family. The proposed SCFG architecture models RNA subsequences comprising paired bases as stochastically weighted Dyck-language words, i.e., as weighted balanced-parenthesis expressions. The length of each run of unpaired bases, forming a loop or a bulge, is taken to have a phase-type distribution: that of the hitting time in a finite-state Markov chain. Without loss of generality, each such Markov chain can be taken to have a bounded complexity. The scheme yields an overall family SCFG with a manageable number of parameters.Comment: 5 pages, submitted to the 2007 Information Theory and Applications Workshop (ITA 2007

    On external presentations of infinite graphs

    Get PDF
    The vertices of a finite state system are usually a subset of the natural numbers. Most algorithms relative to these systems only use this fact to select vertices. For infinite state systems, however, the situation is different: in particular, for such systems having a finite description, each state of the system is a configuration of some machine. Then most algorithmic approaches rely on the structure of these configurations. Such characterisations are said internal. In order to apply algorithms detecting a structural property (like identifying connected components) one may have first to transform the system in order to fit the description needed for the algorithm. The problem of internal characterisation is that it hides structural properties, and each solution becomes ad hoc relatively to the form of the configurations. On the contrary, external characterisations avoid explicit naming of the vertices. Such characterisation are mostly defined via graph transformations. In this paper we present two kind of external characterisations: deterministic graph rewriting, which in turn characterise regular graphs, deterministic context-free languages, and rational graphs. Inverse substitution from a generator (like the complete binary tree) provides characterisation for prefix-recognizable graphs, the Caucal Hierarchy and rational graphs. We illustrate how these characterisation provide an efficient tool for the representation of infinite state systems

    A short essay on the interplay between algebraic language theory, galois theory and class field theory : comparing physics and theory of computation (Mathematical aspects of quantum fields and related topics)

    Get PDF
    This paper is written as a technical report for our talk given at the RJMS workshop on quantum fields and related topics, held on 6th- 8th December 2021. In this talk we introduced our recent works [23, 24, 25, 26] in formal language theory to the community of mathematical physics, which concern some interplay between algebraic language theory, galois theory and class field theory. In this paper we discuss some conceptual contents of our recent works [23, 24, 25, 26] in more detail

    Complexity of Two-Dimensional Patterns

    Full text link
    In dynamical systems such as cellular automata and iterated maps, it is often useful to look at a language or set of symbol sequences produced by the system. There are well-established classification schemes, such as the Chomsky hierarchy, with which we can measure the complexity of these sets of sequences, and thus the complexity of the systems which produce them. In this paper, we look at the first few levels of a hierarchy of complexity for two-or-more-dimensional patterns. We show that several definitions of ``regular language'' or ``local rule'' that are equivalent in d=1 lead to distinct classes in d >= 2. We explore the closure properties and computational complexity of these classes, including undecidability and L-, NL- and NP-completeness results. We apply these classes to cellular automata, in particular to their sets of fixed and periodic points, finite-time images, and limit sets. We show that it is undecidable whether a CA in d >= 2 has a periodic point of a given period, and that certain ``local lattice languages'' are not finite-time images or limit sets of any CA. We also show that the entropy of a d-dimensional CA's finite-time image cannot decrease faster than t^{-d} unless it maps every initial condition to a single homogeneous state.Comment: To appear in J. Stat. Phy

    Tree grammars with multilinear interpretation

    Get PDF
    corecore