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The vertices of a finite state system are usually a subset of the natural numbers. Most algorithms

relative to these systems only use this fact to select vertices.

For infinite state systems, however, the situation is different: in particular, for such systems

having a finite description, each state of the system is a configuration of some machine. Then most

algorithmic approaches rely on the structure of these configurations. Such characterisations are said

internal. In order to apply algorithms detecting a structural property (like identifying connected

components) one may have first to transform the system in order to fit the description needed for the

algorithm. The problem of internal characterisation is that it hides structural properties, and each

solution becomes ad hoc relatively to the form of the configurations.

On the contrary, external characterisations avoid explicit naming of the vertices. Such character-

isation are mostly defined via graph transformations.

In this paper we present two kind of external characterisations: deterministic graph rewriting,

which in turn characterise regular graphs, deterministic context-free languages, and rational graphs.

Inverse substitution from a generator (like the complete binary tree) provides characterisation for

prefix-recognizable graphs, the Caucal Hierarchy and rational graphs. We illustrate how these char-

acterisation provide an efficient tool for the representation of infinite state systems.

1 Introduction

Infinite graphs are a very general way to define infinite state systems. There are several means to define

such infinite graphs: internal characterisations which relies on some machine: pushdown systems [19,

21], higher order pushdown systems [5], Petri nets [20], automatic and rational graphs [3, 16]. These

internal characterisations are very efficient to prove properties of these systems, but they provide many

restrictions on the names and definition of the states of these systems. For example, the set of vertices of

a rational graph is a rational set of words, still, having a context-free set of vertices does not affect the

structure of a graph.

In order to have a more direct access to the structure of such graph families, external characterisations

have been introduced. These characterisation avoid explicit definition of the vertices. From a general

perspective these characterisation are based on graph transformations. Meaning that it is simpler to

introduce a suitable naming for the vertices depending on the problem. Also these approaches often

allow nice proofs for structural properties.

There are mainly two kind of approach to externally define graph families: algebraic graph transfor-

mation (like inverse rational substitution) from an original graph (like the complete binary tree). This

technique was first used by Caucal, [6], it allowed him to prove in a very elegant way the decidability of

the monadic second order of the prefix-recognizable graph (a nice reformulation of this result in terms

of monadic transduction is presented in [15]). This technique has given rise to the so-called Caucal

hierarchy: [7]. Graph unfolding (the operation of transforming a graph into a tree) preserves the decid-

ability of MSO theory (see [13]) and Caucal proved that unfolding prefix-recognizable graphs produces

http://dx.doi.org/10.4204/EPTCS.13.4
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trees which are not prefix-recognizable graphs, and applying inverse rational substitution and unfolding

alternatively generates a strict hierarchy of infinite graphs families having decidable MSO theories. Re-

cently Carayol and Wöhrle showed that this hierarchy coincides in precise sense to the graphs of higher

order pushdown automata: [5]. The rational graphs are a family of infinite graphs characterising context-

sensitive languages, and defined by labelled rational transducers [16, 18]. They are characterised by

similar external characterisation. One of which is by inverse finite substitution from some very general

rational graph whose first order theory is undecidable.

The second kind of external characterisation is done by inductive graph transformations, and more pre-

cisely graph rewriting. The graph grammars are a classical tool to define infinite families of finite graphs.

In [12], Courcelle employed deterministic hyperhedge replacement graph grammars (HR-grammars) to

define the regular graphs. It turns out that these graphs are very close to graphs of pushdown automata

[10], but enable very elegant proofs for structural properties like accessibility. [8] provides very thorough

survey for these graphs. Interestingly the deterministic graphs generated by such grammars correspond

precisely to deterministic context-free languages, this enables a generalisation of visibly pushdown lan-

guages (see [1]) defined in [9]: every deterministic context-free language belongs to a Boolean algebra

of deterministic context-free languages which contains every regular languages. Earlier Colcombet, in

[11], defined the class of graphs generated by vertex replacement grammars with product. These graphs

have a decidable first order theory with accessibility. In [17], the author introduces contextual graph

grammars characterising rational graphs, and thus context-sensitive languages.

In this paper we propose a detailed survey of these results as well as a couple of enlightening examples

of the interest of working with external characterisations. The first part of the paper examines graph

families defined from a generator: prefix-recognizable graphs, the Caucal hierarchy and rational graphs.

The second part examines graph rewriting systems: regular graphs, synchronised graphs and again,

rational graphs.

2 Preliminaries

2.1 Mathematical notations

For any set E, its powerset is denoted by 2E ; if it is finite, its size is denoted by |E|. Let the set of non-

negative integers be denoted by N, and {1,2,3, . . . ,n} be denoted by [n]. A monoid M is a set equipped

with an associative operation (denoted ·) and a (unique) neutral element (denoted ε). A monoid M is free

if there exist a finite subset A of M such that M = A∗ :=
⋃

n∈N An and for each u ∈ M there exists a unique

finite sequence of elements of A, (u(i))i∈[n], such that u = u(1)u(2) · · ·u(n). Elements of a free monoid

will be called words. Let u be a word in M, |u| denotes the length of u and u(i) denotes its ith letter.

In order to define formally graph grammars, we recall some elements on hypergraphs. Let F be an

alphabet ranked by a mapping ρ : F → N, this mapping associates to each element of F its arity. Fur-

thermore, for a ranked alphabet F , we denote by Fn the set of symbols of arity n. Now given V an

arbitrary set, a hypergraph G is a subset of ∪n>1FnV n. The vertex set of such a hypergraph is the set

VG = {v ∈V | FV ∗vV ∗∩G 6= /0}, in our setting, this set is either finite or countable. A hyperarc of arity

n is denoted by f v1 v2 · · · vn.

Graphs

A (simple oriented labelled) graph G over V with arcs labelled in F2 is a subset of F2VV . An element ast

in G is an arc of source s, target t and label a (s and t are vertices of G). We denote by Dom(G), Im(G)
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and VG the sets respectively of sources, targets and vertices of G. Each arc ast of G is identified with the

labelled transition s
a
−→
G

t or simply s
a
−→ t if G is understood.

A graph G is deterministic if distinct arcs with same source have distinct label: r
a
−→ s ∧ r

a
−→ t ⇒

s = t. The set 2F2
+VV of graphs with vertices in V , labelled by elements of F2

+, is a semigroup for the

composition relation: G ·H := {r
a·b
−→ t | ∃s,r

a
−→
G

s∧ s
b
−→
H

t} for any G,H ⊆ V ×F2
+ ×V . The relation

u
−−→
G+

denoted by
u

=⇒
G

or simply
u

=⇒ if G is understood, is the existence of a path in G labelled u in F2
+. A

vertex q ∈VG is reachable from a vertex p ∈VG if p
u

=⇒
G

q for some u ∈ F2
+.

For any subset L of F2
+, we denote by s

L
=⇒ t that there exists u in L such that s

u
=⇒ t.

A graph morphism g is a mapping from a graph G to a graph G′ such that if there is an arc u
a
−→
G

v, then

there is an arc g(u)
a
−→
G′

g(v). A graph isomorphism is a graph morphism which is a bijection between the

vertex sets.

In the following we will consider first algebraic transformations from a generator, then we will examine

graphs rewriting system defining infinite families of graphs.

3 Algebraic graph transformations

Inverse substitution

A substitution over a free monoid X∗ is a morphism ϕ : Σ
∗ → 2X∗

, which associates to each letter in Σ a

language in X∗. For a class C of languages in ∗ (for example finite languages or regular languages), a C

substitution is such that the image of each element of Σ is a language in C .

We denote by X the set {a | a ∈ X}, and we say that x
a
−→ y if y

a
−→ x. Now, given a graph G ∈ XVV , and

ϕ : Σ
∗ → 2(X∪X)∗ a substitution, we define the graph: ϕ−1(G) in the following way:

ϕ
−1(G) = {x

d
−→ y | d ∈ Σ∧ x

ϕ(d)
==⇒

G
y}

This graph is a subset of ΣVV

3.1 Prefix-recognizable graphs

In this section, let Λ be the complete binary tree over X = {a,b}, whose vertices are in V .

Given a language L in X∗, let us denote by LΛ = {s | r
L
=⇒
Λ

s}, the set of vertices in Λ that are reached by

a path in L.

Definition 3.1. A graph in ΣVV is prefix-recognizable if it is the image of the complete binary tree, Λ,

by an inverse regular substitution followed by a regular restriction:

ϕ
−1(Λ)|LΛ

With ϕ a regular substitution (ϕ : Σ
∗ → 2X∗

), and L a regular language in X∗.

Example 3.2. The Figure 3.1 represents a classical example of prefix-recognizable graph, it is an infinite

ladder (L0) labelled by b’s on the ascending side, by c’s on the descending side, and with a’s connecting

the ascending and descending branches.
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On this figure, the complete binary tree Λ is composed of A arcs (dotted) and B arcs (dashed). The

graph L0 is obtained using a restriction to vertices reached by a path in L = A+B∗ +B∗A, and using the

following rational substitution: h(a) = {A}, h(b) = {B}, h(c) = {ABA}
For example, in L0, there is an arc labelled c, between BBA and BA (here we identify each vertex of Λ

with the single path from the root leading to it), because there is a path labelled ABA between them. We

could also consider the same graph with the transitive closure for c arcs, in this case, the substitution for

c would be: h′(c) = {A(B)+A} (which is simply the iteration of h(c), simplified by AA = ε).

a b

ba

ba

c

c

Figure 3.1: The infinite ladder L0

Proposition 3.3. [6] Inverse regular substitution and regular restriction preserves the decidability of the

MSO theory of graphs.

This proposition derives from the inductive definition of regular languages and MSO formula. From the

decidability of the MSO theory of the complete binary tree we have the following.

Theorem 3.4. [6] The monadic second order theory of prefix-recognizable graphs is decidable.

3.2 Caucal hierarchy

Another operation preserving monadic second order theory is the unfolding. Using this operation Caucal

has defined a hierarchy of graphs and terms having decidable MSO theories.

Theorem 3.5. [13] Unfolding preserves the decidability of the MSO theory of graphs.

The unfolding of a prefix-recognizable graph graph in general produces a graph which is not a prefix-

recognizable graph. Let us denote these trees tree2. Applying inverse regular substitution followed by

regular restriction to these trees produces graphs (that we denote graph2). Iterating this process defines

treen and graphn for each integer n > 2.

All theses graphs (and trees) families are defined by graph transformations from the complete binary

tree.

By construction the MSO theory of each element in treen and graphn is decidable.

And important result is the following:

Theorem 3.6. [7] The hierarchy formed by the graphn (resp. treen) is strict:

graphn ( graphn+1

treen ( treen+1

This theorem may be summarised in the following table:
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Level Trees graphs

0 Finite trees Finite graphs

1 regular trees Prefix-recognizable graphs

2 algebraic trees graph2

...

n treen graphn

This external characterisation corresponds to an internal characterisation which is higher order pushdown

automata: each n-graph is the ε-closure of the configuration graph of a n-pushdown automaton (see [5]).

3.3 Context-sensitive languages and rational graphs

In this section we present an external characterisation for context-sensitive languages.

3.3.1 Definitions

In this section we recall the classical definition of context-sensitive languages. Then we present the

definition of the family of rational graphs. These graphs are very general, and provide a graph charac-

terisation of these languages. More details can be found in [16, 18].

Context-sensitive languages are defined as the level 1 of the Chomsky hierarchy (0 being recursively

enumerable sets). Which means they are characterised by growing word grammars. Another popular

characterisation of these languages is by linear bounded Turing machines [14].

This family of languages is very expressive, for example, the sets of words of the form ww, or anbncn,

with n a natural number are context-sensitive sets of words. The set of ap where p is a prime number is

context-sensitive as well. One of the most stunning property of these languages is that they are closed

under complementation.

The family of rational subsets of a monoid (M, ·) is the least family containing the finite subsets of M

and closed under union, concatenation and iteration.

A transducer is a finite automaton labelled by pairs of words over a finite alphabet X , see for example

[2]. A transducer accepts a relation in X∗×X∗; these relations are called rational relations as they are

rational subsets of the product monoid (X∗×X∗, ·).
Now, let us consider the graphs of X∗ ×Σ×X∗. Rational graphs, denoted by Rat(X∗ ×Σ×X∗), are

extensions of rational relations, which are defined by labelled rational transducers.

Definition 3.7. A labelled rational transducer T = (Q, I,F,E,L) over X and Σ, is composed of a finite

set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q, a finite set of transitions (or edges)

E ⊆ Q×X∗×X∗×Q and a mapping L from F into 2Σ.

An arc u
a
−→ v is accepted by a labelled transducer T if there is a path from a state in I to a state f in F

labelled by (u,v) and such that a ∈ L( f ).

Definition 3.8. A graph in X∗×Σ×X∗ is rational if it is accepted by a labelled rational transducer.

Let G be a rational graph, for each a in Σ we denote by Ga the restriction of G to arcs labelled by a (it

defines a rational relation between vertices); let u be a vertex in X∗, we denote by Ga(u) the set of all

vertices v such that u
a
−→ v is an arc of G.

Example 3.9. In Figure 3.2, the graph on the right-hand side is generated by the labelled transducer on

the left-hand side.

The path p
0/0
−−→ q1

0/1
−−→ r2

1/1
−−→ r2 accepts the couple (001,011), the final state r2 is labelled by b thus

there is a arc 001
b
−→ 011 in the graph.
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p

q1

q2

r2 b

r1 a

r3 c

0/0

0/1

1/⊥

ε/0

1/ε

0/1

1/1

0/0

1/1

1/1

0/0

ε

⊥

0

1

a

c

b

00

01

a

b

000

001

a

b

11

01

c

b

111

011

c

b

b

Figure 3.2: A rational graph and its labelled transducer

Rational graphs have been introduced in order to extend existing families of graphs. They provide a very

general family of graphs. They have few decidable properties, but they characterise context-sensitive

languages [18]. If we only consider trees (rooted connected acyclic-graphs such that each vertex has at

most one predecessor) these trees have a decidable first order theory [4].

Using transducers to characterise a family of graphs induce that each graph is defined in a very precise

way. In particular, each vertex is a word, and thus each arc is defined between two precise words, which

are not interchangeable.

Finally, we recall the characterisation of context-sensitive languages by rational graphs:

Theorem 3.10. [18] The sets of path between regular sets of vertices of rational graphs corresponds

precisely to context-sensitive languages.

3.3.2 An external characterisation for rational graphs

There are at least two characterisations of rational graphs in terms of inverse substitution: the first one

is presented in [16], it extends directly Proposition 3.3 to rational graphs. It uses linear context-free

languages, and restricts the use of symbols of X to left-hand side of productions, and symbols of X to

right-hand side, it is ad-hoc. Here, we present a second such characterisation build with unrestricted finite

substitutions. Furthermore the generator is no longer the complete binary tree, but a complex rational

graph built on purpose.

Example 3.11. Let X = {0,1} be a fixed alphabet. Let Ggen be the rational graph labelled on X ,

defined as follows. First, this graph will be used to refine any graph in Rat(X∗×Σ×X∗), many path

in Ggen will correspond to path in any transducer. Each state of such transducer will be encoded in

X∗. In fact, Ggen will encode 0 into 000, 1 into 001 for ordinary elements of X∗, and 0 into 010, 1

into 011 for elements of X∗ which represents states. So some vertices will be elements of {000,001}∗,

and some of {000,001,010,011}∗. Furthermore, 110,101 and 100 will be used to mark states, and

111 will be used along a computation like a reading head (and thus some vertices of Ggen will be in

{000,001,010,011,100,101,110,111}∗).

Now each pair of elements of {000,001}∗ are connected to each-other via a infinite set of paths of this

form:
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u = u0u1 · · ·un

· · · q0u0q1u1 · · ·qnun

· · · pwp′ · · · pwp′ · · ·

· · · pℓw
′p′r · · · pℓw

′p′r · · ·

· · ·

q0ℓv0q1ℓrv1 · · ·qnrvn

v = v0v1 · · ·vn

p
w/w′

−−→ p′

· · ·

The first branching corresponds to non-deterministically guessing a path in the transducer that eventually

will connect u and v in the transducer. Each intermediate step corresponds in applying a transition:

each state are copied, except that a special marker is added: ℓ or r representing that the left-hand side

(respectively right-hand side) have been checked (they are encoded by 110,101 and 100, representing

respectively that ℓ is present, r or both). This path is reflected on the labels of the transitions. Furthermore

the marker 111 is used inside each pwp′ to reflect that this part is checked, and also where the progression

is. The last sequence reaching state v is obtained by removing each state that has been checked.

The key aspect to observe is that along a path of the form p
w/w′

−−→ p′ each occurrence of pwp′ in the vertex

q0u0q1u1 · · ·qnun is processed, simultaneously.

Expressed differently: each path in Ggen from a vertex u to a vertex v reflects the individual transitions of

the transducer T such that (u,v) belongs to the rational relation generated by T . And the first intermediate

state q0u0q1u1 · · ·qnun reflect an actual path in T , recognising (u,v).

Now, from this definition of Ggen, it is possible to express the following result:

Proposition 3.12. Rational graphs are obtained from Ggen by finite inverse substitution and regular

restriction.

Proof sketch. Given a rational graph G in Rat(X∗×Σ×X∗), and a in Σ, let Ta be the rational transducer

corresponding to G|a. We define the finite substitution

h(a) =

{

p0
u0/v0
−−−→ p1 . . . pm−1

um−1/vm−1
−−−−−−→ pm | p0 ∈ I(Ta)∧ pm ∈ F(Ta)∧ simple(p0 =⇒ pm)

}

With simple denoting the fact that each transition appears at most once in the path. Ta is finite, so h(a)
is finite. Now, from the construction of Ggen, each path labelled by an element of h(a) connects two

vertices which are in the relation defined by Ta, and thus legitimately connected by an arc labelled a.

To ensure that only vertices not involving ”states” are in G, we add the regular restriction to vertices in

{000,001}∗.

Now, from Proposition 2.14 in [16] we know that the first order theory of rational graphs is undecid-

able. Obviously finite inverse substitution preserve the decidability of first-order logic. Thus following

Corollary is straightforward.
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Corollary 3.13. First order theory of Ggen is undecidable.

Even if the construction of Ggen is built on an explicit naming of the vertices. This is an external

characterisation: every other rational graph is obtain from an algebraic transformation.

We have seen external characterisation for three families of graph defined by algebraic transformations

from a generator. In the following section we will examine external characterisations obtained by recur-

sive graph transformations.

4 Graph rewriting systems

In this section we examine graphs defined by graph rewriting systems. The characterisation are external

as they do not provide explicit naming for the vertices. They are constructed as recursive application of

finite graph transformations. We focus on HR-grammar, and their contextual counterparts.

4.1 Deterministic Graph grammars

Deterministic (hyperhedge replacement) graph grammars are another very nice example of external char-

acterisation of infinite graphs. These grammars were initially defined to be an extension to graphs of

word grammars. Indeed such a graph grammar derived, from an axiom, an infinite family of finite

graphs. Courcelle in [12] used the deterministic form of these grammars to obtain a single infinite graph

as the least solution of a finite set of deterministic graph equations. In 2007 Caucal made a very in-depth

survey on deterministic graphs grammars [8]. In particular he devised several techniques which allowed

the presentation of these results in a very unified manner.

Definition 4.1 (Hypergraph grammar). A hypergraph grammar (HR-grammar for short) G, is a 4-tuple

(N,T,R,H0), where N and T are two ranked alphabets of respectively non-terminals and terminals sym-

bols; H0 is the axiom, a finite graph formed by hyperarcs labelled by N ∪T , and R is a set of rules of the

form f x1 · · · xρ( f ) → H where f x1 · · · xρ( f ) is an hyperarc joining disjoint vertices and H is a finite

hypergraph.

Remark 4.2. In this paper, we consider graphs, therefore, the terminal symbols will have either rank

one, or two. Furthermore, we see such a graph as a simple subset of T2VV ∪T1V . Rank 1 symbols will be

called colours rather than labels (we use label to identify (hyper) arcs). A single vertex may have several

colours.

A grammar is deterministic if there is a single rewriting rule per non-terminal:

(X1,H1),(X2,H2) ∈ R∧X1(1) = X2(1) ⇒ (X1,H1) = (X2,H2)

Now, given a set of rules R, the rewriting −→
R

is the binary relation between hypergraphs defined as

follows: M rewrites into N, written M −→
R

N if there is a non-terminal hyperarc X = Av1v2 . . .vp in M and

a rule Ax1x2 . . .xp → H in R such that N is obtained by replacing X by H in M: N = (M −X)∪ h(H)
for some injection h, mapping vi to xi for each i, and every other vertices of H to vertices outside of M.

This rewriting is denoted by M −−→
R,X

N. Now, this rewriting obviously extends to sets of non-terminal,

for E such a set, this rewriting is denoted: M −−→
R,E

N. The complete parallel rewriting =⇒
R

is the rewriting

relative to the set of all non-terminal hyperarcs of R.
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Now given a deterministic graph grammar G = (N,T,R,H0), and a hypergraph H, we denote by [H] :=
H ∩ (T VH VH ∪T VH) the set of terminal arcs, and colours of H. A graph H is generated by G, if it

belongs to the following set of isomorphic graphs:

Gω =
{

∪n>0[Hn] | ∀n > 0,Hn =⇒
R

Hn+1

}

Example 4.3. We present here a simple example of deterministic graph grammar and propose a repre-

sentation of the resulting graph. An important observation on this graph is that it does not provide any

naming scheme for the vertices. But there is of course an obvious connection between the vertices and

the sequence of graph rewriting producing them.

A rule An axiom A graph

(2)

(1)
(1) (2)

A

A A

a

cb

a

cb

A A

a

cb

a a

Graph grammars characterise regular graphs. This external characterisation is very efficient to extend

to these infinite graphs techniques which work for finite graphs (for example computing the connected

components of a regular graph is very simple from the grammar). Furthermore these graphs correspond

(in a precise sense) to transition graphs of pushdown automata. Nonetheless, algorithms which only

depend on the structure of these graphs often make technical assumptions on the form of the automaton:

for example that the states carry some information, such as the configuration belongs to a certain regular

set. These assumptions only affect the internals of the automaton, it does not affect the structure of its

configuration graph. In such case, grammars are very efficient as there is no assumption on vertices

identification, only the structure is explicit.

Following structural operations on graphs preserve the regularity of graphs, meaning that given a graph

grammar G there is an effective procedure to produce a grammar G′ producing the desired graph.

Proposition 4.4. Accessible colouring preserves regularity.

This proposition relies on the fact that there are only finitely many right-hand side in any grammar so

computing local accessibility and iterating eventually finishes.

Proposition 4.5. The restriction of a regular graph to vertices having some colour is a regular graph.

This result is obvious from the definition. And implies that restriction to a regular set of configuration

for a pushdown automaton is a pushdown automaton, which seems less obvious.

4.2 Synchronised graph grammars

These grammars generate deterministic regular graphs. They correspond to deterministic context-free

languages, and enable the extension of visibly pushdown languages to every deterministic context-free

language. This topic is discussed in [9]. It presents a nice way to synchronise deterministic regular

graphs.

From this synchronisation, closure properties are defined (mainly under product) and enables a nice

extension of visibly pushdown automata.
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4.3 Contextual graph rewriting systems

In this section we present a second external characterisation of rational graphs. This graph rewriting

characterisation is the most general in some sense: each natural more general rewriting system fails to

produce recursive graphs.

4.3.1 The general setting

We recall mainly results from [17]

Let NR be a finite ranked set of non-terminals, and TR a finite ranked set of terminals.

We propose here a natural definition of contextual graph rewriting system.

Definition 4.6 (Contextual graph rewriting system). A contextual graph rewriting system S, is a set of

rules of the form Hc ∪ f x1 · · · xρ( f ) → Hc ∪H where f x1 · · · xρ( f ) is a non-terminal hyperarc, Hc

is a finite context graph, and H is a finite hypergraph, that can share some vertices with Hc and f .

Furthermore, Hc is composed only of terminal hyperarcs, and Hc ∪ f x1 · · · xρ( f ) forms a connected

hypergraph.

Proposition 4.7. Given (Ui,Vi)i∈[n] an instance of PCP, there exists a graph obtained from a finite axiom

A by a contextual graph rewriting system which possesses an arc labelled # between the two vertices v0

and v1 of A if and only if (Ui,Vi)i∈[n] is a positive instance.

The following example illustrates this proposition.

Example 4.8. But the construction is straightforward, and illustrated by this example. Consider ((Ui,Vi))i∈[n]

an instance of PCP, and observe the following contextual rewriting system:

1 12 2
fwd

nxt nxt nxt

U1 U2
Un V1 V2 VnR1

chkA

chkA,chkB

chkA/chkB

nxt

chkA,chkB

fwd

AA A
A

root root

#

R2

R3A

R4

The axiom is simply the following finite graph: {root v0 v1, fwd v0 v1}. Furthermore there is a rule R3B

similar to R3A for the rewriting of chkB.

Now, the rule R1 uses arc fwd to produce two partial binary trees corresponding to the Ui’s and Vi’s. For

each sequence of indexes (k j) j∈[m], the extremity of the path (Uk j
) j∈[m] is connected to the extremity of

(Vk j
) j∈[m] by an non-terminal arc nxt. Then the rules R3A and R3B will ultimately reach the arc root if

and only if (Ui,Vi)i∈[n]) is a positive instance of PCP.

The most direct consequence of this proposition is the following:

Corollary 4.9. Graphs generated by deterministic contextual graph rewriting systems are not recursive.

4.3.2 Contextual hyper-edge-replacement graph grammars

In this section we present a more restrictive contextual rewriting system which will be used to characterise

context-sensitive languages.
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Definition 4.10. A contextual hyper-edge-replacement hypergraph grammar (CHR-grammar for short)

is a tuple (C,N,T,Rc,H0), where C,N and T are finite ranked alphabets of respectively contextual, non-

terminal and terminal symbols; Rc is a finite set of contextual rules (for each rule Hc ∪ f x1 . . .xρ( f ) →
Hc∪H, the graph Hc is formed only by arcs labelled in C, and H by arcs labelled in T ∪N); and H0 is the

axiom: a deterministic regular graph formed by arcs with labels in C, and a single non-terminal hyperarc.

This definition imposes that the axiom is a deterministic regular graph. This restriction ensures that for

each rule R, of non-terminal A, and each occurrence of A in the graph, there is at most a single morphism

which maps the context of the left-hand side of R to the neighbourhood of A.

First we will show that using a n-ary tree as axiom is sufficient to obtain all the rational graphs up to

isomorphism, achieving the goal of containing the context-sensitive languages.

Proposition 4.11. Any rational graph on X∗×Σ×X∗ is obtained from a CHR-grammar.

Example 4.12. Like for Proposition 4.7, the proof is in the full paper. But the construction is straight-

forward, and illustrated by this example. Let G be a rational graph in X∗×Σ×X∗ (and T a transducer

representing it), let H0 be the complete n-ary tree labelled on X (with a non-terminal p0 on the root). For

each state p of T , we have the following rule Rp.

u1 u2
un v1

v2 vn Rp u1 u2
un v1

v2 vn

p

q1 q2 qm

L(p)

Here, we suppose that there are transitions p
ui/vi
−−→ qi for some states (qi)i∈[m], and also L(p) represent

all labels produced at state p (if p is a terminal state). Now each pair of path in H0 correspond to a pair

of paths in T . Thus the graph obtained from the contextual rewriting system is the same as the graph

obtained from the transducer.

Corollary 4.13. Any context-sensitive language L is the set of paths between two colours in a graph

obtained from a CHR-grammar.

4.3.3 Graphs obtained from a tree-separated contextual grammar are rational graphs

In this section we examine restrictions in order to obtain a converse to Proposition 4.11.

First, we designate interesting restrictions of CHR-grammar. A CHR-grammar (C,N,T,Rc,H0) is called

a tree-CHR-grammar if the axiom H0 is a tree, and left-hand side of each rule of Rc is formed by trees

rooted in the vertices of the non-terminal (some vertices of this non-terminal may be non-root vertices of

theses trees). Furthermore, if each such tree possesses a single vertex belonging to the non-terminal (its

root) this grammar is called a tree-separated-CHR-grammar. These grammars are captured by rational

graphs:

Proposition 4.14. Any graph obtained from a tree-separated-CHR-grammar, is isomorphic to a rational

graph on X∗×Σ×X∗.

Now combining this result with Theorem 3.10 and Corollary 4.13 we obtain the desired result.
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Theorem 4.15. The set of paths (between colours) of any graph obtained from a tree-separated-CHR-

grammar, is a context-sensitive language. And conversely, any context-sensitive language can be ob-

tained as the set of paths of such a graph.

Now we show that the natural extension of the previous result by allowing the non-terminal (of the

left-hand side) to be set anywhere in the context produces another non-recursive family of graphs.

Proposition 4.16. There is a graph obtained from a CHR-grammar, such that the axiom is a deterministic

tree, and having a loop on the root of the axiom if and only if a given instance of PCP has a solution.

Unfortunately, at the moment, there are few applications illustrating the potential of this characterisation.

A nice one, would be to provide a new demonstration of the closure under complementation of context-

sensitive languages. Unfortunately the most obvious proof of this result would require determinism for

these graphs, and we have some indications that deterministic rational graphs do not characterise all

context-sensitive languages.

5 Discussion

In this paper we have presented several external characterisations of infinite graphs families. These

characterisations falls into two categories: either algebraic transformations from a generator, or recursive

application of finite graph transformations.

Our statement is that these characterisations are essential in order to grasp structural properties of graphs.

And also provide an elegant way to extend to infinite graphs techniques used for finite graphs. In partic-

ular HR-grammar enable many simplifications in proofs relatively to those using pushdown automata.
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