323 research outputs found

    Coalgebraic completeness-via-canonicity for distributive substructural logics

    Get PDF
    We prove strong completeness of a range of substructural logics with respect to a natural poset-based relational semantics using a coalgebraic version of completeness-via-canonicity. By formalizing the problem in the language of coalgebraic logics, we develop a modular theory which covers a wide variety of different logics under a single framework, and lends itself to further extensions. Moreover, we believe that the coalgebraic framework provides a systematic and principled way to study the relationship between resource models on the semantics side, and substructural logics on the syntactic side.Comment: 36 page

    An Abstract Approach to Consequence Relations

    Full text link
    We generalise the Blok-J\'onsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and J\'onsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that non-idempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods, and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic

    A Labelled Analytic Theorem Proving Environment for Categorial Grammar

    Full text link
    We present a system for the investigation of computational properties of categorial grammar parsing based on a labelled analytic tableaux theorem prover. This proof method allows us to take a modular approach, in which the basic grammar can be kept constant, while a range of categorial calculi can be captured by assigning different properties to the labelling algebra. The theorem proving strategy is particularly well suited to the treatment of categorial grammar, because it allows us to distribute the computational cost between the algorithm which deals with the grammatical types and the algebraic checker which constrains the derivation.Comment: 11 pages, LaTeX2e, uses examples.sty and a4wide.st

    A graph-theoretic account of logics

    Get PDF
    A graph-theoretic account of logics is explored based on the general notion of m-graph (that is, a graph where each edge can have a finite sequence of nodes as source). Signatures, interpretation structures and deduction systems are seen as m-graphs. After defining a category freely generated by a m-graph, formulas and expressions in general can be seen as morphisms. Moreover, derivations involving rule instantiation are also morphisms. Soundness and completeness theorems are proved. As a consequence of the generality of the approach our results apply to very different logics encompassing, among others, substructural logics as well as logics with nondeterministic semantics, and subsume all logics endowed with an algebraic semantics

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    Constructive Logic with Strong Negation is a Substructural Logic. II

    Get PDF
    The goal of this two-part series of papers is to show that constructive logic with strong negation N is definitionally equivalent to a certain axiomatic extension NFL ew of the substructural logic FL ew . The main result of Part I of this series [41] shows that the equivalent variety semantics of N (namely, the variety of Nelson algebras) and the equivalent variety semantics of NFL ew (namely, a certain variety of FL ew -algebras) are term equivalent. In this paper, the term equivalence result of Part I [41] is lifted to the setting of deductive systems to establish the definitional equivalence of the logics N and NFL ew . It follows from the definitional equivalence of these systems that constructive logic with strong negation is a substructural logi

    Modal Linear Logic in Higher Order Logic, an experiment in Coq

    No full text
    The sequent calculus of classical modal linear logic KDT 4lin is coded in the higher order logic using the proof assistant COQ. The encoding has been done using two-level meta reasoning in Coq. KDT 4lin has been encoded as an object logic by inductively defining the set of modal linear logic formulas, the sequent relation on lists of these formulas, and some lemmas to work with lists.This modal linear logic has been argued to be a good candidate for epistemic applications. As examples some epistemic problems have been coded and proven in our encoding in Coq::the problem of logical omniscience and an epistemic puzzle: ’King, three wise men and five hats’
    • …
    corecore