8 research outputs found

    An Intelligent Multi-Agent Recommender System for Human Capacity Building

    Full text link
    This paper presents a Multi-Agent approach to the problem of recommending training courses to engineering professionals. The recommendation system is built as a proof of concept and limited to the electrical and mechanical engineering disciplines. Through user modelling and data collection from a survey, collaborative filtering recommendation is implemented using intelligent agents. The agents work together in recommending meaningful training courses and updating the course information. The system uses a users profile and keywords from courses to rank courses. A ranking accuracy for courses of 90% is achieved while flexibility is achieved using an agent that retrieves information autonomously using data mining techniques from websites. This manner of recommendation is scalable and adaptable. Further improvements can be made using clustering and recording user feedback.Comment: Proceedings of the 14th IEEE Mediterranean Electrotechnical Conference, 2008, pages 909 to 91

    Design, modelling, simulation and integration of cyber physical systems: Methods and applications

    Get PDF
    The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine

    Development of a toolkit for component-based automation systems

    Get PDF
    From the earliest days of mass production in the automotive industry there has been a progressive move towards the use of flexible manufacturing systems that cater for product variants that meet market demands. In recent years this market has become more demanding with pressures from legislation, globalisation and increased customer expectations. This has lead to the current trends of mass customisation in production. In order to support this manufacturing systems are not only becoming more flexible† to cope with the increased product variants, but also more agile‡ such that they may respond more rapidly to market changes. Modularisation§ is widely used to increase the agility of automation systems, such that they may be more readily reconfigured¶. Also with globalisation into India and Asia semi-automatic machines (machines that interact with human operators) are more frequently used to reduce capital outlay and increase flexibility. There is an increasing need for tools and methodologies that support this in order to improve design robustness, reduce design time and gain a competitive edge in the market. The research presented in this thesis is built upon the work from COMPAG/COMPANION (COMponent- based Paradigm for AGile automation, and COmmon Model for PArtNers in automatION), and as part of the BDA (Business Driven Automation), SOCRADES (Service Oriented Cross-layer infrastructure for Distributed smart Embedded deviceS), and IMC-AESOP (ArchitecturE for Service- Oriented Process – monitoring and control) projects conducted at Loughborough University UK. This research details the design and implementation of a toolkit for building and simulating automation systems comprising components with behaviour described using Finite State Machines (FSM). The research focus is the development of the engineering toolkit that can support the automation system lifecycle from initial design through commissioning to maintenance and reconfiguration as well as the integration of a virtual human. This is achieved using a novel data structure that supports component definitions for control, simulation, maintenance and the novel integration of a virtual human into the automation system operation

    Monimuuttujaisen ja malliprediktiivisen säätimen suorituskyvyn arviointityökalun toteutus

    Get PDF
    The aim of the thesis was to implement a tool for performance assessment of a multivariable, model-predictive controller which was in this work NAPCON Controller developed by Neste Jacobs. The aim of control performance assessment and monitoring is to ensure that control systems operate as required. In practice, control performance assessment techniques are usually based on a comparison of the current controller performance and a benchmark value defined by some criteria. The result of this comparison is called the control performance index. In this thesis, the technological performance of the controller was measured with two techniques using different criteria for calculating the benchmark value. These selected methods were historical and design-case benchmarks. In addition, the economic performance of the controller was assessed. In this work, an OPC UA database was used for storing the calculated performance indices as well as the related configuration parameters. This required the definition of new OPC UA based information models. The implemented performance assessment tool included a performance calculation application as a Windows service and a graphical user interface for configuring the performance assessment calculations. The functionality of the implemented controller performance assessment tool was tested with a simulator of a distillation unit and against an actual MPC controller. The results of the different simulation cases showed that the calculated performance indices responded as expected when the process conditions or the control objectives changed. The tool requires some additional testing and development before it can be deployed to a real process environment as a part of the controller software, although the created performance assessment tool worked well according to the simulation results

    Web service control of component-based agile manufacturing systems

    Get PDF
    Current global business competition has resulted in significant challenges for manufacturing and production sectors focused on shorter product lifecyc1es, more diverse and customized products as well as cost pressures from competitors and customers. To remain competitive, manufacturers, particularly in automotive industry, require the next generation of manufacturing paradigms supporting flexible and reconfigurable production systems that allow quick system changeovers for various types of products. In addition, closer integration of shop floor and business systems is required as indicated by the research efforts in investigating "Agile and Collaborative Manufacturing Systems" in supporting the production unit throughout the manufacturing lifecycles. The integration of a business enterprise with its shop-floor and lifecycle supply partners is currently only achieved through complex proprietary solutions due to differences in technology, particularly between automation and business systems. The situation is further complicated by the diverse types of automation control devices employed. Recently, the emerging technology of Service Oriented Architecture's (SOA's) and Web Services (WS) has been demonstrated and proved successful in linking business applications. The adoption of this Web Services approach at the automation level, that would enable a seamless integration of business enterprise and a shop-floor system, is an active research topic within the automotive domain. If successful, reconfigurable automation systems formed by a network of collaborative autonomous and open control platform in distributed, loosely coupled manufacturing environment can be realized through a unifying platform of WS interfaces for devices communication. The adoption of SOA- Web Services on embedded automation devices can be achieved employing Device Profile for Web Services (DPWS) protocols which encapsulate device control functionality as provided services (e.g. device I/O operation, device state notification, device discovery) and business application interfaces into physical control components of machining automation. This novel approach supports the possibility of integrating pervasive enterprise applications through unifying Web Services interfaces and neutral Simple Object Access Protocol (SOAP) message communication between control systems and business applications over standard Ethernet-Local Area Networks (LAN's). In addition, the re-configurability of the automation system is enhanced via the utilisation of Web Services throughout an automated control, build, installation, test, maintenance and reuse system lifecycle via device self-discovery provided by the DPWS protocol...cont'd

    Applying agent technology to constructing flexible monitoring systems in process automation

    Get PDF
    The dissertation studies the application of agent technology to process automation monitoring and other domain specific functions. Motivation for the research work derives from the development of industrial production and process automation, and thereby the work load of operating personnel in charge of these large-scale processes has become more complex and difficult to handle. At the same time, the information technology infrastructure in process automation domain has developed ready to accept and utilise novel software engineering solutions. Agent technology is a new programming paradigm which has attractive properties like autonomy, flexibility and a possibility to distribute functions. In addition, agent technology offers a systematic methodology for designing goal based operations. This enables parts of the monitoring tasks to be delegated to the system. In this research, new agent system architecture is introduced. The architecture specifies a structure that enables the use of agents in the process monitoring domain. In addition, an introductory internal layered design of an agent aiming to combine Semantic Web and agent technologies is presented. The developed agent architecture is used in conjunction with the systematic agent design methodology to construct and implement four test cases. Each case has industrially motivated interest and illustrates various aspects of monitoring functionalities. These tests provide evidence that by utilising agent technology it is possible to develop new monitoring features for process operators, otherwise infeasible as such within current process automation systems. As a result of the research work, it can be stated that agent technology is a suited methodology to realise monitoring functionalities in process automation. It is also shown, that by applying solutions gained from the agent technology research, it is possible to define an architecture that enables to utilise the properties offered by agents in process automation environment. The proposed agent architecture supports features that are of generic interest in monitoring tasks. The developed architecture and research findings provide ground to import novel software engineering solutions to process automation monitoring

    An Agent-Oriented Approach to Industrial Automation Systems

    No full text
    Multi-agent systems have been successfully used in a number of industrial applications. However, in the domain of industrial automation systems, little practical experience about the use of agents in such a demanding environment exists. Nowadays automation systems face new challenges and therefore new concepts are needed to meet them. This paper presents a vision of using agents within industrial automation systems from the point of view of automation engineering. To this end, the characteristic structures of automation systems are analyzed and opportunities, as well as advantages, of applying agent-oriented concepts are investigated. A possible approach for the integration of a multi-agent system into existing automation systems is introduced and illustrated by an application example
    corecore