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1 Introduction 

1.1 Motivation and background 

Technological changes originating both from the development of the process 

automation environment itself and from business requirements are altering the way in 

which process industry-related systems should operate in the future. New technical 

solutions have been utilised to stay competitive in this change situation. This research 

also falls into this category; it studies how agent technology, as a new software 

engineering paradigm, could be used to build better monitoring systems in the future. 

 

Digitalisation and advances in embedded electronics are currently contributing 

strongly to the evolutionary and continuous development of automation environments. 

Sophisticated field devices provide diagnostic services and wireless communication 

may be used to distribute additional but beneficial information everywhere in the 

system, and this may be realised even without interfering with the control operations. 

General information technology-based (IT) solutions developed initially for office 

environments have become so versatile and mature that many of the utilities provided 

have also been adopted for process automation. This has added applications such as 

electronic manuals and reporting systems to the daily life of process operators. In 

addition, tighter integration into enterprise-level systems is presently under 

development, e.g. with Manufacturing Execution Systems. 

 

The maturity of process automation has provided a chance to increase the size and 

complexity of the systems, and, for example, only a few operators are needed to be 

able to run a chemical production site with thousands of I/Os. Normally, when there 

are no abnormalities or changes and practically nothing happens this minimal setup is 

realistic. But when there is something out of the ordinary, e.g. a device breaks down 

or there is a blockage in the pipes, then a few persons watching over changing values 

from hundreds of displays is not enough. Models describing the relations of quantities 

and limits of process operations have offered a solution to overcome this problem, and 

with unit processes this approach has been demonstrated to work relatively well. 

However, when a larger part of the system, with numerous changing interconnections, 

has to be monitored, the model-based approach becomes unmanageable. 

 

Operator work in process sites has become more and more like regular knowledge-

intensive work. Information is searched for and processed extensively with various IT 

systems. However, IT solutions originally developed for office environments are not, 

as such, suitable for all the tasks in process environments, especially not for 

monitoring. Contrary to office environments, where the modifications to stored 

information are mostly made by humans, the significant changes to information in 

process environments are a result of unknown phenomena and uncontrollable 

variables. In processes the changes are a consequence of e.g. device malfunction, 

variations in raw material, and the unknown cross-effects of different process 

sections. These changes may not be a priori controlled by set practices, e.g. the ISO 

9001 quality management standard, as may be done with business-related systems in 

office environments.  
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The demands of economic competitiveness and environmental issues require an 

increase in production effectiveness, which is typically responded to with more 

integrated production systems. As the amount of buffer storage has decreased and the 

time from order to production has been minimised at the same time, the whole 

production system has become more vulnerable to malfunctions. Furthermore, the 

demand for increased overall flexibility and the ability to change a production setup 

relatively fast and without material losses has increased. All these changes alter the 

controlling setup that process automation realises. Changes in control systems also 

reflect how monitoring is conducted. 

 

Highly developed IT has provided the possibility of offering new types of services to 

people in their everyday lives and, especially, the monitoring of information sources 

is starting to be commonly available. Nowadays a notification request may be left 

with an online bookshop if a certain book is not currently ready to be ordered. Similar 

services are also available in banking, for example an alert about your balance going 

below a user-specified limit. With these services the user may delegate the monitoring 

activity by defining triggering values and then wait to be informed by the service 

provider. A variety of monitoring services about interesting information is also 

becoming available, for example everywhere on the internet (e.g. google.com/alerts) 

or via various online news services. The availability of these services is making 

people familiar with this type of operation and, furthermore, makes it easier to require 

similar functions to be available within process automation environments.  

 

The development of general network technology and, especially, the internet has 

highlighted the importance of software engineering tools for decentralised and 

distributed systems. On the one hand, a growing user community is continuously 

developing new applications utilising the possibilities that the network provides. The 

results are visible, for example in peer-to-peer networks that operate without central 

control, thus offering the potential for enormous adaptation in terms of scale and 

availability. Social computing, where the users provide and develop the content, is the 

new buzzword in the software area. On the other hand, industry has been keen to 

utilise the network-related possibilities for its own purposes. Web services have been 

developed for organising commercial tasks between players in the production chain, 

and Service-Oriented Architecture is currently making a strong forward push in global 

organisations.  

 

In the academic world, agent technology originating from the artificial intelligence 

community has a long research tradition of organising operations in distributed 

settings. Furthermore, agent technology has been proposed as a suitable realisation 

tool for reducing work and the information overload on humans via delegation. The 

Semantic Web has been demonstrated to ease the solving of interoperability problems 

in applications that integrate multiple individual actors and link pieces of information 

together dynamically. The Semantic Web is still under heavy development but even 

now solutions for systematically organising knowledge representation issues are 

relatively mature, both in terms of actual tools and also standards.  
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The results presented in this thesis are the outcome of multiple projects studying the 

possibilities of agent technology within process automation. The projects were open-

minded from the very beginning and were based on an experimental approach. The 

first of these projects was Agent-based automation systems, conducted in 2000-2003. 

It was focused on finding new ways to structure the operation of an automation 

system utilising agent technology. The ideas at the beginning were radical, including 

e.g. 3D temperature profiles measured by mobile sensors (Appelqvist et al. 2002) and 

fault recovery with emergent behaviour. However, the ideas were found not to be 

feasible by the research group when they were studying the properties of a process 

automation environment and its functions. The author joined the research group in the 

year 2001 to do his master‘s thesis, which was finalised in 2002 with the title ―Agent 

augmented process automation system‖ (Pirttioja 2002). By that time, the research 

group was mainly studying the structural aspects of agent systems and their 

applicability to the controlling of operations. Additionally, the project highlighted the 

possibility of utilising agents in information-processing functionalities.  

 

The second project, Adaptive automation (MUKAUTUVA) in the years 2003-2004, 

turned the research focus more towards information processing and demonstrated 

simple information-accessing tasks within process automation setups. The third and 

the last project so far was Agent-based information services for process automation 

(PROAGE), carried out during the years 2005-2007. This was totally focused on 

information processing and by then the Semantic Web had been included into the 

architecture because of the general developments originating from the World Wide 

Web Consortium (W3C). The results in this thesis are mainly derived from the final 

project, although the previous two projects provided important background 

information about both the problem domain and the agent technology itself.   

 

Although this thesis reports the results on the information-processing functions, it is 

strongly influenced by the previous research done by the research group on applying 

agent-based approaches to the supervisory control operations of process automation. 

That research presented a specification of how an agent system could be used as an 

extension to an existing automation system and thus make possible the use of agent 

technology to provide enhanced reconfigurability, responsiveness, and flexibility to 

process automation control operations. The main results from these issues can be 

found in Seilonen‘s thesis (2006). Although the general background of these two 

research subjects is somewhat similar, especially using agent-based systems as a 

skeleton to gain flexibility and reconfigurability, there are still major differences. In 

control functions the overall goal is always to make some kind of modifications to the 

system setup, more or less automatically. In monitoring, which is a specific type of 

information processing performed in a process automation environment, the purpose 

of the designed system is to provide the user with flexible, integrated, and easier 

access to available information. These types of functions (e.g. monitoring and 

diagnostic) seemed to be more suitable for agent orientation than the controlling 

functions, and similar statements have also been introduced by other researchers 

(Bunch et al. 2004; Marik and McFarlane 2005; Wagner 2002). 
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1.2 Research problem and goals for the study 

The research problem in this thesis is to draw conclusions on usefulness of agent 

technology when used to build a monitoring system for operators working in a 

process automation environment. To be able to answer this, the requirements of such 

a system have to be determined and then the properties of an agent system designed 

and built for the purpose should be analysed.  

 

As the size and complexity of production sites is increasing, it will become generally 

problematic to find out if and when certain information is available, and, further, to 

decide if it is relevant in the current situation. Reducing the mental load of an operator 

is crucial and the demands for technical solutions assisting people in their work are 

high. The technical background for developing advanced services is relatively mature 

but it is rather unclear what properties and functions are required from the resulting 

technical construction. Applications meeting individual requirements and building on 

top of present structures have been presented, but the current risk-minimising research 

culture seems to fail in providing the badly-needed ground-breaking results. Open-

minded research demonstrating the possibilities of structurally new solutions has only 

been presented to a very modest degree, and this also justifies the study of the 

potential of agent technology. 

 

The research problem of the thesis can be defined with a general research goal as 

follows: 

 

Develop a system design and provide a methodology that, with the help of novel 

information technologies, answers the current and future monitoring needs in process 

automation. Release the human user from the need to perform regular checking of the 

current process state and provide controllable and configurable timely access to 

filtered, processed, abstracted, and adapted information available from 

heterogeneous data sources based on user-defined conditions referring to the values 

themselves and their relations. This system should provide the means for easy and 

comprehensive monitoring of process operations and related information, even when 

it is incomplete and its availability is possibly partly unknown. 

 

Further, this general research goal can be divided into the following more concrete 

objectives:  

 

 Study agent technology opportunities and their suitability for monitoring 

functions: changes are visible in process automation environments, originating 

both from technological development and business trends. How these are 

altering the everyday work of personnel working with processes are unclear, 

but, on the basis of the literature, some predictions may be made. Because of 

its proposed general properties, agent technology seems to be suitable but 

various alternative operating principles need to be compared and the most 

suitable ones need to be selected. Furthermore, other state-of-the-art 

technological alternatives need to be studied. 

 Specify agent architecture for monitoring applications: a list of the properties 

that the system should have needs to be gathered on the basis of a background 

study. The system architecture should be usable in a real automation 

environment, utilise the latest technological opportunities, and further support 

the realisation of new functionalities. Utilising agent technology, a number of 
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concrete design issues need to be decided before the whole system structure is 

ready for realisation. The system should be specified in enough detail for it to 

be implementable. 

 Construct industrially motivated monitoring functionalities with agents: use 

the agent philosophy and the developed architectural design to construct 

selected monitoring functionalities. The realisation of the functionalities of 

experiments enables the agent methodology and, further, how the desired 

system properties are met to be assessed. Furthermore, the experiment 

provides the possibility of suggesting future improvements in the design. 

 Critical evaluation of the research: Provide a concluding discussion about the 

whole area of agent technology-based monitoring system design. Discuss the 

presented monitoring system requirements and their relevance. Summarise 

how the architecture that was designed and system that was constructed 

performed and consider whether the arguments presented are well justified. 

The performance of the experiment provides the possibility of making a 

critical assessment about the properties that the agent technology and the 

designed system do and do not provide. Discuss also the potential limitations 

of the technology. 

 

Although the thesis is about designing a system for process automation environments, 

hard real-time issues were decided not to be considered. The reason for this is that it is 

seen that higher-level monitoring information is useful, even if it takes some seconds 

to have it available. 

 

The research work in this thesis is done on a holistic level; it aims to facilitate an 

increase in knowledge about the whole technological construction and thus does not 

focus on any individual part of the system. The research is divided into two distinct 

areas of theoretical and experimental work which are tightly connected in an 

interactive and iterative fashion. The related research was studied in order to get an 

understanding of the challenges, requirements, and available technical opportunities 

in the application area. The experimental work, using a constructive research 

methodology, was carried out in order to test the properties and benefits that selected 

approaches were suggested by the literature as having. In addition, experiments were 

done to demonstrate the applicability of the chosen technologies and to gain an 

understanding of the approaches used and design choices selected. The Prometheus 

agent design methodology (Padgham and Winikoff 2004) was used in the experiments 

because at the time of the research it offered the best support for practical usage.  

1.3 Contributions 

The contributions of the thesis include the following:  

 Agent technology opportunities compared to process monitoring 

requirements: previous research has indicated that agent technology is suitable 

for similar operations to those requested in monitoring tasks. However, this 

research compares the presented agent technology properties to new 

monitoring requirements originating from business changes within process 

industry. In particular, the flexibility requirement is naturally supported by 

agent-oriented design. 
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 Specification of agent architecture for monitoring in process automation, 

including the BDI model and the Semantic Web: the desired properties for a 

monitoring system situated in process industry are gathered. On the basis of 

these an agent system architecture is designed, covering the general system 

structure and the roles of the agents. The architectural design utilises the latest 

available solutions for goal-oriented operation (with the Belief-Desire-

Intention model) and knowledge presentation technologies, originating from 

Semantic Web research. Further, a layered and modular internal structure of an 

agent supporting the hierarchical organisation of data-processing in the 

process automation context is specified. In addition, an actual example of 

software realisation is presented. 

 Application of systematic AOSE method to design industrial monitoring cases: 

the design of four industrially motivated experiments is documented. These 

experiments illustrate the use of systematic AOSE in the construction of 

monitoring functions in a process automation environment. The specified 

agent system architecture is used to implement the experiments.  

 Evaluation: the applicability of an agent approach is critically evaluated on the 

basis of a literature review, synthesis, design, and experiments. This provides 

insights into what the suitable monitoring functionalities are for a system that 

has been built with an agent approach. It also discusses what other information 

technologies should be used when developing this kind of monitoring system.  

1.4 Author’s contribution within the research group 

The research work documented and presented in this thesis was carried out from 2002 

until 2007 in a group that had three key members. The author‘s main scientific 

contribution to the group has been the architectural design. The desired properties for 

the agent system presented in the thesis and the specification of information related 

roles (client, information, and wrapper) of agents were done by the author. 

Furthermore, the internal layered structure of an agent was specified by the author. 

The use of constraint satisfaction problems formalism to monitoring purposes was 

proposed and implemented by Ilkka Seilonen. In addition, the presented process 

industry data model and ontology based information processing were mainly 

developed by Antti Pakonen.  

 

Experiments 1 and 2 were defined, designed and implemented by Pakonen and 

Seilonen in co-operation with the author, but the agent design presented in the thesis 

with Prometheus formalism was done solely by the author. Furthermore, 

specifications and design for Experiments 3 and 4 were made exclusively by the 

author. Furthermore, the author is alone responsible for the idea of applying statistical 

mathematical tools to find linear episodes from process time series data. The 

implementation was done by Eemeli Aro, based on author‘s definitions.   
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1.5 Outline of the thesis 

This thesis is organised as follows: 

 

Chapter 1: Introduction. 

 

Chapter 2: State of the art of monitoring systems in process automation. The chapter 

presents the current status of industrial process automation and its monitoring. It 

describes the general motivation for the research and presents the user needs. 

 

Chapter 3: Agent, semantic web technologies, and their application to monitoring task 

in process automation. The research depends heavily on information technology, so 

the available system-level solutions are reviewed. In addition, a synthesis discussing 

the challenges and technical opportunities of process automation monitoring is 

presented.  

 

Chapter 4: The new agent system architecture for process monitoring. First, the 

desired system properties are listed, and these properties direct the development of the 

architecture. Then the architectural design is presented, with a summarisation of its 

properties. 

 

Chapter 5: Layered agent design and its functionalities. The layered and modularised 

design of an agent used further in the study is presented. The design is used to 

implement and realise the system for experiments.  

 

Chapter 6: Experiments illustrating the usefulness of agent design methods and 

developed architecture. Four different real life-motivated experiments are designed 

and described in detail. Each experiment is introduced with its use case and then the 

agent definitions and interactions are designed. Furthermore, the implementation of 

the experiment and the concluded tests are illustrated. 

 

Chapter 7: Discussion and conclusions. The results of the thesis as a whole are 

summarised on the basis of the previous chapters. This contains discussion about how 

the properties offered by the literature match the results from the architectural design 

and experiments. Future work is also pointed out. 
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2 State of the art of monitoring systems in process 
automation  

2.1 Introduction  

Process automation is a special branch of automation that is used to realise the 

automation of continuous industrial production processes, such as paper production or 

the chemical industry. This chapter presents the characteristics of process automation 

and its current state. It presents the visible future in terms of technical development 

trends and business requirements, and discusses how these are reflected in process 

monitoring. It also describes the current status of industrial automation, because the 

industrial practice and current technical setup are important as they represent the 

environment in which the developed monitoring system will be situated. The chapter 

will first present the automation environment from three distinct perspectives of time, 

technology, and users, in their own subchapters. Then, finally, it illustrates the overall 

development trends that are currently visible in process automation. These will all be 

used as background information when designing the system for monitoring purposes 

in later chapters. 

 

Generally, the technical motivation for automation is that some systems are too fast or 

complicated to let humans control them directly, or machines handling the repetitive 

tasks let people focus on higher-level aspects of work, e.g. optimisation and quality 

control. The level of automation varies depending on a number of issues, such as 

safety requirements and business interests (Olsson 1992; Sheridan 1992). Because of 

partly distinct properties and functionalities, process automation in continuous 

processes has differences in its technical requirements compared to other domains, 

e.g. manufacturing.  

 

Automation that controls processes varies in type and in its place in the life cycle, 

which in process automation may be as long as 20 to 30 years. Typically, the systems 

controlling the operation of production plants are based on mixed technologies and 

product life cycle statuses vary. As most plant systems work properly in their 

operational life cycle, some parts of the system are at the end of their life cycle. For 

some parts requirements are gathered for the next system upgrade, and possibly some 

previously updated part is starting to meet the designed production state. As the 

system goes through continuous evolution the whole life cycle of systems is important 

and this should be remembered when developing new functions. This evolution makes 

the construction of the automatic monitoring of processes especially difficult, as rules 

expressing acceptable process values and operational states may become out of date in 

a relatively short time, e.g. because of the wearing out of equipment or changes in the 

outside temperature. 

 

Although the whole evolutionary path, including design and commissioning, is 

important, this thesis focuses on studying issues related to the normal operational 

phase. This phase is nominal for the process system and its correct operation is the 

responsibility of the operator. According to Paunonen (1997), working with process 

automation in this operational phase may be divided into the following modes: 
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 Monitoring of the normal operation of the process when it is steady and it is 

working as planned. This could be seen as the target state of the production 

plant.  

 Performing preplanned tasks is a mode that is activated once in a while and it 

may also be seen as the target state of production. This consists of situations 

such as process start-up sequences and grade changes.  

 Controlling disturbances is a situation in which things are not going as 

planned, e.g. when some equipment has broken down and the production 

capabilities of the site are reduced. Before this phase is activated, the deviation 

from normal operation (the previous two phases) needs to be observed. 

 Development mode is activated when the on-going evolution of the production 

system requires modifications to the system setup. 

 

Each of these modes requires a different perspective on the underlying system and its 

operation, and therefore the tools that are designed to support user activities in 

different modes should take this issue into account.  

2.2 Evolution of process automation 

The development path of process automation and its technologies has been rather 

isolated in the past, and although this isolation is effectively in a state of breaking up, 

the history still affects the trends and development directions. Therefore, a brief 

overview of the evolution of the technological background and the growth of the 

general size and complexity of applications gives a perspective that may be exploited 

when new systems and functionalities are being developed.  

 

The first control systems were based on mechanical operation principles. In general, 

mechanical control systems work quite well when done properly, but they wear out 

with use, need extensive maintenance, and are hard to reconfigure. Although 

mechanical systems are not thought to be a feasible implementation of modern control 

functions, their monitoring was relatively easy because of their simple and intuitive 

operation. From purely mechanically constructed control setups the development went 

through electronic relays and hydraulic and pneumatic systems in the 1950s to digital 

control systems somewhere round the 1970s. With these the control systems were 

constructed mainly from multiple single-variable loops that handled their own share 

of the whole system. Operations were easy to validate and monitor directly with 

human perceptions. 

 

More advanced control systems became available round the 1980s as computational 

systems developed further. At first, automation-related hardware and software were 

specially designed for control applications but more recently the hardware used has 

become more and more similar to that found in office computers. With totally all-

digital platforms a number of new functions became possible, such as plant-wide 

optimisation. Additionally, the alarm functionality provided the possibility of 

requesting the system to give notification about individual values going over specified 

limits. Digitalisation made it possible easily to move a larger part of the process so 

that it could be supervised from one central control room. This made possible the use 

of fewer persons to watch over the larger part of the process. 
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In the 1990s a wide range of digital field buses were introduced to process industry. 

Field buses provided error-free communication between controllers and field devices, 

and made it possible to deliver additional information between devices. Along with 

the development of microcontrollers, this made room for embedded diagnostics, and 

maintenance tools started to emerge. In addition, around the 1990s control rooms got 

bigger displays and navigation between different process layout displays became 

easier. At the same time, the division between control systems and information 

systems ceased to be so obvious any more and these started to merge (Paunonen 

1997). As the fusion of information and control systems became technically feasible, 

the responsibilities of process operators again increased. 

 

Around the year 2000 the development focus in process industry moved more and 

more towards the utilisation of the potential that the software discipline offered. The 

development of network technologies, e.g., the internet and Ethernet, adapted from 

offices also made new levels of integration possible within factories, and the 

integration of the whole production enterprise became more important. Despite the 

integration possibilities and intelligent machines, which, together, offer great 

possibilities, especially in terms of flexibility, systematic development methods for 

interoperable components were found to be largely lacking (Tommila et al. 2001). 

However, technically easier integration made various device maintenance, diagnostic, 

and monitoring tools really useful. But even today, a need for more effective system-

wide integration, allowing systems developed in isolation to communicate, is still 

seen (Laukkanen 2008; Ventä 2005). For monitoring operators this development has 

offered easier navigation to external applications, for example links to device manuals 

and access to work orders. Lately, using single solution providers‘ integrated process 

automation systems has enabled the raw measurement data from the plant floor to be 

available at the right time, in the right form (ABB 2007; Metso 2007; Rockwell 2005, 

2006, 2007). All these improvements have made it possible to increase the area that a 

single operator is responsible for. 

 

Lately, the development drive has been towards the more tightly organised integration 

of information systems to support managers in their need for more accurate and 

timely information about the production situation in the whole environment (Jämsä-

Jounela 2007; Laukkanen 2008; Ventä 2005). Business measurements, such as 

Overall Equipment Effectiveness (OEE) and other Key Performance Indicators (KPI), 

are also gaining interest in process industries. These integrate physical operational 

information with economic measures and require correct and timely data from all 

around the production site in order to be applicable (Tuomaala 2007). Because of the 

level of integration and effectiveness required, production systems as a whole are 

growing in size, complexity, and ―accuracy‖, and the amount of data generated and 

stored is also growing vastly. For example, Laukkanen (2008) states that in paper 

production processes this trend has resulted in the integration of the problems and 

disturbances.  

 

Lately, the importance of information issues in industry has gained notice, and as a 

result of this the IEEE Transactions on Industrial Informatics (TII 2008) journal was 

established in 2005. In addition, the IEEE International Conference on Industrial 

Informatics conference series has received growing attention since it began in the year 

2003. 
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2.3 Current technological solutions 

Present-day automation infrastructure is based on multi-level and hierarchical 

networks of diverse devices that communicate with each other using various methods. 

Although analogue communication is still widely used to connect field-level devices, 

it can be said that the majority of communication among enterprises is digital (Sauter 

2005; Ventä 2005). This has provided a lot of integration possibilities among plant 

and enterprise networks. The exact number of individual hierarchical levels varies 

between different solutions but the general situation is illustrated in Figure 1.  

 

On the lowest level of the whole automation infrastructure are field devices or 

instrumentation, which have benefited significantly from general electronic 

developments. Novel all-digital field devices have numerous added functionalities 

along with their basic operation, e.g. self-diagnosis (Jämsä-Jounela 2007). In addition, 

wireless and ubiquitous technologies are introducing new possibilities for distributed 

information generation, which are useful at least for diagnostic purposes (Elmusrati et 

al. 2007). However, there are no clear ideas or methodologies as to how all the 

information available could be fully utilised on other levels of production enterprises. 

The present practice is mainly based on manual operation, where maintenance 

personnel use standalone software products provided by each device vendor. The 

development of information models and communication standardisation for device 

interoperability is ongoing, e.g. EDDL (2008) and FDT (2008), but the requirement 

for more open-minded research has already been noted (FDI-future 2007).  

 

Hardware has developed considerably since the first process stations and controllers 

were introduced. Earlier, much of the complex data processing, such as the heavy 

computational work of optimisation, was done in separate systems for practical 

reasons. Nowadays there is plenty of computational power available, and the 

statistical calculation used in the paper industry for quality assurance and process 

optimisation may be performed within process stations. Furthermore, process stations 

have become capable of supplying all the measured data from field devices to 

everywhere within the enterprise, if needed. The methodologies used to programme 

process stations have essentially stayed the same, focusing on supporting the 

configuring of control functions. Supporting functionalities, such as optimisation, 

diagnosis, monitoring, reporting, and so on are usually programmed and carried out 

separately. This makes maintaining these functionalities cumbersome and laborious, 

and the future research should address this weak point and develop more flexible 

structures.  
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Figure 1 – Multiple layers of modern automation infrastructure. 

 

Practically every automation system, platform, and solution has its own variant of 

how the control application is programmed. Unit controllers measuring and 

controlling one pair of values are only configured, e.g. a PID controller with its 

respective parameters. PLCs are programmed with rather simple languages, such as 

ladder logic. The control application in process stations is usually performed with 

function blocks, and a number of programming standards have been created for this. 

Actual implementations more or less follow these standards.  

 

Function blocks are configurable blocks that implement some process control-related 

functionality, e.g. a PID controller. The whole process control functionality is set up 

by defining a network of these functionalities and configuring the parameters of each 

function block. Function blocks are like objects in Object-Oriented programming, 

with their own internal operating principles, protected variables, and well-defined 

connection interface to the outer world. The standard IEC 61804 Function Blocks for 

Process Control is one example of a language that implements this principle. In 
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addition to function blocks, logic languages are widely used in industry for control 

purposes. The most commonly used set of these languages is described by the 

standard IEC 61131-3 (Programmable controllers, part 3, Programming languages) 

developed for PLCs. For further information about this standard see Lewis (1998). 

These languages are heavily based on legacy ideas of how to construct control setups, 

e.g. the language named Ladder logic emulates the physical wiring of relays and 

switches.  

 

Although the technical progress within automation devices and systems has been 

tremendous in the past couple of decades, control application programming with 

function blocks or logic languages has remained rather untouched. The present-day 

industry standard languages for control software development have been designed for 

realising rather simple control structures. A justifiable reason for this is that 

reliability, with compact and verifiable operation, was the main goal when developing 

these languages. Furthermore, with these languages the user was able to design those 

control functionalities that most effectively use the computing power that was 

limitedly available in the controlling hardware. This has resulted in languages that do 

not effectively support the handling of complex structures and functionalities. In 

particular, the available languages do not support the construction of flexible 

diagnostic or monitoring functionalities, and organising the advanced functionalities 

is practically left to the user.  

 

Maybe the most important novel solution within automation programming is the IEC 

61499 Function Block standard, originating from holonic manufacturing systems 

research. The standard aims to provide more open architecture in order to gain 

portability, interoperability, and configurability to industrial measurement and control 

applications (Deen 2003). This standard is more flexible than the previous ones and it 

allows the development and building of more advanced functionalities. But as the 

standard allows more complex structures to be built it makes the basic design and 

application development more vulnerable to errors and requires a complex platform 

which itself is also a challenge to reliability. The IEC 61499 standard is still under 

heavy development and no large-scale industrial reference cases have occurred yet, so 

no true comparison can be made. However, the event-based operating principle in IEC 

61499 might generate new possibilities in the development of monitoring, diagnostics, 

and abnormal operation functionalities in general.   

 

In the process automation environment more information will be gathered and the 

need for integration with other information sources will rise. However, because of the 

programming principles currently used on the control level the connection between 

these is rather laborious and cumbersome to organise. Currently, information 

integration is typically realised with a list of shared variables between systems and 

this requires time-consuming agreement between players to build a shared 

understanding of the rationales behind the variables and their values. Technically, 

integration between systems has been realised with the OPC Data Access interface, 

designed for exchanging real-time process information (OPC 2008). In OPC Data 

Access the interface specification is organised as hierarchical groups of quantities, the 

values of which the client may ask for. In the future a more intelligent solution for this 

integration procedure will definitely be needed (Ventä 2005). 
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When physical production, with its control system, is connected to a global enterprise 

the setup gets even more challenging. Technically, this integration between factory 

floor instrumentation, control systems, and office automation was demonstrated years 

ago, so this vertical integration is no longer a technical problem (Jämsä-Jounela 2007; 

Sauter 2005). The Manufacturing Execution System (MES) is a solution used for 

vertical integration in discrete manufacturing, and it has lately also gained interest in 

process industry. MES is used as an active data-processing link between control-level 

information and office systems, and its purpose is mainly to relay timely information 

between systems operating on different levels of abstraction (McCellan 1997). The 

forthcoming OPC Unified Architecture, which has a more service-oriented approach, 

offers interesting possibilities for the realisation of integration between all levels of 

automation (OPC UA 2008), but the standard does not yet specify the data models 

needed to realise this. 

 

Currently, the integration of functionalities is typically based on static configuration, 

which is done at the time of design by the design engineer. Methodologies supporting 

dynamic integration in horizontal and vertical directions in changing situations are 

largely lacking and future research should address this (Ventä 2005). From the 

business perspective flexibility is becoming a more important property, also in the 

process industry (Jämsä-Jounela 2007; Keller and Bryan 2000) and new technical 

approaches are being researched, e.g. agent technology has been proposed (Chokshi 

and McFarlane 2008). Additionally, the need for temporal integration covering the 

whole life cycle of the system has been pointed out in research (Sauter 2005). Similar 

information integration issues, where entities from different application areas are 

logically related, are resolved with semantics in the electric power market (Huang and 

Lei 2007). 

2.4 User perspective of process monitoring 

In the future, more functions and operations will be able to be automated with more 

capable systems, but still at the same time the importance of the human supervisory 

role seems to stay (Gentil 2006; Sheridan 1992). Although controlling systems are 

generally developed for fully automatic operation, Paunonen (1997) has proposed that 

showing the information to the user is also one of the primary tasks of control systems 

within industry. Part of this information is exploited within monitoring purposes on 

multiple levels of production sites. As part of their daily business, operators are 

watching over real-time controllers and verifying that the process is working safely, 

correctly, and as efficiently as needed. This is called on-line monitoring. Their task is 

to be aware of the present process state and minimise possible production losses with 

detection of device malfunctions and other abnormal situations as early as possible. 

Maintenance personnel, on the other hand, are looking at things from a longer-term 

perspective, focused more on device malfunctions, and their work is to try to estimate 

the correct timing for maintenance. Furthermore, management personnel focus on 

much higher-level data that concern elements of the physical process less directly.  

 

In the future operators will be more responsible for productivity from the business 

perspective, e.g. decisions at management level will cascade down to the automation 

system in real time (Laukkanen 2008). Simultaneously, as the work of the operator is 

broadening in terms of what aspects of the production are required to be monitored, 

the volume of monitored items will also increase. For example, it has been reported 

that the I/O number that one operator is responsible for has grown from approx. 400 
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in the year 1990 to 1200 in the year 2005 and will be as high as 2600 I/Os in the year 

2006 (Laiho 2005).  

 

In control rooms the interface development has so far been going mostly where 

technological developments have been taking it (Farbrot et al. 2000), and 

revolutionary new ideas have largely been lacking (Ventä 2005). To perform well in 

dynamic situations an operator needs timely information from the process itself and 

also from the all-around enterprise in order to be able to make good decisions 

(Laukkanen 2008; Ollson 1992; Paunonen 1997; Sauter 2005; Sheridan 1992; Ventä 

2005). One of the most important monitoring tools for operators is alarms, but, at least 

currently, they are designed with a single process component in mind and typically 

using static limits (Farbrot et al. 2000), which makes them practically useless in 

situations where the process setup changes dynamically. Although the process 

operators are responsible mainly for the on-line monitoring, Paunonen suggested as 

early as in the year 1997 that some parts of the off-line monitoring tasks, e.g. 

searching for malfunctions from historical information, will also be added to 

operators‘ tasks (Paunonen 1997). 

 

As sites get bigger and there is more to keep an eye on for every process operator, 

there is a need to develop technology that helps detect various abnormal events faster 

(Laukkanen 2008) and at the same time keeps the mental load of the user on an 

acceptable level (Paunonen 1997). These functions should also depend on the current 

situation and status of the process (Ventä 2005). Intelligently extracted and abstracted 

information is stated to be useful when depicting relevant issues to users (Seppälä and 

Salmenperä 2005). When the process is running steadily the tools should support 

monitoring on a high and abstract level, e.g. enable energy efficiency to be analysed, 

but also enable lower-level information to be accessed for detailed examination. Then, 

on the contrary, when the process is in a highly changing state, the monitoring tools 

should enable the user to access more detailed aspects of the process. This may be 

seen as an information system-related requirement of flexibility, which is opposite to 

the automation system effectiveness requirement, as noted also by Paunonen (1997). 

 

Maintenance is an important supporting activity of the whole production process. Its 

aim is to keep the system in a production state, and so to increase the total efficiency 

of the industrial production process. In general this is achieved with information 

processing, which humans and computers use together to control the reliability of 

machines in the process environment. The maintenance itself may be of either a 

proactive or reactive type. In proactive maintenance, typically, a model describing the 

reliability of the process and the related gear is built. In reactive maintenance models 

are not required. However, in both types of maintenance successful failure 

identification is required (Honkanen 2004). 

 

In model-based approaches the processes have to be modelled to some extent and, as 

systems grow in size and general complexity, this model also gets more complex. If 

more autonomous operation is required, then a more descriptive model of the system 

is needed. These models may contain information about the physical connections of 

quantities, process-related physics, optimisation principles, and process control 

philosophies. In general, rather extensive and descriptive models are needed to get 

something intelligent to happen automatically, but this is seen as problematic because 

the modelling fast becomes laborious. For example, the operator support system for 
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the mineral filtration process presented by Jämsä-Jounela (2005) contains a complex 

mathematical model which has numerous assumptions, at least three ifs, multiple 

parameters that can be calculated, at least four empirical constant parameters, and a 

couple of parameters that are to be identified online. This model-based approach has 

proved to be useful in the particular case of the filtration process for optimisation and 

fault diagnostic purposes. Although the developed computational system is modular 

in structure, it could be argued that the presented concept is hardly highly usable in a 

totally different process setup or when the current process changes substantially. 

2.5 Future trends for process automation development 

Available technical achievements have been the driving force in the selection of what 

new possibilities have been offered to users and developers in process automation. 

With digital communication and almost fully software-based operation there are no 

big barriers any more to what functionalities may be developed and thus offered to 

users. This will result in a whole new set of functionalities and services for users 

working with process automation; e.g. Ventä (2005) has gathered the generally 

recognised new possibilities (Figure 2). However, from now on the selection of what 

will be developed will be guided by other limiting issues, such as economic 

preferences, quality and safety requirements, and, of course, the selection made by 

users. 

 

 
Figure 2 - Intelligent automation technology roadmap (adopted from Ventä (2005)). 

 

The realisation of the possibilities visible in Figure 2 requires different know-how 

than previous developments in process automation, limited mainly by hardware 

capabilities. Mastering a variety of software methodologies and knowledge tools is 

becoming an important property for developers in process automation (Ventä 2005). 

Furthermore, wireless communication is becoming reliable enough for other than real-

time control operations, and it may be used for supporting operations in information 
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processing. Especially for monitoring this provides interesting new possibilities, as 

cheap embedded electronic modules that communicate in a wireless manner could be 

added to field devices to gain information for diagnostics and monitoring 

functionalities. In addition, increasing the number of measurements could be used to 

compare different measurement sensor outputs (Elmusrati et al. 2007; Ventä 2005). 

 

New opportunities do not just affect the normal operation of systems, but changes are 

also reflected in development phases. Although these phases in process automation 

are comparable to ordinary software and hardware development projects, the 

development and programming in automation was rather isolated in the past. The 

requirements of real-time responsiveness, reliability, and the need to be able to realise 

control philosophy have kept design methods isolated. This isolation was criticised by 

Olsson as early as in the year 1992, but at least the recent maturity of general 

electronic hardware and software engineering tools has made it necessary to check if 

this separation is still appropriate (Heck et al. 2003; Rockwell 2007; Sierla et al. 2007; 

Ventä 2005;Wagner 2002). 

 

Business trends have also changed in process automation, resulting in growth in the 

responsibilities of individual humans working in industrial sites. As production 

systems have become more integrated, because of efficiency demands, there are more 

individual items to watch over and users are working more often with issues that they 

are unfamiliar with (Jämsä-Jounela 2007). Maintenance is more extensively 

outsourced, resulting in users diagnosing systems that are working in unknown 

environments more often (Pyötsiä 2005; Theiss et al. 2007). The rise in the amount of 

information available is also the result of technical development, as there are no 

limitations on what data may be stored and transferred from the measurement to the 

system level. But more unprocessed data actually make the operators‘ situation worse 

and, to battle this trend, the user should have tools that help them to find relevant 

information faster and get help when making decisions in more complex situations. 

 

New business requirements also affect the way in which processes are to be controlled 

in the future, thus requiring new functions from the control systems. Table 1 lists the 

new requirements that have been reported lately (Chokshi 2005; Chokshi and 

McFarlane 2002; Chokshi and McFarlane 2008; Jämsä-Jounela 2007; Keller and 

Bryan 2000). As these requirements affect the way processes are controlled, these also 

affect the requirements for monitoring systems. The following table includes a 

column done by the author that specifies properties that seem to be required from 

monitoring systems as a result of changed control requirements.   
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Table 1 – New requirements from business trends setting up requirements for control and 

monitoring systems. 

Business-driven 

requirement 

Requirements and effects 

towards control systems 

Requirements towards 

monitoring systems 

Flexibility and volume 

variation 

Being able to use process 

instrumentation in multiple 
ways 

Rule adaptation that is able to 

adjust itself to changed process 
settings and values 

 

Responsiveness and 
process safety 

Faster change management 
(e.g. campaign mode) and 

response to disturbances 

Methods and system structures 
able to respond to frequent 

changes and distinguish between 

controlled changes and 

disturbances.  
  

Better and extended coverage of 

algorithms is needed so as to have 
timely response to disturbances 

 

Material cost reduction Using less materials in 

addition to being able to use 
cheaper raw materials (that 

are not of such good quality)  

 
 

Responsiveness in monitoring as 

increased variation in materials 
increases the risk of blockages in 

the piping which need to be 

observed in time. 
 

Energy efficiency The energy efficiency is 

typically raised, utilising 

complex interconnections in 
the process (e.g. using Heat-

Exchange Network) 

 

Handling the complexity; 

interconnections are problematic, 

especially in change situations. 
 

Capital cost reduction Use the instrumentation more 
efficiently (e.g. by increasing 

speed or reaction 

temperature) and reduce 
inventory sizes. For example, 

utilisation of Vendor-

Managed Inventory requires 
accurate estimates of future 

consumption of materials. 

Using instrumentation functioning 
at its operational limits is more 

likely to cause all kinds of 

disturbances.  
 

Reduced inventory requires better 

tools to calculate the timing of 
changes in the production chain.  

 

Increased product 

quality  
 

Better and typically more 

interconnected control 
algorithms lead to less 

variation in production. 

More complex control is more 

sensible to disturbances and 
sudden changes. 

Tracing problems in the process 

stream is needed. 

 

Similar requirements have been motivating holonic research related to manufacturing 

control (Bussmann and McFarlane 1999; McFarlane and Bussman 2003). However, 

recent studies reported by Schild and Bussmann (2007) have argued that an enormous 

amount of flexibility is not really required in real industrial settings. In addition to 

requirements set by business considerations, the general monitoring system 

requirements should be taken into account as far as they affect system-level 

development; for example, Venkatasubramanian et al. (2003c) list these as including 

responsiveness, adaptability, and parallelism.  
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Limitations and problems of the current development trends and approaches:  

With respect to supporting process automation functionalities, systems have been 

suffering from decisions that were made in the past, e.g. alarm handling and 

processing is based on a rather simple approach developed when the first digital 

control systems were introduced. Devices and control systems, as well as their 

monitoring, have been built for continuous and steady usage, and, further, their 

operation has been optimised for a steady state. In terms of monitoring, enough 

attention has not been focused on operations in change situations, ensuring their 

correct operation and further optimisation. These situations have been typically 

treated as special cases handled with special attention (e.g. by using enough 

personnel). However, this is not the case any more, as systems have become larger 

and more complex, and there are not enough personnel available on-site to handle 

more common change situations with special attention.  

 

The currently probable and possible future trend related to monitoring goes towards 

specialised individual software systems that are each built for a certain task. Variation 

exists between the branches of process industry about how much diversity in solutions 

there will be. Nevertheless, the base techniques used have become more coherent 

between solutions, thus making integration in theory an easier task. Furthermore, 

typically each individual software solution supplier built their system by just 

configuring an already available commercial base system. A characteristic example is 

industrial reporting systems that currently are typically built with a web-based user 

interface accessing data stored in a standard SQL database. Customisation for 

customers‘ needs is done by the implementation of case-specific terminology and the 

selection of appropriate application modules. Typically, the integration of numerous 

solutions is realised as an application portal that enables different solutions to be 

accessed relatively easily. The result with this is that the user is restricted to the links 

provided by the system engineer, and flexible customisation based on dynamically 

changing process values is not supported.  

  

On the technical side today‘s systems rely heavily on centralised and specialised 

database approaches, e.g. every solution has its own server running proprietary data 

schema. The operational principle is user-driven, via a web browser or Windows 

client. One part of the software is responsible for fetching data from an external 

system, (e.g. with a field bus from devices, OPCs, or people inputting values with 

reporting forms) and then another part is used to fetch information relevant to the 

current needs of the user. If the active functions are monitoring value changes, these 

are typically organised as separate client applications, because databases are not, in 

principle, designed for running periodic value checks. However, stored procedures in 

databases may be used to realise this, but they have performance limitations and may 

not be responsible enough to monitor applications in process automation. 

Furthermore, algorithms in monitoring are typically structurally static and their 

operational logic is developed in the system design phase. In addition, control 

algorithms and even monitoring algorithms usually fail if some part of the data is 

missing. This may happen easily if some device is temporarily out of order, 

unavailable (e.g. with wireless devices), or the system setup has been updated. 
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The conclusions of current trends and approaches may be characterised as follows: the 

technical limitations of the past have resulted in static structures and operating 

principles. Applications have become multi-functional, but the functionalities are 

specified at the time of design by the engineers. Users are able to modify parameters 

but not the operational principles, which hardly results in sufficiently flexible 

operation. The structurally static operation is also visible in the algorithms where, 

typically, only the numerical values change and not the way things are checked. The 

strong emphasis on reliability requirements has resulted in systems that, especially in 

monitoring operations, are not sufficient any more as the size and complexity of 

processes have grown substantially. 

2.6 Conclusions about monitoring  

In this thesis the objective is to research and develop flexible system solutions for 

human users to perform monitoring tasks in the process automation environment. On 

the basis of the discussion in this chapter about development trends in technical and 

business perspectives, a new monitoring system should have the following general 

properties: 

 

 P1: Flexibility – system should be usable for a variety of tasks, and adaptation 

to process changes needs to be supported (Jämsä-Jounela 2007; Keller and 

Bryan 2000). Furthermore, flexible personalisation of capabilities is required 

in order to support human decision-making (Venkatasubramanian et al. 

2003b). 

 P2: Delegation – because of the size and complexity of current and future 

production environments, the users‘ work tasks should be supported with 

automation as much as possible, e.g. with delegation (Maes 1994). 

 P3: System integration – no one system or method is alone sufficient to 

provide all the information that is needed for success in monitoring tasks. In 

addition, relevant information for monitoring will be available in a multitude 

of distributed legacy data sources. Thus, integrating multiple systems are 

required to overcome the limitations of individual systems, e.g. by utilising 

hybrid systems (Venkatasubramanian et al. 2003b). 

 P4: Knowledge handling – information is stored and available in various data 

formats and the monitoring system should support the unification of these. 

Further, users should be able to describe the meaning of things and their 

relations. 

 P5: Data processing – the system should be capable of performing data 

processing to extract and abstract relevant information from vast amounts of 

data, which in processes are available in a time series format. In addition, 

systems should assist the user to find useful relations in the data (Gentil 2006). 

 

The technological tools that may be used to develop systems to support these 

properties are discussed in the next chapter. 
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3 Agents, semantic web technologies, and their 
application to monitoring task in process 
automation 

3.1 Introduction 

In process industries the traditional barriers to adapting solutions from Information 

Technology (IT) to automation technology are gradually disappearing. In this changed 

situation a new type of know-how will be required to succeed in the development 

work and mastering software-related methodologies and tools will be important, in 

addition to traditional hardware- and electronic-oriented skills. In monitoring tasks the 

state-of-the-art technologies will have great potential to help bypass the limitations of 

the current approaches, e.g. the structurally static operation discussed at the end of 

Chapter 2 is not able to adopt the full potential of distributed processing and wireless 

communication. Monitoring functionalities are not restricted by the reliability 

limitations of control operations directly modifying physical quantities, and thus offer 

suitable ground for realising the benefits of new technology. The objective of this 

chapter is to study the properties of agent technology so as to be able to select feasible 

structures and operational principles in the following chapters. In addition, some 

selected state-of-the-art technologies that currently have the strongest industrial drive 

within the integration and information-handling area are introduced. 

 

Agent technology has been proposed as being suitable for dynamically changing 

distributed environments by researchers in computer science (Ferber 1999; Jennings 

2000; Russel and Norvig 2003; Weiss 1999). The application of agent technology to 

process automation has been motivated by the wish to match the properties of the 

domain and the technology (Chokshi 2005; Parunak 1997; Parunak 1999; Seilonen 

2006). Its application to real industrial settings has been at least demonstrated in 

numerous functions, and it has been suggested that it is especially suitable in resource 

allocation functions with planning and simulation (Pechoucek and Marik 2008). 

Although monitoring in process automation seems to be a potential agent application 

area (Gentil 2006; Wagner 2002), relatively few industrial studies have been reported 

(Bunch et al. 2004; Buse and Wu 2007; Gentil 2006).  

 

From the software engineering viewpoint, agent technology may be seen as a 

promising new and advanced version of object orientation (Luck et al. 2005). 

Developments in software engineering methods have made it possible to handle more 

complex structures and the level of abstraction in programming languages has been 

rising (Soukup and Soukup 2007), and agent technology is one result of this 

development. Within the industrial sector the Service-Oriented Architecture (SOA) 

has gained a lot of interest and it offers properties (loosely coupled, modularised, and 

service-based operation) comparable to agent technology. In addition to comparing 

tools for organising system-level development, knowledge representation and data-

processing issues are discussed. Strong interest in semantic technologies has appeared 

lately, because the internet suffers from incompatibility problems arising from the 

miscellaneous knowledge representations used by different services. Semantic 

research is trying to overcome this by developing machine-processable information 

formats. 
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3.2 Agent technology 

Agent technology, or orientation as you could also call it, is a branch of computer 

science in which a system is thought of as containing pieces of software that act on 

behalf of the user or other software programs. Although having similarities with 

object orientation, the key difference of agents is that they act autonomously on the 

basis of their internal operating logic and have some level of control over their 

operation (Jennings 2000; Parunak 1997; Russell and Norvig 2003; Weiss 1999). 

Furthermore, agents are in general thought to operate in some environment, 

perceiving it with sensors and making modifications through actuators. This setup 

may be seen in Figure 3, and it should be noted that it bears many similarities to the 

system setup in which process automation monitoring systems operate.   

 

 
 

Figure 3 – Agent interacting with the environment. Modified from Russell and Norvig (2003). 

 

To be able to benefit from using agent technology as a software engineering 

paradigm, it is important to understand its characteristics and properties. Although the 

exact definition of the concept of agents is work in progress, most of the researchers 

agree that agents are rational software entities having properties such as autonomy 

and flexibility, and that their operation is typically goal-oriented. The list of properties 

varies, depending of what kinds of agents are being discussed (intelligent agents, 

autonomous agents, distributed agents, mobile agents, etc.) (Ferber 1999; Russell and 

Norvig 2003; Weiss 1999). In addition, a typical agent-based system has a number of 

these active entities and is thus called a multi-agent system in which these entities 

communicate with each other.  

 

Typical properties of agents are: 

 Autonomous – agents have control over their operation; they can decide when 

and how to take actions.  

 Situated – agents operate in some environment; they are possibly capable of 

perception and taking actions that modify the environment. The environment 

may be physical or computational. 

 Reactive – agents respond to changes in the environment  

 Proactive – as intentional entities agents act to achieve goals 

 Flexible – agents have multiple possible ways of achieving goals 

 Robust – agents recover from failure 

 Social – agents interact with other agents 
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Having these properties, a system constructed with agents is said to significantly 

enhance our ability to model, design, and build complex, distributed software systems 

(Jennings 2000). This is stated to be mostly the result of the higher level of abstraction 

that the software engineer is utilising when working with agents (Padgham and 

Winikoff 2004; Viroli et al. 2007), and also with the help of the agent approach 

supporting flexible decomposition and organisation techniques (Jennings 2000). 

Because agents are by definition autonomous, they may be set to deal with smaller 

parts of a whole problem separately, yielding natural support for decomposition. 

However, agent technology has its roots and also limitations in Artificial Intelligence 

(AI), and it is mainly designed to operate with symbolic data (Kaplan 1984). This 

symbolic processing background should be taken into account, especially when 

adapting an agent technology to the process automation environment, where a major 

part of the data is numerical. Because of this agents should be used only for those 

functionalities to which they are best suited (Wooldridge and Jennings 1999). 

3.2.1 Multi-agent systems 

When adopting agent technology for real-world problems, it soon becomes apparent 

that an approach with multiple agents is needed (Ferber 1999; Jennings 2000; Weiss 

1999). Much of the promised flexibility of agent technology is based on the dynamic 

organisation of agents and versatile communication that is operable despite changing 

structures. Figure 4 illustrates with an example how agents in a multi-agent system 

(MAS) may be set to be responsible for areas of the environment, and how an agent 

society has multiple layers in its structure. The agents in the society exchange 

information either directly via messages or indirectly via changes in the environment. 

As messages are more controllable, they are typically used. 

 

 
Figure 4 - Agent organisation on multiple levels, each having an area of responsibility. 

 

Sophisticated negotiations are an important benefit of using agents to construct 

software systems. Negotiations are constructed from series of messages that agents 

send to each other. Typically, agents try to coordinate their actions with negotiations, 

but a competitive approach is also possible. The Foundation for Intelligent Physical 

Agents (FIPA 2008) has standardised agent negotiations based on speech act theory, 

originally introduced by John Earle in the year 1969 to imitate communication 

between humans. FIPA defines various types of messages or communicative acts, 

each having a specified role in communication. Furthermore, these communicative 

acts are combined together to form a whole negotiation, called an interaction protocol. 
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Figure 5 illustrates a standardised fipa-subscribe interaction protocol, which is used to 

delegate change detection (FIPA 2002). The standardised communicative acts and 

interaction protocols are general in agent technology and their usage is not restricted 

to any specific application area.  

 

 
Figure 5 – Standardised fipa-subscribe interaction protocol (adopted from FIPA (2002)). 

 

Although negotiations have been standardised, the selection of an appropriate level of 

interaction and selecting the correct type of structure for the agent society is left to the 

user. A lack of structure and control may result in a system with unwanted emergent 

behaviour (Wooldridge and Jennings 1999). Currently, a lack of effective tools for 

debugging agent society interactions has been noted (Poutakidis et al. 2002). Bordini 

et al. (2007) have suggested that instead of defining agent negotiations on a message 

level, agents in a system should be defined with roles defining responsibilities and the 

interactions should be executed on an intentional level to support the validation of 

correct operation.  

3.2.2 Agent operating principles 

In their operation, agents may be divided into reactive, deliberative, and hybrid types. 

The operation of a reactive agent is based purely on current percepts. Their simple 

operating principle makes this type especially responsive and suitable for real-time 

functions. However, constructing complex operations with purely reflexive operation 

without memory easily becomes problematic because the number of rules easily 

becomes unmanageable (Russel and Norvig 2003; Wooldridge 1999). Alarms in 

process automation may be seen as being closely related to this type. Reactive agents 

are reliable but active adaptation to changing situations is hard to build into them. 

 

Deliberative agents are capable of pursuing long-term goals with a set of actions 

(Dickinson 2006; Jennings 1999; Padgham and Winikoff 2004). Deliberative 

operation has been stated to be suitable for complex operations in dynamically 

changing environments (Jennings 2000; Dickinson 2006; Russell and Norvig 2003; 

Weiss 1999). A currently popular (Bordini et al. 2007; Dickinson 2006; Helin 2003; 
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Jennings 1999; Jennings et al. 1998; Padgham and Winikoff 2004) way of realising 

this is making agent operation intentional with the Belief-Desire-Intention (BDI) 

agent model (Rao and Georgeff 1995). Figure 6 illustrates layout and data flow in a 

generic BDI agent architecture.  

 

 
Figure 6 - Generic Belief-Desire-Intention (BDI) architecture. Modified from Wooldridge (1999). 

 

Generic BDI operation has the following phases (also visible in Figure 6): 

 

 belief revisions function - take the input from the physical or software 

environment and process information for further usage. The processing is 

typically influenced by the current understanding of the state of the world 

(beliefs).  

 belief - database storing the agents‘ current understanding of the world. 

 generate options – on the basis of the current state of the world and 

operational situation, select the desires that it is possible to achieve with the 

available tools. This provides context sensitivity in the operation. 

 desires - expresses the end results that the agent is currently pursuing. These 

are the tasks and respective objectives that the agent should achieve in the 

long run. 

 filter - select from multiple end result candidates the ones that are currently 

most worthwhile to pursue.  

 intentions - a set of more or less concrete sub-objectives that the agent has 

decided to try to achieve with a set of concrete actions.  

 actions - these are the actual doings that somehow modify the environment 

and are going to shift the agent closer to the desired end state.  
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In actual software realisations this BDI model is typically transformed into beliefs, 

goals and plans (for example, in Bordini et al. 2006; Huber 2000; Jack 2008; Jadex 

2008; Jason 2008). In these realisations, the plans are concrete procedural descriptions 

of sets of actions that are to be performed in order to reach a certain goal (desire in the 

general model). Agents utilising a BDI model to process diagnosis functions have 

been proposed by Ingrand et al. already in year 1992. Furthermore, the BDI model has 

been stated to be especially suitable for constructing agents that process information 

available on the Semantic Web on behalf of a human user (Dickinson 2006). Lately, 

BDI model-based agents have been suggested for information processing and 

condition monitoring in power systems (Buse and Wu 2007).  

 

In real-life applications the actual agent architecture is most often a mixed 

combination of reactive and deliberative types. Typically, this is realised with either a 

vertically or horizontally organised layered architecture in which decision-making is 

performed in several layers, each operating on a different level of abstraction. In 

horizontal layering each layer is directly connected to input and output and operation 

is performed in parallel. Figure 7 illustrates a two-pass version of a vertical 

architecture, where the lowest-level layers are directly connected to the environment 

and information to the upper layers is flowing through the lower layers (Wooldridge 

1999).  

 

 
Figure 7 - Vertically layered two-pass architecture. 

  

The vertically layered two-pass architecture operation has similarities to 

organisations; the lower levels provide abstracted information to the upper layers and, 

after decisions are made in the upper layers, the control flows down through the layers 

(Wooldridge 1999).  

3.2.3 Information processing with agents  

It has been stated that if data and resources are distributed, or if a number of legacy 

systems must be made to work together, then agents are an appropriate technology for 

building such a system (Wooldridge and Jennings 1999). On the one hand, proactive 

agent operation provides the possibility of delegating the information retrieval and 

processing tasks (Dickinson and Wooldridge 2005; Maes 1994; Tennenhouse 2000), 
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and agents could be used as secretaries or butlers performing information-related 

tasks (Negroponte 1995). On the other hand, the rationality of agents and flexible 

organisation of multiple agents are beneficial when accessing and retrieving 

information in dynamic and distributed environments (Decker et al. 1995; Huhns et al. 

2005). Because agents seem to have potential in information-related operations, the 

concept of an information agent has been introduced. Klusch (2001), for example, 

defines an information agent as an agent that has access to one or multiple, 

heterogeneous and geographically distributed information source(s), and it proactively 

acquires, mediates, and maintains relevant information for the user.  

 

Typically, information agents use match-making and brokering techniques in 

information task performance (Klusch 2001; Klusch et al. 2003; Sycara et al. 2003) 

and the utilisation of semantic information in these processes has been demonstrated 

(Nodine et al. 2003). In addition, a concept close to that of information agents is that 

of a wrapper agent that wraps some data store that has a possibly unknown internal 

representation format, and thus this wrapping enables e.g. information agents to 

access data stored in a legacy data store. 

 

Information agents have been demonstrated in industrial applications. The ARCHON 

system (Cockburn and Jennings 1995) wrapped pre-existing industrial systems with 

information agents to gain fused diagnosis information, and similar ideas have also 

been proposed for power systems by other researchers (Bann et al. 1997; Buse el al. 

2003; Mangina et al. 2001). Related to monitoring in process automation, information 

agents have been proposed as being suitable for communicating alarms to operators 

(Bunch et al. 2004), the flexible definition of alarm conditions (Koskinen et al. 2003), 

and the analysis of measurement data for diagnosis (Gentil 2006; McArthur et al. 

2005). 

3.2.4 Agent-oriented software engineering   

To be able to exploit the benefits of agent orientation, the engineering methodologies 

used must be suitable for agent development, and Agent-Oriented Software 

Engineering (AOSE) methodologies are designed for this, similarly to the way that 

the Unified Modelling Language (UML) and Rational Unified Process (RUP) method 

are for Object Orientation. The selection of AOSE should be related to the selection 

of the operational principle of the agent. For rational and goal-based agents the 

currently relatively mature AOSE methodologies are Gaia (Zambonelli et al. 2003), 

MaSE (Wood and DeLoach 2000), Tropos (Castro et al. 2001), and Prometheus 

(Padgham and Winikoff 2004), according to a listing provided by Bordini et al. 

(2007). From a broad perspective these methodologies are similar, as they all define at 

least a loose step-by-step procedure that may be used by the software designer and all 

cover agent role definition and interaction design in a similar way, but the levels of 

maturity and practical examples differ.  

 

Prometheus methodology: 

By the time the research behind this thesis had been carried out the Prometheus 

methodology seemed to be the most mature and to offer the best support for practical 

usage. While most of the other methodologies had more or less disunited 

documentation, a quality book covering the Prometheus development process in 

enough detail and with practical examples was available (Padgham and Winikoff 

2004). Prometheus is designed for BDI-type agents and supports the architectural 
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design phase of the whole process especially well. Prometheus is rather new, and thus 

utilises the latest knowledge in software design issues, and was developed together 

with one of the most advanced companies utilising agent-related software in 

commercial applications (http://www.agent-software.com.au/). In addition, the use of 

the Prometheus methodology has had a significant impact on how well students have 

been able to utilise agent systems in their projects (Bergenti et al. 2004) and there is 

also tool support currently available for the methodology 

(http://www.cs.rmit.edu.au/agents/pdt/).  

The Prometheus methodology provides a systematic step-by-step procedure and 

specifies the issues that are to be covered in each design step. Figure 8 gives a general 

overview of the methodology and illustrates the development phases and design 

artefacts of Prometheus. The Prometheus methodology categorises the development 

into three major design phases, aligned vertically in Figure 8. 

 

 
Figure 8 - The phases of the Prometheus. Adopted from (Padgham and Winikoff 2004). 

 

The practical guide for Prometheus from Padgham and Winikoff (2004) lists the 

design phases and their major deliverables as the following: 

 

System specification is the initial phase of the development, and it focuses on 

identifying the basic functionality and requirements of the system with the following 

deliverables: 

 System goals – identifying goals describes the operation of the system on a 

high level, listing what individual results the system provides to the user. 

 Scenarios – The system operation is concretised by defining process-oriented 

descriptions of it, similar to UML use cases. 

 Functionalities – identifying the basic functionalities of the system with short 

descriptions. Functionalities group one or more goals together and specify 

related activities that are needed to form certain behaviour.  

 Action and percepts – An overview of agents‘ percepts (inputs) and actions 

(outputs) in the form of a list describing how the system interacts with the 

environment and what artefacts are to be used.  
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The architectural design phase is used to define the general agent system 

architecture, which is used to meet the defined requirements. This phase has the 

following deliverables: 

 Agent types – listing the agent types in short form. A descriptive name for 

each agent type is a good starting point on the overview level. 

 Protocols – define a suitable interaction protocol for each agent functionality. 

The dynamic behaviour of the system is heavily based on these protocols. For 

protocol diagrams Prometheus uses AUML (2008). 

 System overview – defines the general static system structure. 

 Agent descriptions – defines agents‘ responsibilities, similar to UML class 

definitions. 

 

The detailed design phase focuses on individual agents and their capabilities, e.g. 

plans describe how the agent is supposed to achieve its goals with processing events 

and data. This phase is specified to result in the following deliverables:  

 Agent overview diagram – describing in further details what functionalities 

each agent has and how these may be combined into clusters (capabilities). 

 Process specifications – defines the interfaces of individual agents and how 

the agent processes these external requests to create functionalities.  

 Capability descriptors – clusters of functionalities and their descriptions. 

 Capability overview diagrams – figures of capabilities and their relations. 

 Plan, data, and event descriptors – the final phase of the design, resulting in 

detailed descriptions for the implementation of each design artefact. 

 

The Prometheus methodology specifies the whole development process, but it has 

been stated that it may be adapted for specific uses by exploiting only selected parts 

of it and using the methodology more like a set of guidelines (Padgham and Winikoff 

2004). The experiments that were conducted (Chapter 6) provide a further 

demonstration of the use of the Prometheus methodology and its design phases and 

the use of artefacts.  

 

Although Prometheus supports the use of agent concepts in design, it does not 

facilitate integrated and automatic development or the construction and validation of 

the actual system. Bordini et al. (2007) have stated this major drawback to be 

common to all of the currently available agent methodologies. Furthermore, it is noted 

that currently the design is manually implemented, and further that there is a need for 

practical tools that support the verification and validation of the realised agent system. 

It is likely that actual agent systems will be implemented, at least partly, with object-

oriented techniques (Wooldridge and Jennings 1999), and that agents and objects as 

methodologies will be seen to complement each other (Odell 2002). It has also been 

stated that augmenting traditional techniques with agent technology could be a useful 

approach in the adoption of the benefits of agents (Luck et al. 2005). 

3.3 Service-oriented architecture 

Service-Oriented Architecture (SOA) is a paradigm that is agreed world-wide, 

promoting interoperability when organising and utilising distributed business 

capabilities under different ownership. In SOA the idea is that business offerings are 

described as services and then participants use discovery methods to find these 
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services. Furthermore, guidelines as to how the service provider and consumer 

interact are provided (Erl 2005). An ideal SOA provides modularised and loosely 

coupled interoperability between services running on mixed operating systems and 

implemented with various programming languages distributed over business 

networks. Currently, the most prominent concrete implementation of SOA seems to 

be the XML-based SOAP (W3C SOAP 2007) realising Web Services (W3C WS 

2002), but others too, like the more traditional RPC, DCOM, and CORBA techniques 

may be used. However, actual specifications and operational principles are needed to 

make services interoperable in practice. The W3C-originated Web Services (W3C 

WS 2002) are probably the most commonly used implementation of SOA, and the 

competing reference model OASIS SOA (2006) is also available.  

 

Although the service profiling and interoperability are rather mature in SOA 

implementations, there is no clear concept of how to automate the composition of the 

service. The current practice for this is that the use of services is predefined by 

humans. Orchestration describes how the coordination of services takes place from a 

single consumer‘s viewpoint and the current industry standard is BPEL (OASIS WS-

BPEL 2007). Choreography, on the other hand, defines rules for how different peer-

to-peer parties operate together, e.g. to form more complex services. Choreography is 

a more complicated research issue, and there the standardisation work is currently in 

progress (W3C WS-CDL 2005). Furthermore, it has been stated that the development 

of service-oriented systems could utilise advances available in multi-agent research, 

especially those related to autonomy and flexible collaboration (Huhns et al. 2005). In 

addition, it has been stated that agents are actually suitable and thus should be used 

for the higher-level control of services (Dickinson and Wooldridge 2005; Lassila 

2007). 

3.3.1 Web services 

Web Services are currently a commonly used strategy to implement the ideas that 

SOA provides. Web Services is a set of specifications originating in W3C that 

concretely describe issues related to service provision and access (W3C WS-ARCH 

2004). There the service provider first describes services with Web Services 

Description Language (W3C WSDL 2007) and requests Universal Description, 

Discovery and Integration (OASIS UDDI 2004) to store and publish this information. 

Then the services may interact in a stateless manner with each other using SOAP 

(W3C SOAP 2007). These three specifications enable services to interact on a basic 

level, but it does not describe how individual services are carried out to form 

integrated complete business process cases. Therefore, Web Services Business 

Process Execution Language (OASIS WS-BPEL 2007) has been developed. 

 

Although Web Services are becoming the industry standard, it is argued that they fall 

short in providing improved automation and interoperability, as the user always needs 

to configure the operation (Lassila 2007). Furthermore, as Web Services are gaining 

strong industrial acceptance, there has been interest in how to integrate agents and 

Web Services. Actually, this integration has been seen to be possible in both ways; 

agents have been utilising Web Services and also Web Services have been using the 

functions that agents provide (Greenwood et al. 2007). 
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3.4 Semantic technologies 

Semantic technologies provide tools and mechanisms that may be used to describe the 

data in such a way that software programs can utilise it in multiple ways. This is 

useful in software engineering, e.g. separating decision-making rules and declarative 

data definitions facilitates the easier development and maintaining of systems (Lassila 

2007). The opportunities provided by semantic technologies are great when 

integrating a multitude of systems together (Ciocoiu and Nau 2000), which is the aim 

of the developers of the Semantic Web (W3C SW 2008), currently the most 

prominent realisation of semantic technologies.  

 

In addition to the above, the possibilities of semantic technologies go beyond defining 

the meanings of the actual data. As Umberto Eco wrote in his famous book Foucault's 

Pendulum; ―No piece of information is superior to any other. Power lies in having 

them all on file and then finding the connections. There are always connections; you 

have only to want to find them.” (Eco 1989; 225). Defining the relations and 

connections in semantic data models supports the use of these models for combining 

and reasoning purposes. If this modelling is done on many different levels of 

abstraction it may also be used to access, process, and find information, even in a case 

where only partial information is available. In addition, as semantic technologies aim 

to separate the actual data processing and the use of descriptive models, it is a concept 

that supports end-user and do-it-yourself life-cycle development methodologies.  

 

Although the actual technical realisation of semantic technologies is nowadays often 

based on the Semantic Web, the issue itself is much wider. The actual languages and 

tools used for semantics need to be defined before semantic technologies can be used 

with a software-based system. This definition includes the languages used and 

providing concrete syntax, but the terminology describing things in the domain is also 

needed. Although this chapter introduces Semantic Web-related techniques, the 

benefits of using declarative data definitions are also usable with other tools. 

3.4.1 Methods and tools for ontology engineering 

Looking up a definition for the word ontology in the dictionary does not help the 

ordinary software developer but the definition used in computer science is 

―specification of conceptualisation‖, which is actually a little more understandable. 

And the term ontology is even easier to understand if one thinks of it as data 

modelling, albeit executed in a new format and with a new set of software tools. 

However, data modelling may be seen as having a tighter connection to the purpose of 

the model and to the tools and techniques used, as an ontology could be stated to be 

more objective by definition. And if data modelling is hard, ontology engineering is 

even more problematic (Gavrilova and Laird 2005). 

 

Ontology engineering may be performed in a variety of ways, and ad hoc might be the 

most typical. In this ―approach‖ the respective group of developers and users just 

document the domain knowledge with suitable ontology tools. One such editor for 

realising ontology engineering is Protégé, which supports numerous actual ontology 

languages (Protégé 2008). To be more controlled, the actual ontology engineering 

may be organised. For example, when developing ontology for some specified 

purpose controlled discussions with the interest group initiated by the moderator 

realising the specified procedure might be used (Tempich et al. 2007). Another 

possible way to develop ontologies is to first develop a base ontology with a huge 
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amount of terms. Then the ontology engineering is supported with a suitable 

infrastructure that facilitates the use of that base terminology (Hyvönen et al. 2008). 

These are just examples of how ontology engineering might be arranged, and a good 

level of domain knowledge is needed, regardless, to be able to produce usable and 

good-quality ontologies. 

3.4.2 Semantic web architecture 

The Semantic Web is about concretising semantic technologies in a World Wide Web 

environment to support data sharing and reuse (Berners-Lee et al. 2001). To enable 

this to happen, two things are needed: common formats for information interchange 

and languages for ontologies that describe data in a way that is understandable to both 

humans and machines. W3C (W3C 2008), the collaborative organisation promoting 

the Semantic Web, is developing a set of specifications that in combination may be 

used to respond to these demands. The developing process in the continuous and 

current set of standards and specification are visible in the W3C ―layer cake‖, 

illustrated in Figure 9.  

 

 
Figure 9 - Semantic Web “layer cake” (adopted from W3C SW (2008)). 

 

The Semantic Web ―layer cake‖ describes two things simultaneously. On the one 

hand, it shows how the whole system is made up of individual specifications, each 

responsible for some particular part of the overall functionality. On the other hand, the 

stack illustrates the current status of the standardisation work. If there is a name 

specified in a certain box then this part of the stack is standardised and is thus more 

mature than the boxes that do not have names specified yet. On the lowest level are 

URI (Uniform Resource Identifier) and XML (Extensible Markup Language), 

specifications for defining the syntax of the exchanged data. Then there are concrete 
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specifications for meta-data and semantics definition, for example OWL (Web 

Ontology Language), and further languages for rules and queries. Then further up in 

the stack there are more abstract issues of trust and proof which are built on top of 

concrete languages, and at the very top there are the user interface and applications.  

 

In relation to knowledge representation issues, the most advanced standards provided 

by the Semantic Web are currently OWL (2008) and SPARQL (2008). OWL is a 

language for defining machine-processable ontologies storing declarative data, 

explicitly describing the meanings of terms and the relationships between terms. As 

terms in XML may have a tree structure, OWL may be used to define relations freely 

(graphs) and the vocabulary for describing relations has more variety. Basically, 

OWL enables classes and their relations to be defined in such a way that machine-

performed reasoning is possible. SPARQL looks similar to the SQL language used to 

query data from databases, and it can be used to query graphs from an ontology 

defined in the OWL language (although originally developed for RDF). SPARQL can 

be used to query graphs matching a variety of pattern definitions and value 

constraints. Furthermore, it supports naturally diverse data sources and the use of 

mixed formats, as it can be used to make data uniform.  

3.4.3 Semantic web services 

Current specifications of the Semantic Web aim towards a situation in which 

individual services can exchange semantically understandable information with each 

other. However, it does not solve the problems of how to automatically discover, 

perform, and compose these individual services, leaving much of the service 

utilisation up to the responsibility of the user (McIlraith et al. 2001). Adding 

semantics to service descriptions is said to make it easier to take advantage of a 

service that only partially matches a request (Lassila 2007). Therefore, Semantic Web 

Services (SWS) aim to bring two different research areas together; namely Web 

Services and the Semantic Web (Martin and Domingue 2007a; Martin and Domingue 

2007b). Both of these have already been discussed in this thesis (see Chapters 3.3.1 

and 3.4.2).  

 

The purpose of SWS research is to develop standards and methodologies to 

semantically describe services and enable the service composition to be automated 

further. The development of SWS is largely work in progress, and numerous 

standards are under development. The reader should refer to the work of Martin and 

Domingue (2007a; 2007b) and also the related W3C recommendations, e.g. W3C 

WSDL (2007) and W3C OWL-S (2004) standardisation work, for further information. 

However, it is interesting that the SWS-related W3C interest group was closed at the 

end of February 2008 (W3C SWSIG 2008). Furthermore, agent technology has been 

proposed as being suitable for performing service composition (Dickinson and 

Wooldridge 2005; Gibbins et al. 2003; Greenwood et al. 2007; Huhns et al. 2005), 

especially when building applications that are designed for human users (Dickinson 

2006). 

 

As a concrete W3C proposal the OWL-S service ontology definition covers the 

following three parts. The service profile (1) is mainly used to describe to humans 

what the service does. The process model part (2) describes how a client can interact 

with the service, which is crucial when enabling a machine to automatically deliberate 

on service selection and execution. This description includes the set of Input, Output, 
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Pre-condition and Effect (IOPE) of the service defined in machine processable way. 

The service grounding part (3) specifies practical technical issues related to 

communication, protocols and message formats. (W3C OWL-S 2004) However, the 

OWL-S defined IOPE model seems to have much similarities with agent based BDI-

model, and forthcoming research will show how these two approaches are linked 

together.  

3.5 Trend analysis in process automation 

The previously discussed advanced information technologies are mainly designed to 

process information in symbolic form. However, process automation is an application 

area in which much of the interesting information describing continuous processes is 

in time series format. A time series is a set of records containing values with time 

stamps, and the order of these records is also of interest, as is the value itself. For 

example, the trend of temperature measurement is a typical type of time series data 

used in process automation. For the human user time series data may be visualised 

directly with trend graphs (Paunonen 1997). However, before the advances in agent 

and semantic technology can be fully utilised, significant features of the data in time 

series format should be extracted to symbolic form. Interesting features presented 

compactly in symbolic form would also be beneficial to humans monitoring processes 

as their responsibilities grow and supervising all the data in time series format 

becomes unrealistic (Seppälä and Salmenperä 2005). 

 

There are numerous ways to create symbolic data from sensed inputs, e.g. using data 

mining, classification, and rule discovery techniques (Daw et al. 2003). An interesting 

phenomenon in time series data is change points, where the characteristics of the 

values change significantly, and these may be found with mathematical methods 

(Chopin 2007; Kundzewicz et al. 2000; Last et al. 2001; Takeuchi and Yamanishi 

2006) Knowledge discovery performed by time series databases contains stages such 

as data preprocessing, feature extraction, transformation, dimensionality reduction, 

prediction, and rule extraction (Last et al. 2001). Much of the previous research has 

focused on analysing time series data, aiming to provide relevant results directly to 

human users, possibly in symbolic form. Although the analysis and modelling of time 

series for forecasting purposes has been widely studied theoretically, there is a lack of 

robust enough algorithms for real-life usage and a lack of easy-to-use software tools 

(Gooijera and Hyndmanb 2006). It has been stated that no single method provides 

results that alone are enough when diagnosing process operation 

(Venkatasubramanian et al. 2003a). The major reason for this is that data processed 

by a single method do not contain all the relevant information and unknown issues 

influence the end result too much. 

 

One useful way of abstracting time series data to symbolic form is to find episodes 

from them. These are time intervals and periods that are delimited from each other by 

significant change points or value outliers in the trends. Numerous methods have been 

successfully demonstrated to realise this; for example, the Monte Carlo strategy and 

particle filtering are reported to be suitable methods for the detection of change points 

in long time series (Chopin 2007) and several other methods have also been reported 

(Lavielle and Lebarbier 2001; Lowe et al. 1999; Takeuchi and Yamanishi 2006). A 

concrete utilisation example of detecting change points from time series utilisation 

has been demonstrated in a case where it was used to detect the influence of human 

activities on water levels in rivers (Wong et al. 2006).  
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Gentil (2006) reports the application of trend analysis and the use of symbolic 

information related to process monitoring. They see that time series of individual 

process quantities may be classified to form linear segments, which may be further 

categorised into seven different types [Increasing, Decreasing, Steady, Positive Step, 

Negative Step, Increasing/Decreasing Transient, Decreasing/Increasing Transient]. 

The use of a simplified version containing only [Steady, Increasing, Decreasing] 

classification is also reported to be useful. The symbolisation is stated to be directly 

useful for the human operator but also usable for forecasting purposes. Predicting that 

a current linear segment continues, it is possible to forecast that a certain parameter 

will exceed the alarm limit in a certain time span. Seppälä and Salmenperä (2005) 

have also proposed similar usefulness for linearisation. 

 

In conclusion, it can be stated about available methods, on the basis of the reported 

research and related demonstrations, that with mathematical methods it is possible to 

find linear periods from time series data. The accuracy is related to the predefined 

description of the analysed data and parameterisation of the methods used. On the 

basis of the literature it is relatively safe to state that if less than 100% accuracy in 

detection is enough then it is possible to gain symbolic information using statistical 

methods, even with a feasible amount of configuration work. Furthermore, it was 

found that finding episodes from offline data is easier and more accurate than finding 

episodes in real time; however, in process-related monitoring applications online 

operation is required for the timely detection of changes. Nevertheless, every method 

has its operational restrictions and these should be considered when applying them in 

order to be able to get feasible results. 

3.6 Challenges and technical opportunities in process 
automation monitoring 

The background and general motivation for this research is that functionalities in 

process automation monitoring should be looked at from a new perspective. On the 

one hand, there are new challenges related to monitoring in process automation, 

especially the need for flexibility and delegation, because the complexity is rising and 

sites are growing in size. These challenges were discussed in Chapter 2. On the other 

hand, the technological opportunities presented above in this chapter are interesting in 

the context of monitoring. Synthesising these two research areas together is not a 

unique idea, and therefore related research activity has been reported. The following 

part of the text focuses especially on properties such as flexibility, delegation, systems 

integration, and knowledge handling which are seen as important in process 

automation monitoring systems. 

  

Flexibility and control over operations is stated to be the main user need related to 

process automation information processing in this thesis. This means that the system 

structure should support the flexible organisation of functionalities. In addition, the 

user should be able to decide how, when, and what information-processing functions 

are to be used during monitoring. Current automation environments offer numerous 

tools for specific tasks, but in general the user is not able to integrate and fine-tune 

their simultaneous operation (Koskinen et al. 2003; Paunonen 1997; Seppälä and 

Salmenperä 2005; Tommila et al. 2001; Ventä 2005). Techniques for gaining 

flexibility are available in software engineering, and these have been at least 

demonstrated in the area of automation. Agent technology has been used to achieve 
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flexibility when integrating industrial systems (Buse and Wu 2007; Cockburn and 

Jennings 1995; Mangina et al. 2001; Shen and Norrie 1998; Shen et al. 2006; Wagner 

2002) and executing batch process operations (Kuikka 1999). Agents have been used 

as a technique in flexible process control (Chokshi and McFarlane 2002) and, for 

example, in realising fault tolerance (Maturana et al. 2005; Seilonen 2006).  

 

It has been proposed that agent-based principles could be used to perform totally 

distributed process control, in which individual product elements find the necessary 

processing facilities and materials for each phase to form a complete end product 

(Chokshi and McFarlane 2008). Demonstration experiments have shown how agents 

may be used to handle dynamics in electricity production (Buse et al. 2003; Buse and 

Wu 2007; Kok et al. 2005). In manufacturing the potential of agent systems for 

gaining flexibility has been researched more extensively and for a longer time period 

(Barata et al. 2005; Beckstein et al. 1994; Chokshi and McFarlane 2002, Jennings and 

Bussmann 2003; Marik et al. 2002a; Shen et al. 2006) or structuring has had 

similarities to agents (Brennan et al. 2002; Vyatkin 2005). However, other base 

technologies have also been proposed when reaching for flexibility in automation. 

Lately, especially Service-Oriented Architecture (SOA), designed primarily for 

business processes, has also been applied to more practical and floor-level industrial 

applications (Jammes and Smit 2005; SIRENA 2008), and also Web Services (Lastra 

and Delamer 2006).  

 

Delegation is needed because the amount of data to be processed and monitored when 

making decisions has grown with the rise in the general complexity of automation 

systems and the technical aspects of IT development, and as a result a need for more 

flexible ways to delegate monitoring functions is clearly visible (Koskinen et al. 2003; 

Seppälä and Salmenperä 2005; Ventä 2005). Technically, there are numerous tools to 

construct delegation, and agent technology implementing proactive computing 

principles has been stated to be probably the most interesting one (Maes 1994; 

Tennenhouse 2000). 

 

General monitoring tasks, which are structured, repetitive, and relatively simple, have 

been proposed to be well-suited functionalities for AI technologies (Kaplan 1984; 

Laplante et al. 2007). Agents and AI technologies were already being used for 

cooperative information gathering over ten years ago (Bayardo et al. 1997; Decker et 

al. 1995) and also for monitoring supporting activities in industrial settings (Cockburn 

and Jennings 1995; Ingrand et al. 1992). Lately, industrial activity has gained more 

interest (Bunch et al. 2004; Georgoudakis et al. 2005; McArthur et al. 2005; Theiss et 

al. 2007; Wang et al. 2004; Wörn et al. 2002). Furthermore, when the monitoring of 

equipment is being outsourced and performed physically further away from the 

production site, then agents may be used to delegate the monitoring task (Pyötsiä 

2005; Theiss et al. 2007; Terziyan and Zharko 2004). 

 

Systems integration is important, because not all the information that is needed to 

make correct decisions on a production site comes from the process automation 

system (Ventä 2005). Integrating existing industrial systems together utilising agent 

technology and languages adopted from the Semantic Web has been suggested as a 

viable approach (Terziyan and Zharko 2004; Yi-chuan et al. 2006), and it has been 

stated that another promising way to use agents is to integrate them into existing 

systems in manufacturing environments (Shen et al. 2006). In power generation it has 
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been demonstrated that agent technology offers flexibility when integrating various 

distributed condition monitoring modules and thus creating an easy migration path for 

new applications (McArthur et al. 2005). In addition, agents have been reported to be 

a suitable technology for the integration of information management, condition 

monitoring, and control in power systems (Buse and Wu 2007). The integration of 

existing systems with agents to support monitoring and diagnostic purposes in 

continuous processes has also been proposed in the ARCHON system (Cockburn and 

Jennings 1995), by the COMMAS project (Mangina et al. 2001), by the KARMEN 

project (Bunch et al. 2004), by the MAGIC project (Gentil 2006; Wörn et al. 2002), 

and in other efforts (Gao and Kokossis 2005; Sayda and Taylor 2007; Vasyutynskyy 

and Kabitzsh 2004). 

 

As research has proposed agents for integration purposes, SOA is already becoming a 

popular solution for the integration of industry applications (Jammes and Smit 2005; 

SIRENA 2008), also in a vertical direction as a tool to normalise and thus integrate 

factory machinery to a company‘s business models (Gilart-Iglesias et al. 2006). SOA 

has also been proposed for monitoring purposes (Seppälä and Salmenperä 2005). As 

an industrial practice the OPC specifications have been a widely adopted cornerstone 

within automation and the forthcoming version will utilise both the SOA and Web 

Services (OPC 2008). Lately, adding semantics to SOA-based infrastructure has been 

proposed for power market information integration (Huang and Lei 2007), and 

successful industrial systems integration has also been demonstrated with Web 

Services (Kalogeras et al. 2006; Lastra and Delamer 2006). 

 

Production environments are information-intensive environments and successfully 

organising the knowledge handling is therefore crucial, and to support efficient 

operation user interfaces should offer the right information at the right time in the 

right form (Ventä 2005). Technically, information exchange in automation 

environments has been largely solved by the available IT solutions (Sauter 2005), but 

this does not solve the knowledge issues. Challenges in knowledge handling are being 

dealt with in the software research community, and especially the W3C (2008) is 

developing technologies in the form of specifications, guidelines, software, and tools 

supporting interoperability. Within automation, the new OPC Unified Architecture 

specification will support the use of formal and descriptive data models (OPC 2008), 

and these may be used to add knowledge handling and process modelling 

functionalities to services. The use of semantic knowledge has been demonstrated 

within industrial settings (Georgoudakis et al. 2005; Huang and Lei 2007; Lastra and 

Delamer 2006; Vyatkin et al. 2005). 

 

Research activities have already been reported that explore new possibilities for 

knowledge handling and process modelling purposes in automation. Obitko and 

Marik (2003) have stated that OWL (2008), the latest ontology language proposed by 

W3C, would be suitable for information exchange in manufacturing enterprises. 

Semantic models have recently been used in maintenance information processing by 

Viinikkala et al. (2006) and also for flexible power market information integration by 

Huang and Lei (2007). However, the latter note that an agreed and shared vocabulary 

(ontology) for integration is lacking and should be publicly available in the future.  
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Process models are often used in the monitoring of industrial systems for fault 

detection and diagnosis purposes, because they offer benefits such as accuracy, 

reaction speed, and identification (Honkanen 2004; Isermann 2004). In the future the 

modelling of the whole production environment and its efficiency will become more 

important, because of requirements originating from business and environmental 

perspectives (Tuomaala 2007). Nevertheless, models and rules describing the 

operation of the system need an estimation of parameters if they are to be useful and 

this is stated to be problematic in environments where change is present and therefore 

control over decision-making should be left to the users (Laplante et al. 2007).  

 

Table 2 shows a collection of challenges originating from users trying to cope with 

monitoring tasks in the process automation area and the opportunities that the above 

mentioned new technical solutions are reported to offer. The table also shows selected 

references that discuss these aspects and provide further information about the 

subject.  

 
Table 2 – Collection of how different technical solutions have been used to respond to challenges. 

Challenges for the 
system originating 
from business 
change 

Suggested technical 
solutions   

Important references 

Flexibility Agents, SOA, Web 
Services, Semantic Web 
tools 

Buse and Wu 2007; Chokshi and 
McFarlane 2002; Wagner 2002; 
Jennings and Bussmann 2003; 
Jammes and Smit 2005; Shen et al. 
2006  

Delegation Agents   Maes 1994; Tennenhouse 2000; 
Georgoudakis et al. 2005; McArthur et 
al. 2005; Wagner 2002 

System integration Agents, SOA, Web 
Services, Semantic Web 
tools 

Bunch et al. 2004; Buse and Wu 2007; 
Cockburn and Jennings 1995; Huang 
and Lei 2007; Kalogeras et al. 2006; 
Mangina et al. 2001; Wörn et al. 2002 

Knowledge handling  Semantic Web tools Georgoudakis et al. 2005; Huang and 
Lei 2007; Lastra and Delamer 2006; 
Obitko and Marik 2003; Viinikkala et al. 
2006; Vyatkin et al. 2005 

 

On the basis of the reviewed literature it is possible to conclude that agent technology 

seems to offer most of the properties that are needed to construct a monitoring system. 

Compared to SOA and Web Services, which have already been significantly adopted 

within industry practice, agents seem to offer better support for delegation. Although 

applying agent technology to practical industrial applications is still rather rare, it has 

been seen as an important research direction. A steady development trend is visible in 

the series of HoloMAS conferences (see Marik et al. 2003, 2005, 2007) that were first 

initiated as a workshop (HoloMAS 2000, 2001, 2002; Marik et al. 2002b) but have 

had growing attention since. 

 

Previous research has studied monitoring systems realised with agent technology, 

possibly utilising the Semantic Web, in environments bearing similarities to process 

automation. One of the earliest was the ARCHON system (Cockburn and Jennings 

1995), which used agents to modularise and integrate pre-existing expert systems in 

an electric distribution network. The aim with ARCHON was to use agents to 
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organise the sharing of partial results together for combined fault diagnosis. In 

addition to well-documented experiments, the ARCHON project generated guidelines 

for the systematic development of monitoring systems within industrial applications, 

and demonstrated the use of AI planning. ARCHON-like structures have also been 

suggested for the monitoring of automation systems in general (Vasyutynskyy and 

Kabitzsh 2004) and for enabling the G2 expert system to be used in the petroleum 

industry (Sayda and Taylor 2007). 

 

The COMMAS project, which has a similar background to ARCHON, uses agents to 

flexibly organise condition monitoring operations in power plants (Mangina et al. 

2001). The agents have different roles (data abstraction, data processing, analysis, and 

administrator) and are organised hierarchically in multiple layers. Communication in 

COMMAS is based on the FIPA standard, although XML is used as the message 

content language for practical reasons (McArthur el al. 2005). Defining agent roles on 

the basis of their diagnostic tasks is also used in the MAGIC project (Wörn et al. 

2002), which also uses FIPA standard interaction protocols in communication. In both 

COMMAS (McArthur et al. 2005) and MAGIC (Gentil 2006) the data analysis agents 

extract features from time series data and forward this abstracted information for 

further usage. 

 

The studies introduced in Buse et al. (2003) take the ideas introduced in ARCHON 

further. Their system has multiple layers and agents are thought to have various roles, 

motivated by functional task division (database, document, ontology, device, plant, 

and user interface agents). In addition, the idea of planning is concretised in the 

design by defining agents to use a BDI model for deliberation. However, BDI was not 

used in the implementation, because of the amount of time required to implement it 

and because the functionality did not require it. Furthermore, the FIPA standard is 

used in communication, and even an FIPA-specified content language is used. In 

addition, the system uses an ontology defined with UML, e.g. to describe different 

items found in the system (Buse and Wu 2007). 

  

The KARMEN project (Bunch et al. 2004; Bunch et al. 2005) utilises agents to 

distribute monitoring tasks for physical processes in a similar way to the MAGIC 

project. However, the focus in KARMEN is on notification issues, e.g. being able to 

relay each notification to the appropriate person. The Semantic Web ontology 

language OWL (OWL 2008) is used to model aspects related to notifications, such as 

the criticality of the notification or the person responsible, and this same model is 

used to control the notification process.  Other researchers (Georgoudakis et al. 2005) 

have also used ontologies and agents to organise monitoring-related activities, and 

suggest the use of languages originating from the Semantic Web in inter-agent 

communication. Furthermore, Mathieson et al. (2004) have successfully experimented 

with BDI-based agents in relation to a meteorological alerting system.  

 

As a conclusion to the consideration of the use of agents for monitoring functions 

within industrial settings, the following may be stated: agents can be used to distribute 

the monitoring activities and construct hierarchical structures that are suitable for the 

task. A BDI model and Semantic Web tools have both been proposed as being useful 

in monitoring. However, demonstrations utilising both at the same time seem to be 

missing.  
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3.7 Conclusions about the available agent and semantic web 
technologies 

Computing power has been increasing remarkably and provides many possibilities in 

system development. Although it is not clear what the best choice for utilising the 

extra capabilities will be, raising the level of abstraction in system development seems 

to be appealing. Previously the focus was very much on constructing effective 

algorithms and structures that optimise the exploitation of the capabilities of the 

hardware. However, if the system is complex and applications must function in a 

dynamically changing environment, then the capabilities of the approach used should 

ease the work of system engineers. Agent technology is proposed as one possibility 

capable of answering this general requirement (Jennings 1999; Odell 2002).  

 

Agent technology itself is a rather general software engineering methodology suitable 

for system-level design. It promotes the system to be constructed from abstract 

entities that are autonomous and communicate by passing messages. There is an IEEE 

standard available (FIPA 2008) that defines agent communication and defines 

negotiation principles on a general level. Numerous software frameworks for 

constructing agents are available and the quality of these is on such a level that these 

could be used for selected industrial applications. Systematic methodologies and tools 

for developing BDI model-based rational agents are available (Padgham and Winikoff 

2004). However, agents have the limitations of general AI (Wooldridge and Jennings 

1999), and although AI seemed promising in the past, adaptive systems with 

intelligent and highly autonomous features remain something of a fantasy (Fischer 

and Merritt 2003; Hendler 2006). It has been proposed that decisions on what features 

to include should be made in the context of the motivating problem domain and that 

unrealistic assumptions should be replaced with practically justifiable ones (Fischer 

and Merritt 2003).  

 

In a technological sense, semantic technologies are gaining a lot of interest because 

they offer potential to access the vast amount of information provided by the internet. 

Standards for representation issues on a syntax level and metadata definition 

languages for defining semantics are already available. However, the methods for 

ontology engineering are still under development and no widely adopted use of 

semantic information has been seen in industrial applications. Service-based system 

structures are gaining strong interest within business applications and frameworks for 

this are starting to become mature. Nevertheless, current approaches require the user 

to define the procedure that describes how services are utilised, and do not promote 

automatic service composition (Lassila 2007). 

 

Interest in combining service-based operation and semantic information approaches is 

already visible, and the idea of Semantic Web Services has been introduced. 

Numerous tools, systems, frameworks, and methodologies are available in the 

research community, but none of them are usable as such for process automation 

monitoring purposes. One specific example combining Semantic Web tools and agent 

principles together is the Nuin agent platform (NUIN 2008). Although Nuin could 

have been useful in the scope of this thesis, the development project of Nuin was 

stopped before the platform reached sufficient maturity. Therefore, as there are no off-

the-shelf systems available, the system has to be constructed from selected, suitable, 

and individual parts that are available. 
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In general it has been stated that intelligent systems aiming to support humans should 

be easily configurable because in many situations the end user knows the situation 

and meaningful changes the best. Furthermore, systems aiding humans should 

perform laborious filtering, searches, and monitoring, but not too much else (Laplante 

et al. 2007). Systems should offer flexibility in configuration so that the user may 

personalise the system and select the level of automation that suits each task best 

(Schiaffino 2004). Related to the monitoring of automation systems, an appropriate 

solution seems to be a flexible user-configurable system that has models for relatively 

static aspects (process ontologies covering structural aspects of the process 

environment and base vocabulary) to facilitate communication and enable agents and 

other active players to perform the functions that have potential for automation (e.g. 

with user-defined rules for inference and filtering, etc.). 
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4 The new agent system architecture for process 
monitoring  

4.1 Introduction 

The aim of this chapter is to present an agent architecture design that facilitates the 

technological opportunities presented in the previous two chapters and responds to 

process automation business challenges. On the architectural level the design choices 

focus on selecting the most suitable overall structure, including the selection of an 

appropriate agentifying level and the enabling of connections to other industrial 

systems.  

 

Categorising the currently visible development trend in process automation from the 

structural perspective can be done by looking it from two distinct directions; bottom-

up, describing the rise of information-processing capabilities, and top-down, 

describing the advances in the management capabilities of the system structures. 

 

Bottom-up development trends include: in the future, nearly every device 

connected to process automation will diagnose itself and possibly monitor the health 

of nearby process areas. Device vendors will implement more utilities into their 

devices as developments offer more memory and processing power, e.g. device-

specific data mining may be introduced. Furthermore, vendors are already supporting 

external programs to be run on their devices, e.g. simple logic controls are 

implemented within electrical drives. 

 

Top-down development trends include: the complexity of processes will grow 

because of increased integration and more measured information becoming available. 

Models describing a variety of more or less general issues about processes will 

become available, e.g. tighter integration between process design and implementation 

will make descriptive models available. In addition, methodologies for distributed 

software development will evolve and provide more sophisticated approaches to the 

handling of modularised design, e.g. agent technology. The tools and techniques for 

handling integration issues and interpretation models are also maturing, e.g. Semantic 

Web tools may be used to integrate and query data available in heterogeneous data 

sources.  

 

Although process automation is likely to adopt many of the new technologies, process 

control will probably be organised in a hierarchical structure in the near future 

(Jämsä-Jounela 2007). The hierarchical organisation of process control offers 

unbeatable reliability, even though distributed approaches have also been 

demonstrated to be possible in process control (Chokshi 2005; Seilonen 2006). 

Regardless of whether or not process control becomes more distributed, the 

monitoring functionalities may be organised in a distributed manner. Distribution 

approaches should also be preferred that are able to exploit all the possibilities that 

new embedded computing offers, e.g. to overcome the limitations of the current 

approaches (discussed in Chapter 2.5). 
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This chapter presents an architectural design that illustrates how to organise the whole 

system utilising agent technology to support flexible monitoring in process 

automation setups. The architecture illustrates a structure which aims to help 

developers to integrate various isolated functionalities together and further facilitates 

the combination and summing up of partial results. In addition, the overall structure 

aims to be understandable and feasible to implement in process automation 

environments. Furthermore, the structure should promote cumulative development 

and make future additions possible. 

 

The first part of the design is the setting of the requirements for a flexible process 

monitoring system. The requirements are represented in the form of desired system 

properties in Section 4.2. Then the rest of this chapter presents the design of an agent 

system architecture for process automation monitoring point by point, and in every 

section the design choices are explained. Furthermore, as the design of the system and 

its functions is a continuous and evolutionary process it should be noted that this 

thesis documents the current status of this work. 

4.2 Desired system properties 

The target is a system that would provide user-controllable, flexible, and easy enough 

access to all-available information related to process monitoring tasks within an 

industrial production site. Although it is end user-configurable to a large extent, at the 

same time it should exploit the technological benefits coming from novel software 

engineering research.  

 

The discussion in previous chapters has yielded properties that an architecture for 

flexible user-controllable and configurable process monitoring that produces 

operationally integrated information services should have. Below these properties are 

clustered into six groups. The first five were introduced at the end of Chapter 2, and 

here these are discussed from the system development viewpoint. The final property, 

general properties, promotes design issues for a maintainable system structure.  

 

P1 - Flexibility: the system should support context sensitivity and adaptive operation, 

to enable the user to control how the system behaves in different situations. The level 

of information also needs to be controllable; in a steady situation abstract reports are 

enough, unlike in an abnormal situation, where specific details are needed. 

Furthermore, the monitoring functionality requires adaptive, asynchronous, and 

frequent checking of things that in their own way show that everything is as it should 

be. The system should support the active operation principle, to enable the user to 

automate as much of the monitoring operation as possible.  

 

P2 - Delegation: the system should enable the user to use delegation for most of the 

routine work and thus release the user to concentrate on higher-level decision-making. 

This requires the system to be somewhat intentional and rational and should also 

enable short procedures to be configured for it. The system should be able to process 

multiple tasks simultaneously and in parallel with distribution. Distributed operation 

is required to be able to utilise promised future improvements in the device-level 

diagnosis functionalities. 
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P3 - Integration: the system should provide integrated information access to make 

possible one-point access to all the process-related information that is needed when 

validating the correct operation of the process and devices. Furthermore, merging to 

current systems with an architecture connecting to current structures is required 

because the life cycles of industrial control systems are long in process automation. 

Support connections to pre-existing information and control-level systems in process 

automation are required. 

 

P4 - Knowledge handling: the system should enable unification of terms used for the 

essential data model items and thus facilitate linking of (partial) results provided by a 

variety of tools, e.g. being able to combine monitoring results together. In addition, 

the use of both the functional and physical decomposition of underlying processes 

should be supported by the system. The system should be able to operate with 

incomplete information and still provide results, although partial, even when all the 

requested information is not available. Support for the all-you-can-find principle is 

preferred.  

 

P5 - Data processing: the system should be capable of performing data processing 

suitable for process automation, especially extracting and abstracting relevant 

information from time series format data. 

 

In addition to process automation-motivated properties (P1-P5), the system should 

have the following general properties: the system should be modularly structured for 

easier maintainability, e.g. to support flexible updating in the future. Separating the 

control of operation and decision-making is preferred. Modularity aspects and 

operating principles should be intuitive and use structures from the application area 

and its functions as much as possible. Intuitive operation is also preferred, because the 

end user should be able to perform limited system operation configuration, as in the 

process automation environment the end user has the most timely information about 

the current situation.  

 

Although the system will be situated in a process environment, where stringent real-

time constraints are typically important, real-time issues are not included in the 

properties. This is because the monitoring system mainly provides supportive 

information, where the time constraints are thought to be soft. Information that has 

been asked for should be returned as fast as possible but reasonable delays are not 

seen as problematic and processing can also be performed in the background. This is 

different compared to systems that automatically make corrective actions, as 

discussed, for example, by Ingrand et al. (1992) and Laffey et al. (1988). In addition, 

what is missing as a stand-alone property is interaction with the end user. This thesis 

treats system design as a structural and technical problem, and the design of the exact 

user interface and interaction for monitoring tasks are seen as the subject of other 

research. 

4.3 Agent augmentation 

To be able to use agents in a process automation environment, a suitable overall 

structure needs to be defined. As automation setups have long lifetimes (e.g. 20-30 

years) and the monitoring tasks are supportive functionalities, the most important 

structural requirement for an agent system is to be able to add it to current industrial 

setups without requiring modifications to the systems‘ current structure. Figure 10 
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illustrates the specified agent-augmented approach in which the agent system is 

situated in the middle of various interconnected systems that already exist in the 

process automation environments. With this structural setup the agents have the 

potential to provide additional functionalities to users, while at the same time the pre-

existing systems and their connections are left untouched. The system is primarily 

thought of as being suitable for use by humans but the monitoring functions and their 

results might be used by other systems and applications as well.  

 

 
Figure 10 - Overall architectural structure illustrating agent augmentation. 

 

Keeping the agents as a clearly separate system eases the adoption of the agents, as 

the system may be installed as a stand-alone module. This enables available agent 

software frameworks to be used and makes the realisation relatively straightforward. 

This augmentation approach was selected instead of trying to incorporate the agent 

functionalities into current process automation setups, leaving the reliable real-time 

control structures and functions intact. However, if in the future the automation 

environment enables various tasks and applications to be performed in a distributed 

manner, then the agent-based monitoring functions can also be distributed. The 

overall system structure, illustrated in Figure 10, is designed to be static and it is not 

thought to be changing at the time of performance. Furthermore, the augmentation 

approach keeps the monitoring system compatible with the previous research of 

applying agent technology to enhance process automation system properties in control 

operations (Seilonen 2006). 

4.4 Members of the agent society  

Inside the agent system the number of agents and their setup changes dynamically, 

according to the currently active monitoring tasks. The agent hierarchy is intended to 

be suitable for process automation monitoring tasks. The responsibilities of each agent 

operating in the system are defined beforehand and in this architecture these 

responsibilities are specified as roles in which each agent operates. We propose that 

this role setting eases the design process as there are guidelines for selecting the place 

for every function. Furthermore, guidelines also help when defining an organisational 

hierarchy for agents and roles are seen as a way to cluster functionalities into 
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meaningful combinations, as the role of an agent outlines its area of responsibility, 

objectives, and behaviour. Figure 11 illustrates a general example of agent 

organisation showing all five different roles in which the agents may be set to operate. 

 

 
Figure 11 - The agent society consists of agents in five different roles. 

 

From the user‘s point of view, the Client Agent is probably the most important agent 

type because it provides a gateway to access and control the monitoring services. The 

task of the Client Agent is: 1) to support the tasks of the user by providing information 

retrieval and monitoring services; 2) to translate agent communication into forms that 

are user-understandable, and 3) to maintain a conversation with the users in 

accordance with the current agent task. Although the system is mainly thought to be 

suitable for use by human users, external software systems might also use these 

monitoring services via the Client Agent. Existing user interfaces may be used if the 

agent functionalities can be embedded into those, but, when needed, specialised user 

interfaces should be produced. Normally, these Client agents persist for as long as 

each user is using this system. 

 

Information agents are service providers that have a less permanent lifespan in the 

system, as they are typically instantiated for the performance of a specific information 

task. Their task is to carry out information retrieval and processing tasks that require 

the migration of data from a number of service providers. The responsibilities of this 

agent role are to: 1) decompose information retrieval and monitoring tasks into 

queries and subtasks for appropriate agents; 2) filter, combine, and format the 

collected data using various methods, and 3) monitor for phenomena dependent on the 

distributed initial data. Information agents may be seen as specialised consultants that 

are invited to perform some particular function and they may be dedicated to these 

functions, e.g. in the same way as an individual service engineer may specialise in a 

certain device type at a production site. These agents are capable of decomposing the 

process environment and its operations from multiple different viewpoints, e.g. 

functional and physical, at the same time and thus providing users with a view of 

information that is not readily available in any pre-existing system.  
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A Process Agent represents a section of the physical plant equipment, and they are 

thus more permanent than the previous agent roles. Process Agents are structured 

hierarchically, with low-level agents representing single devices such as pumps or 

valves. On a higher level, process agents account for plant (sub)processes, and on the 

highest level for entire processes or plants. These agents maintain a direct connection 

to the hardware and employ various sets of methods in order to: 1) collect and refine 

information about the operational state of the equipment; 2) attempt to discover 

deficiencies in the performance of the equipment, and 3) monitor for changes in the 

desired information (e.g. measurements) both by default and on request. The idea of 

decomposing the physical process into hierarchical subprocesses and setting Process 

Agents to be responsible for these originates from previous research exploring the 

possibilities of an agent approach to process control functionalities (Seilonen 2006).  

 

The role of Wrapper Agents is to be responsible for information sources that are 

already available in the process automation environment. Their tasks include: 1) 

maintaining a data connection to the information source; 2) translating data from 

different formats to the ontology-based representation understood by the agent 

society, and 3) filtering and monitoring for changes or updates in the information 

stored in the data source on request. The use of wrappers supports the evolutionary 

development of the whole system as only a new wrapper is needed when a new 

information source is added. Typically, there is thought to be one permanent Wrapper 

Agent for each external data source, but this is not a limit that is intrinsic to the 

design.  

 

The final agent role in the system is that of the Directory Facilitator, which provides 

a yellow pages service, advertising and seeking services. This role is defined in the 

FIPA standard, which requires an agent system to provide a directory service so as to 

be compliant with the standard (FIPA 2008). The directory service facilitates dynamic 

task (re)configuration and plug-and-play interaction among agents, and it is typically 

a built-in feature in the actual implementation of agent systems. 

 

The presented role division supports general intuitiveness in the design process, as 

these roles are related to the roles in which humans work in industrial contexts. 

Thinking of the presented role definitions from the software engineering perspective 

helps in keeping the agents relatively small in terms of their functionalities and thus 

helps in achieving low coupling and high cohesion, which are typically stated to be 

important design objectives in modularised software systems. The presented roles 

may also be preserved if the whole system is to be physically distributed all around 

the process environment. In addition, the described roles are a realisation of the future 

vision presented in Pirttioja (2002) about different types of agents operating all 

around the process automation environment.  

 

A practically identical type of agent structuring is proposed by Buse and Wu (2007) 

for information management and the condition monitoring of power systems, but they 

name their agent roles differently and they have included mobile and document agents 

in their system. Similar ideas of composing physical processes into separate elements 

have been proposed by others too (Buse et al. 2003; Buse and Wu 2007; Chokshi and 

McFarlane 2002; Wagner 2002). The concept of an information agent providing 

services in relation to automation functionalities has been suggested by Wagner 

(2002). In addition, the wrapping idea has been utilised in information-related 
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applications in power systems (Buse et al. 2003; Cockburn and Jennings 1995; 

McArthur et al. 2005). 

4.5 Agent interactions and service directory 

Flexibility and adaptation in agent systems are the result of both the autonomous 

operation of individual agents and also the correctly organised loose coupling of 

agents. This coupling is based on various communication methods, called interaction 

protocols within agent technology, and they are standardised by the FIPA organisation 

(FIPA 2008). Although other technologies also offer flexible ways to communicate in 

a multi-entity environment, the FIPA standard offers strictly defined and stable 

guidelines for realising adaptive communication in distributed environments. 

 

Analysing the task communication requirements and selecting the most suitable 

interaction protocol for each task is important because correctly selected 

communication principles support the functionality. For monitoring and information 

access purposes, the most interesting protocols that agent standardisation offers are 

the subscribe and request-when interaction protocols. With these interaction protocols 

the actual monitoring activity may be delegated and the requester is released from the 

resource-consuming polling of data and testing if something has been changed. For 

example, in the subscribe interaction protocol the client is notified every time the 

referenced object changes until the subscription is cancelled. The request-when 

protocol may also be used for delegation but with it the requested action is performed 

once. For information access purposes, the query interaction protocol can be used. 

 

Although the FIPA standardised interaction protocols were seen as being valuable, it 

was decided not to use the FIPA-specified content languages in the communication. 

This was partly because insufficient support is offered by the available software tools. 

The primary reason not to use the FIPA standardised agent content languages was the 

unclear situation related to other technologies under heavy development, e.g. Web 

Services (Chapter 3.3.1) and the Semantic Web (Chapter 3.4), and this has also been 

noted by the FIPA organisation (Greenwood et al. 2007). 

 

Furthermore, an important source of flexibility and adaptation is the service directory, 

provided by the Directory Facilitator agent introduced in the previous chapter. With 

the service directory information sources are searched through when they are needed, 

not at the time of design, which results in the adaptive and dynamic binding of 

resources. In addition to guaranteed up-to-date information, this ensures that new 

information sources are immediately available when they are connected to the system. 

4.6 Goal-based operation and shared ontology 

To succeed in monitoring tasks both reactive and deliberative operation is needed. 

From the basic agent types, discussed in Chapter 3.2.2, the deliberative and goal-

based operation realised with the BDI model seemed to be most suitable for 

monitoring purposes. The BDI model suits the adaptive and repetitive (goal-pursuing) 

type of operation that is needed for controlling monitoring tasks. However, reactivity 

is needed so as to be able to respond in a timely manner to changes occurring in the 

process automation environment. It was decided to support both types with a 

construction in which the deliberative part is responsible for configuring and thus 

controlling the operation of the reactive parts. 
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In the BDI model the goals (desires in the general model) are used to describe 

information-processing and process monitoring task objectives. The general idea is to 

imitate how humans give instructions to each other and provide a more intuitive 

operating principle for the monitoring system. Furthermore, passing goals between 

agents enables receiver agents to decide locally how and when to operate, e.g. how to 

acquire the requested information. This results in a more flexible setup than the 

remote procedure calls that many distribution frameworks are based on, e.g. Java. The 

BDI model supports flexibility in the form of context adaptation. With it it is possible 

to describe the preconditions for each individual information-processing functionality 

that defines in which situations it is capable of producing the outcomes that it is 

designed to produce. The use of goals promotes distribution and task delegation as 

agents may request other agents to reach goals, e.g. in a case where the agent itself 

does not have the abilities to fulfil the task itself.  

 

In addition to a principle that controls agent operation, agents need a common and 

shared terminology for communication purposes. In general, these are defined as 

ontologies, which are explicit conceptualisations of a certain domain of knowledge. 

Common agreement on this knowledge is needed for agents to be able to exchange 

meaningful information between them. In this agent system this is realised with an 

ontology that is shared knowledge available to every agent in the system. In order to 

avoid the n
2
 translation problem, every agent is required to supply its information 

using this vocabulary. For example, the Wrapper Agents are responsible for 

translating their responses so that the requester understands the presentation format 

and is able to utilise the information.  

 

In addition to shared terminology, the ontology is used to define the relationships 

between the concepts used. This can also be used for reasoning purposes inside an 

agent. For example, the possibilities and readiness of the Semantic Web-related tools 

and standards (see Chapter 3.4.2) are attractive. Unfortunately, currently there are no 

standardised or otherwise publicly available ontologies for process automation, and 

especially not for monitoring functionalities. Nevertheless, in this research the 

decision was taken to develop a demonstrative ontology for the experiments so as to 

be able to test the idea. The utilisation of ontologies for representing the structure, 

events, and behaviour of industrial processes is described in more detail in Pakonen et 

al. (2007). 
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4.7 Summary of architecture decisions 

The agent system architecture presented here aims to provide a basis for building 

flexible and configurable monitoring services for users in process automation. The 

architecture is a collection of design decisions made to adapt agent technology to 

monitoring tasks. Table 3 summarises how, it is argued, the design decisions relate to 

the desired system properties, which were set for the architecture in Chapter 4.2. 

 
Table 3 – Summary of architectural elements and their relation to desired system properties (the 

mark X indicating that the architectural decision supports the property at least partly). 
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Agent augmentation X  X   

Agent roles X X X  X 

Agent interactions X X X   

Goal-based operation X X    

Shared ontology   X X X 

 

Realising agents with augmentation was selected primarily because of the technical 

limitations of the current automation environment. As the augmentation enables the 

system to be used with current structures, it supports integration and flexibility. The 

use of agent roles gives guidelines to the system designer and helps in structuring the 

operation of the system, thus supporting flexibility and delegation. Wrapper agents in 

particular may be seen to support integration and data processing aspects. However, 

the author expects that the exact role division presented will be subject to change if 

new functionalities are developed. The use of FIPA (2008) standardised agent 

interactions is one of the key features offered by agent technology and it naturally 

supports flexibility and delegation. Furthermore, negotiations and directory services 

facilitate the integration of systems.  

 

The goal-based operating principle was selected mainly for delegation and flexibility 

purposes, but also because it has been stated to be suitable for building applications 

that are used by humans (Dickinson 2006). Additionally, a systematic design 

methodology is available for BDI model-type agents (Padgham and Winikoff 2004). 

However, although the BDI model seems to match the requirements set by monitoring 

tasks in automation, no specific examples reporting its use were found. This results in 

a risk as there are no good guidelines showing how to apply BDI model-based 

operations to monitoring in process automation. Shared ontology-based 

communication is considered to ease the integration of data sources using 

heterogeneous data formats. Furthermore, ontology-based data models naturally 

support knowledge-handling issues, and the possibility of describing object relations 

in ontologies is seen as potentially beneficial to data-processing functions.  
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5 Layered agent design and its functionalities 

5.1 Introduction 

The system architecture specified in the previous chapter makes design decisions on 

an overall level and these choices need refinement and more details to be specified 

before they can be implemented as an actual software system. In addition, the system 

architecture design mostly explains the multi-entity aspects of the system, e.g. what 

kinds of players there are in the system, and does not explain how the individual agent 

has been constructed or how the operation of the agent is to be realised.  

 

The aim with the internal design specification is to support both deliberative and 

reactive agent operating principles in a suitable way for monitoring tasks in process 

automation. Furthermore, the specification should give guidelines to the designer as to 

how to divide the monitoring operation and related data processing into different 

software modules. Related to data processing, a vertically layered architecture seemed 

to describe most naturally the abstraction used inside an agent. The layered design 

illustrated in this chapter is propositional. 

5.2 Internal operation of agents  

The developed internal architecture specification, illustrated in Figure 12, is a 

modified and mixed version of a vertically layered architecture and the generally 

known BDI model. Both of these were discussed in Chapter 3.2.2. The Task 

management, Belief, and Plans modules originate from the BDI model, and these 

modules are used to control the monitoring operation performed by the underlying 

layers. The Data access and composition, Creation of symbolic data, and Making 

inferences modules together realise the vertically layered architecture organising the 

data processing for monitoring tasks.  

 
Figure 12 - Internal structure of agents, illustrating connections between different layers. The 

figure also shows how user interaction accesses information and data through all the layers.   

 

The User interaction module operates as a link between the user and the agent 

system, and the Agent communication module presents the connection to the message 

transport mechanism used for inter-agent communication.   
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The data processing is divided into three distinct modules. The Data access and 

composition modules are used to access and combine data fetched from several 

sources with appropriate IO drivers. The Creation of symbolic data modules are 

responsible for processing raw data (usually numerical) into forms (typically 

symbolic) that are more usable when drawing conclusions in the Making inferences 

module. All these modules contributing to data processing are of a reactive type. 

 

The whole monitoring operation is controlled by the Task management layer and its 

operation is based on the configured Plans. The Belief module is a common data 

store, which is also available to the data-processing modules. These three modules 

together are the source of rationality in terms of what monitoring functions and 

modules are to be selected for each task. 

5.2.1 Data access and combination 

By Data access and combination data is collected from separate external data sources 

and transformed into a suitable form for the rest of the information-processing layers 

in the architecture. This module is used as an adapter or a driver to connect to the data 

storages available in the automation environment, e.g. pre-existing data bases or 

external systems. When connected to data sources offering data in mixed format and 

syntax this layer‘s task is to convert data into a united and understandable form. This 

type of operation is especially useful with Wrapper agents when accessing 

information that is stored in legacy databases; see the discussion in Chapter 4.4. 

 

The data-accessing modules are in close connection with the creation of symbolic data 

modules. In data storages that provide symbolic and event-based information 

naturally, the data symbolisation process may be bypassed, and the Data access and 

combination layer is used directly by the upper layers. However, in cases where 

feature extraction or other data pre-processing is needed the two lowest layers work in 

close connection. 

5.2.2 Creation of symbolic process data  

The purpose of Creation of symbolic data is to transform the selected part of the 

numerical data into symbolic form so that it is usable in the upper layers of the 

architecture. Its purpose is to generate information expressing significant and 

meaningful details, events, and changes in the data and mediate it for further 

processing, e.g. for modules in the Making inferences layer. In our system the sources 

for numerical data are mainly various types of perceptions from the physical world, 

e.g. values of direct physical measurements such as temperature or values that more 

complex instruments such as chemical analysers provide. As these real physical 

measurements always have more or less noise attached, one important purpose of this 

layer is to filter the noise so that the information is more easily exploitable in the other 

modules. 

 

The symbolisation is needed to provide meaningful information for inference-making. 

Within process automation-related cases this is typically event-type information 

extracted from continuous time series data. In this research the symbolisation is 

specified as a separate module inside an agent, but in the future this feature extraction 

may be part of the basic features that lower-level devices provide, e.g. as discussed in 
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Kalogeras et al. (2006), Seppälä and Salmenperä (2005), and Ventä (2005). See the 

discussion in Chapter 3.5 for examples of trend analyses providing symbolic results.  

5.2.3 Making inferences  

In the Making inferences layer observations are made based on data fetched from 

multiple sources and offered for use by the underlying layers of the architecture. The 

idea is to combine and process data so that new deductions are generated. Basically, 

the human operator configuring the system is the source of the rules and mechanisms 

used for inference-making. With these modules the idea is to provide controllable and 

flexible information processing that operates on the basis of user configuration and 

outputs the conclusions for further exploration.  

 

Normally, the modules in this layer use data in symbolic form, but when needed the 

symbolisation layer is bypassed and they can access unprocessed numerical data 

directly from the Data access and combination layer. Inference-making generates 

new information in numerous ways when data available from the monitored process 

are processed utilising various types of rules. Potential sources of rules are user-

defined relations between process values, device type definitions, and data-mining 

tools. 

 

Several concrete examples of inference-making are given below and are illustrated in 

the experiment part of this thesis: 

 

 Constraints for checking the validity of process values of numerical data type 

are used in Experiment 1 - Temporal monitoring (Chapter 6.3 and especially 

6.3.3). In this experiment the symbolisation process is bypassed and the 

inference-making is based on unprocessed data fetched from the process. In 

this experiment the user defines rules that define acceptable value ranges and 

the relations of multiple process quantities. In this case Making inferences 

automates the checking of the validity of the user-set constraints. 

 In Experiment 2 - Search of process events inference-making is based on rules 

that refer to items in formal process models. Utilising rules defining item 

relations to instance data fetched from data sources, the connections between 

process events and particular time series data may be provided to the user. See 

Chapter 6.4.3 for detailed information about the use of data models. In this 

case Making inferences automates the linking of partial information. 

 Detection of process ―fever‖ is performed by monitoring the timely rate of 

process change events in Experiment 3 – Change point occurrence monitoring 

(Chapter 6.5.3). Here the inference-making is responsible for checking if the 

event rate exceeds the user-set limit in a specified time span. In this case the 

Making inferences layer automates the monitoring functionality. 

 Observation of user-defined event sequences is realised in Experiment 4 – 

Change point pattern monitoring (Chapter 6.6.3). In this case the inference 

engine is responsible for detecting user-specified sequences of process change 

events. In this case the Making inferences layer automates the pattern 

monitoring on behalf of a human user. 

 

As can be seen above, in all of these experiments the human user is the source of the 

deduction rules that are used when making inferences. This approach is promoted in 

this thesis, as the objective is to delegate repeated and relatively easy checking tasks 
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to a machine but still leaving full control in the hands of the user. This is currently 

seen as the development direction with the most potential. However, in the future it 

might be useful to study other possibilities for producing the deduction rules; for 

example, it might be useful to explore the potential of utilising various machine 

learning capabilities. 

5.2.4 Task management and plans 

The purpose of the Task management modules, together with Plans and Beliefs, is to 

control the operation of underlying data-processing modules. These controlling 

modules realise the flexible and rational operation of an agent on the basis of user 

configuration. In our approach the task management is operated according to the BDI 

agent model (Rao and Georgeff 1995), in which the interpreter performs the 

monitoring operations described in Plans. These modules control agent operation and 

take into account the current situation in the process and available data. Task 

management can run other modules in parallel.  

 

In Plans the user has configured the way in which the operations provided by the 

underlying modules (Data access and combination, Creation of symbolic data, and 

Making inferences) are used in combination to reach the set objective. Within every 

plan the restrictions of this plan should also be defined, and possibly some description 

of the quality of the actions it takes and outcomes it produces. If there are multiple 

plans that may be used to reach the same objectives, the system should have a means 

for selecting the most appropriate one, e.g. in terms of the time used and the accuracy 

of the processing. More comprehensive discussion about using goals for information-

processing in process automation environments may be found in Pirttioja et al. (2004) 

and Pirttioja et al. (2005). 

5.2.5 User interaction 

The User interaction layer aims to provide the user with a means to control and 

supervise the operation of the whole agent system. The user interacts mainly with the 

most abstract information-processing layers, setting the overall goals in the Task 

management layer and clarifying issues available in the Making inferences layer. But 

if and when it is necessary, there is no restriction in the agent design on also accessing 

data from the lower-level layers. In practice, the user interaction is built with task-

oriented (graphical) user interfaces that are each built especially for the function at 

hand. The conducted experiments 1 and 2 (Chapter 6) give examples of how the user 

interaction might be realised in practice with the agent system. 

 

In the first experiment, Temporal monitoring with constraints, the user interaction is 

dialogue-based. There the user first configures the monitoring task with a window 

designed for that purpose. Then the system performs the monitoring task silently from 

the user point of view, but the user is able to cancel the monitoring if needed, just by 

referring to the name of the monitoring task that was given to it when it started.  

When the monitoring functionality detects something that needs to be notified to the 

user, then a pop-up message appears showing the monitoring task name, the 

monitoring definition, and the actual values of the measurements that broke the 

conditions. In this case the user is provided with data directly from the lowest level of 

the architecture, because the information is relevant for the user when making 

decisions. But the data are shown to the user only when they contain the values that 

are of interest to the user. 
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In the second experiment, Search of process events, the system tries to offer a similar 

look-and-feel to the user to that provided by an ordinary web search engine. First, the 

user is provided with an interface used to set the search parameters, and the 

information shown to the user is based on the general, and practically static, 

knowledge about the current setup at the production site, such as process areas, device 

types, and available data types. During the actual search process the user is not able to 

control the operation. When the information being searched for is found the resulting 

data structure content is shown to the user with a graphical interface built for this 

specific case. In this case the user interface represents data that are stored in external 

databases without modifying them but the search process has filtered the items so that 

the user sees only the items that have interesting relations (user-specified) with other 

data items.  

5.3 Summary of the functionalities 

The objective of the presented modularised and layered internal design of agents is to 

give guidelines for the designer and thus ease the realisation and implementation of 

the desired functions. Table 4 summarises how the functional layers support the 

desired system properties that were set in Chapter 4.2. The table does not show User 

interaction as an individual layer, because it is seen as an external function regarding 

the actual information processing. 
 

Table 4 – Summary of functional layers and their relation to desired system properties (the mark 

X indicating that the layer supports the property at least partly). 
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Task management  X X  X  

Making inferences  X  X X X 

Creation of symbolic data    X X 

Data access and combination   X  X 

 

Task management and plans contribute to the desired properties in terms of providing 

flexibility and delegation, because with goal-based operation it is possible to construct 

both of these. Furthermore, knowledge handling is supported by the task management 

module as it controls what data-processing modules are used for each task. Making 

inferences naturally supports the knowledge-handling and data-processing properties. 

Furthermore, the inference modules provide aid in gaining flexibility and help in 

system integration because it can be used as an adapter, resulting in unified results 

from various inputs. The creation of a symbolic data module mainly contributes to the 

knowledge-handling and data-processing properties. As the data access and 

combination modules operate as drivers used to connect external systems, these 

modules are seen as supporting the integration property and also contributing to the 

data-processing properties. 
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5.4 Realised system for experiments 

For the demonstration experiments discussed in the next chapter, an implementation 

capable of realising the specified architectural and layered agent designs was made. 

The system was constructed as a combination of multiple purpose-selected Java-based 

software components. The programs were mainly open source and free for research 

purposes. The connection of the software components was made with Java. Figure 13 

illustrates the software tools used and their relations. The implementation was not 

suitable as such for use in industrial settings, at least not 24/7/365, but enabled us to 

perform experiments with real industrial data. 

 

 
Figure 13 – Software tools used and demonstration system structure for experiments. 

 

All the functionalities were built round the agent platform, which was selected to be 

Jadex in our experiments. Jadex is a general-purpose Java-based agent framework that 

naturally supports the use of the BDI model, and at the time of this research it seemed 

to be the most advanced BDI agent platform available as open source. The framework 

offers a relatively easy XML-based declarative configuration of agent functionality, 

and of course direct support for agent message sending and negotiations. More 

information about the Jadex agent framework can be found in Jadex (2008). 

 

In addition to the agent framework, the system had multiple software modules with 

more focused purposes. The Jena (2008) Semantic Web framework was used to 

handle ontology-based world models, which were used as a basis for agent knowledge 

(especially in Experiment 2). Jena supports the novel ontology language OWL (OWL 

2008) as an information format. The ARQ query engine for Jena was used for the 

searching and processing of ontology-based information (ARQ 2008). The ARQ 

engine supported the SPARQL language (SPARQL 2008) directly; this is similar to 

the SQL query language used with relational databases, and it was used in the 

experiments. 

 

Furthermore, a number of additional software tools were used, but these did not have 

such an important role as those mentioned earlier. As the OWL-S standard (OWL-S 

2008) was used for service description, the OWL-S API tool (OWL-S API 2008) was 

used in implementation. For the Experiment 2 web client interface, a Jadex Web-

bridge Add-on (Jadex Web-bridge 2008) was used for the easy development of web-

based access. Figure 13 also shows the Java ODBC bridge that was used to access the 

XLS files that contained the real data originating from industry that were used in the 

experiments.  
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6 Experiments illustrating the usefulness of agent 
design methods and developed architecture  

6.1 Introduction 

This chapter presents concrete examples of how flexible process monitoring 

functionalities may be designed with the Prometheus agent design methodology and 

using the specified agent architecture. The selection of the functionalities is based on 

the process automation user needs discussed in Chapters 2, 3, and 4. With these 

demonstration experiments the applicability of an agent-based design methodology 

and the architecture that was developed for constructing novel monitoring 

functionalities is evaluated and validated. The aim is to gain understanding about the 

feasibility of the methodology and architecture, not to specify exact blueprints about 

how the demonstrated functionalities should be realised. The experiments are related 

to the monitoring of measurement data, searching for process-related data, and the 

creation of symbolic data from measurements. The experiments are presented on a 

level of detail that shows relevant aspects related to the use of an agent-based design 

methodology and to provide a basis for discussion about architectural design.  

 

In this thesis the experiments presented are: 

 Experiment 1: Temporal monitoring with constraints – user-configurable 

monitoring of process automation measurements and their relations.  

 Experiment 2: Process event search – searching for event-type data entries 

and combining these with related time series data. 

 Experiment 3: Change point occurrence monitoring – monitoring change 

point activity on a user-defined group of measurements. 

 Experiment 4: Change point pattern monitoring – observing user-specified 

change point patterns on-line from measurements. 

 

With each experiment the design of the agents and the functionality itself is presented 

with a discussion of how well the methodology used suits this particular problem. 

With the first two experiments (1 and 2) a concrete implementation was made and the 

functionality of the experiments was tested with data gathered from real industrial 

processes. The latter two experiments (3 and 4) were designed and the discussion is 

based on this design phase, as there were no suitable data available for testing 

purposes. 
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Table 5 collates the descriptions, objectives, and properties of the experiments. As can 

be seen from the table, the four experiments cover the handling of information-

processing tasks from different perspectives, and therefore provide a basis for a 

broader assessment of the agent-based approach. Furthermore, at the end of this 

chapter a concluding discussion is presented and the general applicability of the 

approach is summarised. 

6.2 Design of experiments  

With each experiment the agent design is presented. This provides a basis for the 

operational activity of the experiments and it also gives guidelines for partitioning 

functionalities into distinct elements. This part provides definitions and the 

responsibilities of agents, sequences of actions, and a description of the agent 

interaction protocols that were designed. The agent design is based on the Prometheus 

methodology, introduced in Chapter 3.2.4. However, the author has exploited the 

freedom of using only those parts of the methodology that are most suitable for 

designing the structural aspects of the monitoring system. With Prometheus these are 

the System specification phase, covering the initial development issues, and the 

Architectural design phase, used to define the general agent system architecture. The 

Detailed design phase was not used in the design of the experiments, because it does 

not cover structural issues and it is more closely related to implementation techniques. 

Furthermore, the developed agent architecture discussed in Chapter 4 and Chapter 5 is 

used as a basis for the design and implementation, and it provides a skeleton on the 

basis of which the operations of experiments are implemented. 

 

In addition to the agent design part, every experiment provides discussion about 

issues related to decision-making. This part of the design varies between the 

experiments, depending on what functionalities the system aims to provide for the 

user. Furthermore, each of the experiments was developed, designed, and constructed 

for an individual and specific purpose and they have their motivation in industrial 

settings. In Table 5 below, the properties of each experiment are collected together. 

The mode support column refers to the work ―modes‖ classification proposed by 

Paunonen (1997), discussed in Chapter 2.1. The column also shows if the 

functionality of the experiments supports on-line or off-line monitoring. 
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Table 5 - Collection of descriptions, objectives, and properties of the experiments. 

Experiment name 
and description 

Objectives and 
problems 

Solution and properties Mode* support and 
monitoring type 

Experiment 1 
Temporal 
monitoring 
 
User-defined timely 
restricted 
monitoring of 
process values 
representing good 
process state  

Operators’ interest is in 
the relative values of 
process quantities. Value 
changes may occur all 
around the system. 
Maintenance effort is 
minimised, as the 
functionality needs only a 
list of quantities and 
constraints related to 
them to be configured. 

Distribute the monitoring, 
use agent negotiations to 
make monitoring 
agreements, monitor on 
the lowest possible level, 
and use the directory 
service to find monitoring 
service providers. 
 
Functionality does not 
need maintenance, and 
is possibly scalable? 

The functionality is 
motivated by the 
performing predefined 
tasks (M2) mode, but is 
also usable for 
monitoring (M1) 
purposes. Usability in 
controlling disturbance 
(M3) mode is open. 
 
The experiment realises 
on-line monitoring. 

Experiment 2 
Process event 
search 
 
Search of related 
process events 

User is interested in data 
that are available in 
separate data sources 
and in mixed syntaxes 
and formats. The 
viewpoint on the data 
stored in these sources 
also varies. Supervising 
user is interested in 
connections/links. 

Use common base 
vocabulary and process 
model. Searching agent 
has description of data 
sources, and local data 
source adapts the data to 
a common format. 
 
Extendable, as user 
defines the search. 

The functionality is 
motivated by the 
controlling disturbances 
(M3) mode and is 
usable when performing 
predefined tasks (M2). 
Usability for normal 
monitoring purposes 
(M1) is open. 
 
The experiment realises 
off-line monitoring. 

Experiment 3 
Change point** 
occurrence 
monitoring 
 
Process activity 
monitoring based 
on amount of 
changes visible in a 
user-defined group 
of measurements 

User needs to be notified 
about amount of changes 
in a defined set of 
process measurements.  
 
Observe change point 
events from raw 
measurements. 
User specifies the list of 
monitored 
measurements, and 
system should monitor 
occurrence of change 
point events in this group. 

Symbolic change point 
events are generated 
from measured numerical 
data on the lowest 
possible level, event 
notifications are 
subscripted, and 
monitoring manager 
monitors the occurrence. 
 
User defines the group of 
measurements and 
notification level; no 
maintenance is needed 
as operation is based on 
user configuration. 

The functionality is 
motivated by normal 
monitoring (M1) mode. 
Usability in performing 
predefined tasks (M2) 
and controlling 
disturbances (M3) 
modes are open. 
 
The experiment realises 
on-line monitoring. 

Experiment 4 
Change point** 
pattern monitoring 
 
Process event 
monitoring based 
on user-defined 
activity pattern 
monitoring 
 

User is interested in 
change point pattern 
monitoring, and the 
system should notify if 
the defined pattern has 
occurred in the system.  
 
Observe change point 
events on the basis of 
raw measurements. 
User specifies the 
monitored measurements 
and interest in event 
patterns related to these.  

Symbolic change point 
events are generated 
from numerical 
measurement data on the 
lowest possible level, 
event notifications are 
subscribed, and manager 
monitors the pattern 
formation. 
 
User defines monitored 
patterns and 
measurement so no 
maintenance is needed. 

The functionality is 
motivated by normal 
monitoring (M1) and is 
also usable when 
performing predefined 
tasks (M2). Usability for 
controlling disturbances 
(M3) mode is open. 
 
The experiment realises 
on-line monitoring. 

*The modes are the following and the classification is based on Paunonen (1997): 
M1: monitoring, M2: performing predefined tasks, and  
M3: controlling disturbances (e.g. abnormal situations). 
 
** The concept of Change Point (CP) is explained further in Chapter 6.5.3. 
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The subsequent chapters present the design for each experiment in the following 

overall and general structure. The Introduction represents the motivation and general 

background for the illustrated experiment. It also presents an example use case 

scenario describing how the functionality of the experiment could be used in a real 

process-related situation. The agent design shows relevant design artefacts based on 

the Prometheus methodology (discussed in Chapter 3.2.4). System specification: First, 

Prometheus is used to define the agent system goals, functionalities, and actions. 

Selections and naming in this phase are based on general background knowledge and 

the definition of the experiment. Then the methodology is used to outline the example 

given of a use case operation in a form of scenario, demonstrating the sequential 

relations between functionalities. In addition, percepts, actions and data is specified. 

Architectural design: In the next phase the generic agent roles, defined in the agent 

system architecture phase (Chapter 4.4), are used as guidelines for the clustering of 

functionalities to agents and to define agent descriptions. Finally, details of suitable 

interaction protocols for the functionality of the experiment are specified. The system 

overview diagram specified by Prometheus is not presented because issues related to 

definition of agent system boundaries were discussed in the architectural design 

(Chapters 4 and 5) and it does not present new aspects of agent design. Experiment 1 

describes the use of Prometheus methodology more extensively, e.g. it shows how the 

methodology guides making of design decisions. The represented agent designs in 

experiments 2, 3 and 4 are more straightforward, concentrating on illustrating the final 

deliverables of each design phase.  

 

The content of the functionality design part varies between experiments and it 

presents the methodologies used and tools that implement the decision-making. Then, 

for the first two experiments, the implementation part represents key issues related to 

implementation and shows the graphs and user interfaces that were designed for the 

experiment. The actual implementation of the system was based on the Jadex agent 

framework, as illustrated in Chapter 5.4. Then finally, at the end of every experiment 

the discussion summarises the results of the experiment, gives feedback on the 

architectural design, and also discusses the industrial potential of the functionality. 

6.3 Experiment 1 - Temporal monitoring with constraints 

6.3.1 Introduction 

The main motivation for this experiment is a situation in which the process operator 

needs assurance that certain process values stay relatively to each other within 

specified limits. Typically, this kind of monitoring is needed temporally when 

performing predefined tasks, for example in the process start-up phase or a grade 

change situation. The temporal nature of these tasks is the reason for the name of this 

experiment. The design here focuses on the use case of a predefined task because in 

these situations the operator has much to do and monitoring help seems to be needed. 

Typically, the monitoring for these situations is relatively easy to configure, for 

example with describing the relations and limits for a couple of process quantities.  
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Example use case for the functionality: 

A rule of thumb in a certain process industry site tells us that the operator should 

check that in a particular process area the current dose of chemical 1 is more than 

that of chemical 2. This simple check shows that the process is relatively OK, 

although there is no direct control loop connection between these two. Therefore, the 

operator wants to be able to set up a check (possibly more than one) that results in a 

notification if the specified relation is not valid. 

  

In this experiment, it was decided to use formalism taken from constraint satisfaction 

problems (CSP) in the monitoring task definition. In short, CSP consists of a set of 

variables with restricted value domains and a set of specified constraints which the 

values of these variables must satisfy. Then value ranges satisfying the constraints are 

searched for with different types of search procedures. In this experiment, the 

operation is the opposite. Here, the constraints are used by the user to describe the 

normally-behaving process, as far as the selected and monitored variables are 

concerned. A user-centric approach in parameter setting was selected for this 

experiment, because a lot of knowledge about predefined tasks is said to be possessed 

just by the operators (Paunonen 1997). When monitoring, the system checks that the 

defined constraints are still valid every time a new measured value is available. 

Inference-making based on the numerical values of process quantities using CSP is 

discussed more thoroughly in Seilonen et al. (2006) 

6.3.2 Agent design for temporal monitoring 

The system specification design of the temporal monitoring experiment is started by 

defining the system goals. On the basis of the background idea and the described 

example use case it can be seen that the configuring, monitoring, and reporting 

functionalities are the functionalities needed in this experiment. First, the system is 

configured by the user with the defining constraints, and then the agent-based system 

performs the monitoring task autonomously and finally, when needed, the broken 

constraints are reported to the user. By naming and further refining these 

functionalities we get the following system goals. 

 

System goals:  

 CSP configuring – User defines monitoring functionality with CSP formalism, 

defining measurements, their values and relational constraints. 

 CSP monitoring – Let peers always check constraint validity when new 

measurement data are available. Use the CSP engine to distribute the 

monitoring to peers on the lowest possible level where all the necessary data 

are available. 

 Reporting – Report broken constraints to user. 

 

Next, these system goals are broken down into functionalities. Figure 14 shows the 

actions and goals and how these relate to the functionalities in this experiment. In 

CSP configuring the goal is to Define monitoring task with CSP and the related action 

is Activate CSP monitoring. This functionality is triggered by the user. In the CSP 

monitoring functionality the triggering event is the new measurement value that has 

been detected and the related action occurs when one or more of the constraints have 

been broken. The constraint consistency is related to the checking of one constraint 

whose values are directly accessible, and CSP consistency refers to a set of individual 

constraints, where values are queried from numerous agents.  



66 

 

Furthermore, the Reporting functionality is responsible for notifying the user with a 

report about a broken constraint. The selection of actions, goals, and their names is 

based on the system goals presented above. 

 

 
Figure 14 – Temporal monitoring functionalities with Prometheus notation. 

 

The next step in the development is scenarios that describe how the goals and actions 

are linked together as a sequence. These sequences show the normal operation of the 

scenario, and they can reveal if an important part of the whole functionality is 

missing. Below is the Temporal monitoring scenario, which presents the normal 

operating sequence for this experiment, in which the user activates the monitoring 

task, and the set constraint validity is monitored until broken constraints are reported 

to the user. This sequence results in a functionality that is the one described in the use 

case of this experiment. 

 

Outline specification of Temporal monitoring scenario: 

1. GOAL: Define monitoring task with CSP  

2. ACTION: Activate CSP monitoring 

3. GOAL: Monitor constraint consistence 

4. OTHER: Wait for measured values to change and break constraint 

5. PERCEPT: new value in monitored measurement 

6. OTHER: Check constraint validity 

7. ACTION: Notify about broken constraints 

8. GOAL: Monitor CSP consistency 

9. OTHER: Check CSP validity 

10. ACTION: Notify about broken constraints 

11. GOAL: Report broken constraints to user 

12. ACTION: Notify user 

 

For OTHER type steps, see discussion in Chapters 6.3.3 and 6.3.4.  
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The next stage in the design of experiment is that the interaction of the system with 

the environment is covered. Perception in this experiment interfaces with the system 

in two sets of circumstances. First, when the user is defining the monitoring task and 

thus requiring the system to start monitoring, this should start the above-defined 

sequence. The user‘s deactivation of the monitoring should also be handled. These 

relate to the user activity percept, which is the triggering event for the whole 

experiment. The processing of user actions is the responsibility of the user interaction 

module, discussed in Chapter 5.2.5. Second, when processing the actual monitoring 

task, the system is responsible for always making a new inference when a new value 

is available in the monitored process measurements. In other words, the new value 

percept activates constraint consistency checking in the CSP monitoring functionality. 

 

Internally, the system uses a number of actions to partition the operation, as may be 

seen in the scenario above. However, user notification is the only action that is seen 

from the outside, and the other actions can be seen as services requests used internally 

between the modules. The data produced by the functionalities, transferred between 

them, and also used internally by the functionalities is an important part of the system. 

In this experiment the following clusters of information can be identified:  

 

 CSP – contains user-configured CSP constraints that define the monitoring 

task. The CSP formalism used is discussed in the next subsection.  

 Measurements – contains process measurement data in time series format. 

These may be read from the underlying automation system with a special 

interface (e.g. OPC) or may be fetched from some dedicated process database. 

 Broken CSP reports – contains records of broken CSP constraints. These 

reports are shown to the user with a suitable user interface. 

 

After the system functionalities, sequences, and interfacing are defined the 

architectural design is started with grouping these elements to form agents. In 

Prometheus these groups are called agent types and they are a major part of 

architectural design.  The grouping is done in iterative fashion, considering 

alternatives, and the final version of this design phase is shown in Figure 15. When 

selecting how to group functionalities to agents there are no right or wrong answers, 

but low cohesion and high coupling are objectives of clustering. Generally good 

guidelines are that agents‘ functionalities seem to relate, agent type ―makes sense‖, 

and the defined agent can be described with a couple of sentences. Especially useful is 

to try to find a suitable name for an agent that intuitively holds the respective 

functionalities together. Also if two or more functionalities use same data extensively, 

then it is practical to group these together so that less communication between agents 

is required. (Padgham and Winikoff 2004). Generic agent roles presented in 

architectural design (Chapter 4.4) are used to guide the clustering. 
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Figure 15 - Grouping of functionalities in temporal monitoring experiment using notation from 

Prometheus. The clusters are named the Configuring agent (1), Monitoring agent (2), and 

Reporting agent (3). 

In temporal monitoring the clusters of functionalities are defined as follows: 

 Configuring agent: The first cluster (1) holds the CSP configuration 

functionality used by the user to set up the monitoring task by defining it into 

the CSP configuration data store. Typically, there is one agent of this type per 

user. This agent is based on the Client agent architectural role. 

 Monitoring agent: The second cluster (2) holds the CSP monitoring 

functionality. This operation has to be active for the system to be able to 

observe changes in data. This functionality gets its initialisation from the CSP 

configuration data store. The number of these agents is not restricted, and it 

depends on the number of observed measurements and the hierarchical 

configuration of the monitored measurements within the physical process. The 

clustering of these agents is based on the Information agent and Process agent 

architectural role definitions. 

 Reporting agent: The reporting cluster (3) involves the Reporting 

functionality, which is responsible for reporting the broken CSP constraints to 

the end user. Typically, there is one agent of this type per user. This agent 

realises the Client Agent role from the architectural role definitions. 

When looking at the clustering of elements more closely, the question of merging 

Clusters 1 and 3 together may arise. These agents are kept separate in this design 

because their operational activity levels differ and they use different data. The 

configuring agent may provide a rather advanced user interface to help the user in the 

task definition phase, e.g. possibly detailed data models of the whole process are used. 

On the other hand, the reporting interface may be only a simple pop-up showing the 

broken constraints. Leaving the reporting agent separate and as simple as possible 

gives the opportunity to vary the reporting method, e.g. email and short message 

notifications could easily be used. Integration to the current control room alarming 

functionality may also be performed. 
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Specifying interactions: Interaction protocols capture the dynamic aspects of the 

system. First interaction diagrams are developed based on the described use case, 

outlined scenarios and specified agent descriptions, by replacing each functionality in 

the scenario with a responsible agent and further inserting communication between 

agents where it is needed. Then these diagrams are generalised to interaction 

protocols, e.g. as is shown in the following two figures below.  In the temporal 

monitoring scenario the interaction protocol is divided into two natural parts, and 

Figure 16 illustrates the initialisation part, which is performed at the beginning of the 

performance of every monitoring task. The initialisation protocol shows how the 

initial values are first obtained from the responsible monitoring agents and then 

reports on broken constraints are requested from these agents. 

 

Figure 16 – Temporal monitoring initialisation interaction protocol using Prometheus notation. 

 

Figure 17 shows the temporal monitoring interaction protocol. This illustrates the fact 

that the initialisation phase is performed once, directly after the user has requested the 

temporal monitoring of values. This is the part of the interaction that is responsible for 

the actual monitoring functionality. There the monitoring agent receives broken 

constraint reports every once in a while and then checks if the constraint situation is 

still satisfactory. If not, then the user is reported. This operation is repeated until the 

user deactivates the whole CSP monitoring task. 
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Figure 17 – Temporal monitoring interaction protocol using Prometheus notation. 

 

The presented interaction protocols illustrate how agent communication is used to 

produce the normal operation of the temporal monitoring experiment defined by the 

example use case. 

 

The illustrated agent design demonstrates the use of the Prometheus methodology to 

define the structural skeleton for the temporal monitoring system. In temporal 

monitoring the role of agent design is strong because the monitoring activity is mostly 

handled by the agent system. The actual decision-making, based on checking the 

consistency of constraints, is clearly visible in the interaction protocols and also in the 

clustered agents. The benefit of using agent interactions is that it naturally delegates 

and distributes the monitoring operation and thus contributes to the adaptation to 

dynamically changing situations.  

 



71 

 

6.3.3 Constraints for process condition monitoring 

In this experiment constraints were used as a method to model user-originated 

monitoring logic and express it to monitoring agents. The user describes the desired 

behaviour of the process with constraints, and the fulfilment of the defined constraints 

is monitored by the agent system, as was shown in the previous chapter. The principle 

of using constraints in process monitoring described in this chapter was presented 

originally, and in more generic form, by Seilonen et al. (2006). 

 

The introduction for this experiment stated that the user is interested in finding out if 

the current process situation and respective values are in conflict with the user‘s 

knowledge about what those values should be when everything in the process is OK. 

To be able to use constraint satisfaction problem (CSP) formalism for monitoring 

purposes, suitable constraint templates describing the relationships between 

measurements needed to be selected. In this experiment the constraint templates used 

were Binary and Unary constraints, and the whole monitoring task was configured by 

defining a set of these constraints with a logical and-operator between them.  

 

The Binary constraint is in the form <VAR1 (operator) VAR2 (comparison) value>. In 

our model for binary constraint the operator may be one of the following (‗+‘, ‗-‗, ‘*‘, 

and ‗/‘), and the comparison is either greater or less than. Here the VARs refer to some 

specific physical measurements and the value is some defined arbitrary numerical 

value. The Unary constraint template is simpler and it is a form of <VAR 

(comparison) value>. Table 6 and Table 7 show both constraint templates with 

practical examples. The constraint model is known to be limited and extending it is a 

possible part of future development. 

 
Table 6 – Binary constraint template and respective examples. 

 Constraint Example usage 

Template VAR (operator) VAR (comparison) 
VALUE 

 

Example1 Pump1Speed + Pump2speed > 10 Two pumps are outputting to the 
same tank and the total input value 
should be at least something 

Example2 Consistency * Pump2Speed > 120 Mass flow should be over the limit 
Example3 Pump1Speed / Pump2Speed > 1 The speed of Pump1 should be 

more than the speed of Pump2 

 

The Binary constraint gives the user a flexible way of defining various process-related 

constraints. The Unary constraint is practically identical to the alarm functionality 

within present process automation systems, and does not as such offer any additional 

functionalities to the user. However, offering both types of constraints gives the user 

flexibility in defining the whole monitoring task. 

  
Table 7 – Unary constraint template and an example. 

 Constraint Example usage 

Template VAR (comparison) VALUE  

Example1 Temperature < 70 The temperature should be less than 70  

 

The CSP data structure referred to in the agent interaction protocols (Figure 16 and 

Figure 17) contains a set of user-defined Binary and Unary constraint templates 

explained above. 
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6.3.4 Implementation and tests 

The motivation for the Temporal monitoring functionality had its background in an 

industrial need. The test scenario concerns the pH control in the bleaching of 

mechanical pulp in a paper mill. This is one of the key process variables operating in 

hostile conditions – exposure to vibrations, corrosive chemicals, and wide temperature 

variations – which makes the measurements vulnerable and subject to malfunctions. 

Therefore, the additional monitoring was to be developed to aid operators in being 

notified about potential problems in pH measurements. To demonstrate the 

functionality of the experiments to non-researchers an implementation of the system 

was developed in the PROAGE project. The software tools used and the structure of 

the system that was used in this experiment were presented in Chapter 5.4. The 

demonstration itself was constructed as a standalone system that worked with offline 

data. The data were samples from a real production plant imported to the system by 

means of XLS files.  

 

The user interface (see Figure 18) was designed to be an add-on to current control 

room displays, and not to be a standalone and whole new application. The interaction 

of the tool was based on the idea that the operator could drag and drop items from the 

picture to the monitoring user interface. This setup was simulated with screenshots 

taken from a real production environment and by realising operational hotspots to 

these pictures the user could drag the items to be monitored by the tool. The 

monitoring tool window was started from a separate pop-up menu. After the variables 

had been dragged to their place in the monitoring configuration window, the operator 

had to define the operator, comparison, and compared values to each constraint 

template. 

 

 
Figure 18 – Screenshots from the demonstration user interface for setting up the temporal 

monitoring task with binary and unary constraints. 

 

After finalising the monitoring setup definition, the user names the task and sends it. 

In the demonstration system there was no direct method to see what was happening 

when the monitoring was running, but the debugging tools offered by the Jadex 

framework could be used if needed. With these tools the user was able to see what 

messages agents were sending to each other and it also gave the opportunity to trace 

how the constraint variables values changed over time. The demonstration user 

interface for reporting was just a message box showing the broken constraints with 

the values that broke them. 

 



73 

 

6.3.5 Discussion 

Using the Prometheus design formalism and specified agent architecture presented 

above seems to support the construction of temporal monitoring functionalities with 

CSP formalism. Distributing constraint checking to multiple agents using agent 

negotiations was straightforward, as agent communication standards provide suitable 

protocols for distribution. Agent negotiation provides a natural way to construct an 

operation that adapts and responds to dynamically changing process situations and the 

respective value changes. However, the Prometheus does not address the issue of how 

to select a suitable FIPA standardised interaction protocol for the task, as it focuses on 

describing suitable communication from functional perspectives. This more abstract 

level of defining communication is appropriate for the application domain specialist 

that does not have an agent technology background. However, within the conducted 

implementation and tests the fipa-subscribe (FIPA 2002) was found to be well suited.  

 

Basically the idea behind this experiment is to generate a user configurable and 

extended version of alarm functionality provided by current process control systems. 

Based on the work done in the experiment it can be stated that many process-related 

monitoring tasks can be defined using CSP formalism. Using CSP as a basis for 

monitoring makes the execution engine extendable, but CSP formalism is not 

something that a process operator naturally understands and can utilise directly. 

Although UI aspects were not studied in this research, it may be stated that a more 

user-friendly input methodology should be provided if CSP is to be used in industrial 

settings. The real feasibility of this kind of end user focused functionality is strongly 

influenced by usability issues, so further study should focus on e.g. studying user 

activity in a larger number of use cases within real industrial settings. 

 

The temporal monitoring functionality was primarily designed for situations in which 

predefined tasks are performed and the supervising users need tool support for gaining 

information about significant changes in the process. However, the temporal 

monitoring tool could also be used in a normal monitoring situation as well, for 

example as a more flexible way to configure alarm functions or, in scheduled runs, to 

check that the relations between the most important process values are as wanted. 

Temporal monitoring may also be used when dealing with disturbances, e.g. noticing 

a disturbance from known symptoms and preventing the disturbance from occurring 

again. The continuous development may also benefit when an alert on any interesting 

special process situations may be obtained and possibly complex value combinations 

may be monitored. 

 

This experiment was the first that was designed and implemented so it dealt mostly 

with agent negotiations and interaction protocols. However, the functionality of this 

experiment would probably be rather easy to add to current systems as the user 

provides all the definitions for decision-making and thus the monitoring would not 

need additional configuration work in the form of process models and deduction rules. 

Although the presented approach offers extended functionality compared to currently 

available alarm solutions, the real applicability and benefits of the solution presented 

here depend on the industrial settings. As measurements are typically stored to one 

centralised database there is no reason to distribute the monitoring either. However, if 

in the future field devices, distributed IO equipment, and process stations provide for 

added functionalities to be implemented in those, then the agent approach presented 

here seems to be reasonable.  
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6.4 Experiment 2 - Search of process events 

6.4.1 Introduction 

This experiment has its motivation in the situation where an operator is accessing 

stored history data and trying to find interesting bits and pieces of information. 

Typically, this happens when the user is trying to control disturbances and searching 

for possible symptoms from the stored data. Within sites important process-related 

information is stored in separate databases with mixed presentation formats, and most 

of the time any connection between past process events and measurement time series 

is not easily evident. What is also challenging is that there is an inconsistency in 

viewpoints about how a certain process element is shown, how it is stored, and what 

data are linked to each element. For example, for the maintenance personnel a process 

device is a physical object with mechanical properties, but for the operator that same 

device is important from the functional perspective.  

 

Example use case for the functionality: 

Quite often a user wants to find out what has happened in the past in a certain 

process area, e.g. what happened in the previous 8-hour shift in the area that the 

operator is responsible for. Typically, the operator starts the shift by going through 

information that is stored in a variety of data sources to find out out-of-the-ordinary 

events that might influence the way process operates. As most external data sources 

use mixed naming practices, varying data presentation formats, and separate user 

interfaces, the user needs to go through them one by one. A unifying system that 

operates more automatically and gathers important events together and finds 

relations between events would help the user to generate a general view of the 

situation. 

 

Differences in viewpoint influence the user interface and this, for example, makes 

searching for interesting relations between process events laborious. For the 

supervising user the interest is typically in some process area that is decomposed 

spatially or functionally and the elements that are related to it. Therefore, one purpose 

of this experiment was to produce a system that would provide the user with one 

summarising interface to search for and view ―all‖ the information that is related to a 

specified process element. The basic idea is to use the speed and accuracy provided 

by IT to go through information stored in separate data stores and delegate the 

combination work to the system. Technically, this experiment uses Semantic Web 

tools to link elements in various data sources and a more thorough discussion about 

these aspects can be found in Pakonen et al. (2007). The following section focuses on 

illustrating how agent design methodology can be used to develop this kind of 

functionality. 

6.4.2 Agent design for search functionality 

The design of search of process events starts by defining the system goals on the basis 

of the introduction and example use case. For this experiment the initial system goals 

are search definition, searching, and result viewing. First, the search is activated by 

the user by defining the search parameters. Then the system searches for the specified 

information from various data sources and combines the result, which is finally shown 

to the user. By naming and further refining these we get the following system goals: 
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System Goals:  

 Search definition – User defines search parameters with a suitable interface 

that has some knowledge about the underlying process setup and capabilities 

of the available data sources. 

 Search decomposition – As data are stored in various data sources, the search 

needs to be decomposed into parts that the respective data sources are able to 

answer. 

 Searching – Matching sub-results are searched for in individual data sources. 

 Result combining – Combine overall result on the basis of partial sub-results 

using formal data models that describe how an element in one data source sub-

result relates to elements described in other sub-results. 

 Result viewing – Search results are presented to user. 

 

Next, these system goals are broken down into functionalities and activities. Figure 19 

shows how the actions and goals are related to the respective functionalities in this 

experiment. The functionalities that are visible to the user are Search definition, 

responsible for activating the whole search operation, and Result viewing, responsible 

for showing the results to the user. The actual search operation consists of the Search 

decomposition, Searching, and Result combination functionalities, which organise the 

search operation. Search decomposition is divided into a part that is responsible for 

searching through currently active and available data sources from the system and a 

part that decomposes the search into partial search definitions. The Searching 

functionality searches for data from data sources and the respective action delivers the 

sub-results. The Result combination combines sub-results and sends them to be shown 

to the user. 

 
Figure 19 – Search of process event functionalities using notation from Prometheus. 

 

The next progress step is scenario development, which describes how the goals and 

actions are linked together in the form of a sequence. Below is the Search for process 

events scenario, which presents the normal operating sequence for this experiment in 

which the user defines the search, the system finds relevant data from various sources 

using a network of information-providing elements, and then the system merges the 

partial results into a combined final search result. The presented scenario is activated 

by the user. This scenario illustrates system operation that responds to the example 

use case described in the introduction to the experiment. 
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Outline specification of Search of process events scenario: 

1. GOAL: Configure search parameters 

2. ACTION: Activate search 

3. GOAL: Find available data sources 

4. OTHER: Use service descriptions to find responsible agents  

5. GOAL: Decompose search 

6. OTHER: Use models to partition the query 

7. ACTION: Run decomposed searches 

8. GOAL: Search for requested data from data source 

9. OTHER: Format sub results to common format 

10. ACTION: Provide sub-search results 

11. GOAL: Combine search results 

12. OTHER: Use data models to link individual events 

13. ACTION: Report search results 

14. GOAL: Show search results to user 

15. ACTION: Show to user 

 

For steps with OTHER type specified see discussion in Chapters 6.4.3 and 6.4.4. Next 

in the design of experiment, the interface descriptions are presented. As this 

experiment is activated by the user and then the system performs the search 

autonomously, there are no other percepts than observing the first user activity that 

triggers the whole operation. Internally, the system uses a number of actions to 

partition the operation, but showing the results to the user is the only one that is 

visible outside the system. Furthermore, in this experiment the following data stores 

are used to exchange information between agents and their functionalities:  

 

 Search – contains user-defined search. The search and its parameters refer to 

available process ontologies. 

 Process model – contains instance types of information about process elements 

and their relations in the particular process. The properties of the process 

model are discussed in the next section (Chapter 6.4.3). Basically, the process 

model should be general to the whole system and available to all players.  

 Sub-result – contains records of data that are the results of queries to 

individual data sources. 

 Search result – contains the overall search result that is shown to the user. 
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Specifying agent types: After the system functionalities, operational sequences, and 

environment interaction are defined it is possible to group these elements into 

meaningful agents, using the generic agent role definitions discussed in Chapter 4.4 as 

guidelines. Figure 20 illustrates the final version of this iterative grouping process.  

 

 
Figure 20 – Grouping of functionalities in search for process events experiment with Prometheus 

notation. The clusters are named Client agent (1), Search agent (2), and Database agent (3). 

In Search of process events the clusters of functionalities are defined as follows: 

 Client agent: The first cluster (1) groups the user interaction, which is 

partitioned into the Search definition and Result viewing functionalities. From 

these functionalities the Search definition is used by the user to produce 

Search data. Result viewing is responsible for presenting the Search result to 

the user. Process model is used to provide search options to the user and 

support the formatting of the results. These functionalities are event-based, 

and they are activated when the user defines the search and search results 

become available. In general, both these events are rather rare, and typically 

one agent per user is enough. This clustering uses the Client agent 

architectural role definition. 

 Search agent: The second cluster (2) involves search managing 

functionalities, namely the Search decomposition and Result combination 

functionalities. Search decomposition uses Process model and Search data and 

delegates searching to responsible parties. Result combination uses Process 

model data when constructing an overall search result. The number of this type 

of agents is not defined in advance, and it may change dynamically, depending 

on the search requests. This clustering is based on the Information agent and 

Wrapper agent architectural roles. 

 Database agent: The searching cluster (3) builds the searching functionality 

and handles one data source. This functionality answers queries that are 

related to a certain, possibly legacy, data source. The number of these agents 

depends on available data sources, as typically there should be one agent 

responsible for each data source. The architectural role of the Wrapper agent 

is used to guideline this agent. 
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In this experiment the user interface, acting as the input and output channel between 

the user and the system, is defined as being handled by one agent. This is mainly 

because it is best to realise the handling of complex data models once and in one 

place. The process model data are left outside the individual agents in the clustering 

because in the design of this experiment they are classified as global knowledge that 

is available and common to every participant operating in the system.  

The search functionality was partitioned into two different agent types. Wrappers 

(Database agents) were designed to handle the formatting of inconsistent data to a 

common and understandable format. This was seen to be a distinct operation from the 

actual search decomposition and fusing functionality, which was left to the Search 

agent.  

Specifying interactions: As the operation of a search experiment on the agent 

interaction level is rather simple, the Interaction protocol for process event searching 

is easy to construct. Figure 21 shows the Search of process events interaction protocol 

that was developed.   

 

Figure 21 - Search of process events interaction protocol using Prometheus notation. 

 

The illustrated interaction protocol realises the main use case scenario of the search 

functionality described in the introduction to the experiment.  

 

The agent design defines the structural skeleton for the operation behind this 

experiment. In Search of process events the benefits of agent design are more visible 

in system structuring than in defining operations with agent negotiations. This is 

partly because the search activity is heavily based on straightforward procedural 

operation, and the focus is on utilising Semantic Web tools to handle data modelling 

issues. Nevertheless, the use of systematic agent design assists in the partitioning of 

the operation. 
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6.4.3 Data models for information retrieval 

To be able to query and fetch data from multiple data sources requires every agent in 

the system to communicate with each other using a common, understandable, and 

agreed vocabulary. In a software system this vocabulary should also be machine-

processable and agreed at least between the agents which are exchanging information 

among one another. As was discussed in Chapter 3.4, this may be realised with 

software tools originating from the Semantic Web. In this experiment we decided to 

use a solution in which every entity in the system is responsible for providing 

information using a common vocabulary defined in a shared ontology, and 

furthermore data model introduced domain division was used in service coverage 

definitions. 

 

The concepts in the common ontology, called a plant ontology in this experiment, 

were selected to describe important process-related matters from the operators‘ 

viewpoint. The spatial relations of objects were found to be important, especially 

because process operators are typically responsible for some physically restricted part 

of the process. In this experiment the plant ontology is used in both cases, when 

searching for the stored data and also when the user is describing the query. In the 

query definition phase, the ontology is used to guideline the construction of the query 

in such a way that it is understandable and processable by the agent who receives it. 

The query decomposition was based on domain definitions, as each wrapper was 

responsible of a certain domain of knowledge. In the search phase, the plant ontology 

describes how things are related to each other, so that the search-processing agent 

may find relations from the partial answers that the Wrapper agents sent to it. Figure 

22 shows an example of how concepts from different viewpoints can be connected 

when physical domain knowledge is used. 

 

 
Figure 22 – A maintenance event described in the Maintenance domain may be linked to a 

certain Process variable described in the Functional domain when using object relations defined 

in the Physical domain ontology. (Pakonen et al. 2007).  
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In this experiment, the spatial relations of process automation concepts were utilised. 

It was decided that every Wrapper Agent would be responsible for providing extra 

information that described how their objects link to objects in the Physical domain. 

This idea seemed to have a rather intuitive background as things in process 

monitoring tend to happen somewhere in the process. For example, as may be seen 

above (Figure 22), if one agent provides information on how a maintenance event is 

connected to a process component and another expresses the connection of a process 

variable to a sensor, then the relation between the maintenance event and a certain 

process variable may be found. More thorough discussion about ontological aspects of 

the experiment 2 and architecture can be found in Jussila (2006) and Pakonen et al. 

(2007). 

6.4.4 Implementation and tests 

A working demonstrator for this experiment was developed in the PROAGE project 

and implementation was performed by the project team. A browser-based user 

interface was chosen as the method to communicate with the user and the look and 

feel were designed to resemble those of an ordinary web search engine as much as 

possible. The structure that was realised, connecting the web server and the agents, 

was shown in Chapter 5.4. As a result of the practical limitations of the research 

project, our setup of experiments used off-line data dumps obtained from a real 

industrial process. The dumps used contained information from the plant 

measurement history, maintenance database, laboratory database, and an electronic 

diary. 

 

The experiment use case starts when the user defines the search. Typically, the 

operator was thought to be interested in what events had occurred in the previous shift 

or in a longer time period. Another thing that the users were interested in was similar 

situations to the current one, trying to figure out how possibly to cope with the 

problem. Figure 23 shows the search user interface realised for demonstration 

purposes. It enabled the user to define the time span, process area, and event type that 

(s)he was interested in. The choices in the search parameterisation related to plant 

ontology and instance data that describe the particular process under consideration. 
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Figure 23 – User interface search definition in search of process events. Also visible in the 

“Define search” window is a process layout overview from the bleaching of mechanical pulp, 

which was the test environment for the experiment. 

 

After the user specified the search and activated it the web server generated and sent 

an agent a message containing the search. In the implementation the search was 

expressed with the SPARQL language, which is similar to the SQL language used to 

query data from relational data bases (SPARQL 2008), but it is designed to query data 

from ontological data stores. OWL-S (2008) was used by Wrapper agents for service 

description and as each data source was holding data from a certain domain the 

service description was selected to be defined base on these. In concrete software 

realisation OWL-S API (2008) was used as an engine to match sub searches and 

responsible agents. 

 

Then, after the agents have done their searches and the result has been combined, the 

outcome is shown to the user. Examples of these results are shown in Figure 24. The 

idea of the interface is to combine information retrieved from multiple sources in one 

combined user interface. In the result view the measured time series data were shown 

with the related event information. In this experiment these were maintenance events 

and diary entries. In addition, the laboratory measurements used for calibration 

purposes were also shown, when available, beside the time series data. 
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Figure 24 - User interface for results in search of process events. 

 

The implementation was in many aspects very simplified and built only for 

demonstration purposes. In the future, potential targets for development would assist 

the user in the search definition phase and facilitate flexible navigation through the 

results. Iteration between search definition and result viewing should also be made 

possible. 

6.4.5 Discussion 

In this experiment the functionalities were based mainly on operations on semantic 

plant models and ontology engineering. The agent design was straightforward and 

provided structural guidelines for modular system design, but the agent design did not 

solve the knowledge-related issues. This issue is visible in an outlined scenario where 

numerous OTHER type steps are defined. The search as a functionality is procedural 

and does not require the autonomy or flexible communications that agent technology 

provides. The experiment proved the potential of Semantic Web tools when 

integrating multiple data sources and searching for links between elements in those 

sources. Ontological aspects of data processing within this experiment are discussed 

more thoroughly in Jussila (2006) and Pakonen et al. (2007). 

 

This experiment provided users with a search tool for finding relations in process 

events and measurements. In general, the benefit of this type of functionality would 

be easier data access, which makes the examination of miscellaneous process history 

data reasonable even when specific problems are not being searched for. The main 

design focus in this experiment was to provide a tool to help operators to control 

disturbances. Nevertheless, searching for interesting phenomena from history data 

could also be a useful feature in normal monitoring mode and when performing 

preplanned tasks. With the developed tool a person could ―surf‖ history data and find 

interesting events and possibly find the relations that these may have. And if 

interesting relations are found, these could be used as the basis for building new 

monitoring functionalities. 
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6.5 Experiment 3 - Change point occurrence monitoring 

6.5.1 Introduction 

Typical industrial processes are designed in such a way that when they are operating 

normally the physical process quantities are relatively steady and the trend lines 

visible in the control room are practically straight. On the contrary, when the values of 

measurements and actuators are changing more than normally then this might be a 

result of a problem. Paunonen was thinking similarly in his research (1997: 75-76) 

when pondering the possibilities of detecting process ―fever‖ by ―change sum‖ 

calculation. In general, several value changes occurring simultaneously in multiple 

quantities may be related to an activity burst that may be the result of changes in input 

material or equipment malfunction. Sometimes these bursts of changes are the result 

of desired set point changes that have been made elsewhere in the production site, e.g. 

when performing grade change.  

 

Example use case for this experiment: 

The process operator has learned that normally the values of a set of process 

variables are stable. Therefore, the operator has defined a list of 20 process 

quantities, for example measurements and actuators that are situated in some 

physical area, and requested the system to provide notification if more than 10 

significant changes occur in a 30-minute time span. 

 

The focus in this experiment is on the normal on-line monitoring of industrial 

processes. This experiment describes the development of a monitoring system that the 

operator can use to delegate the process ―fever‖ monitoring. In this experiment this 

―fever‖ monitoring is based on the idea of monitoring Change Point (CP) events 

generated from measurement time series values. CPs are defined as time points at 

which the characteristics of process quantity change significantly, and these can be 

found from time series data with statistical tools (see the discussion in Chapter 3.5). 

Furthermore, the system is used to observe occurrence peaks in the amount of these 

events in a user-specified time window.  

6.5.2 Agent design for change point occurrence monitoring 

The design of change point occurrence monitoring starts with defining the system 

goals on the basis of the described use case. For this experiment these functionalities 

may be seen as configuring, change point observing, occurrence monitoring, and 

reporting. First, the system is started with the user configuring a group of 

measurements and setting alarm occurrence limits for the group. Then the responsible 

agent performs change point detection for individual process measurements. Then the 

change point occurrence for a specified group of measurements is calculated and, 

when needed, the exceeded limits are reported to the user. By naming and further 

refining these functionalities we get the system goals as follows. 
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System Goals: 

 User configurability – User defines and groups a set of measurements to be 

change point monitored and specifies the occurrence peak limit for this group. 

 CP observing – Observes change point in individual process measurement. 

 CP occurrence monitoring – Observe occurrence peaks in group of 

measurements. 

 User reporting – Report change point occurrence peaks to user. 

 

Next, these system goals are broken down into functionalities, activities, and their 

relations, as shown in Figure 25. In this experiment the functionalities User 

configurability and User reporting are the ones that are visible to the end user. The 

actual monitoring functionality is split into two separate parts. CP observing is 

responsible for detecting change points from measurement time series and notifying 

observations. The actual observation is discussed in Chapter 6.5.3. CP occurrence 

monitoring gathers together the individual CP observations and monitors their timely 

amount within the user-defined group.  

 

 
Figure 25 – Change point occurrence monitoring functionalities using notation from Prometheus. 

 

The next step is the scenario development, which describes how the goals and actions 

are linked together as a sequence. Below is the Change point occurrence monitoring 

scenario, which presents step by step the normal operating sequence in which the user 

activates the occurrence monitoring task, the system observes change points and 

monitors the amount of them, and finally, when needed, the findings are reported to 

the user. This scenario produces the functionality described in the example use case of 

this experiment. 
 

Outline specification of Change point occurrence monitoring scenario: 

1. GOAL: Group measurements and define monitoring parameters 

2. ACTION: Activate requested operation 

3. GOAL: Observe CP in measurement 

4. OTHER: Wait for process quantity to change substantially 

5. PERCEPT: CP observed 

6. ACTION: Notify about CP observation 

7. GOAL: Observe CP occurrence peak in a group 

8. OTHER: Check CP occurrence peak 

9. ACTION: Notify about CP occurrence peak 

10. GOAL: Report CP occurrence peak to user 

11. ACTION: Notify user 
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See discussion in chapter 6.5.3 for the steps having the type OTHER defined.  

 

The interaction of the system with the environment is the following. Perception is 

responsible for triggering activities in the case of user activity and when a CP 

observed is available in measurements. Internally, the system uses actions to trigger 

functions, and the only one of these visible outside the system is Notify user. 

Furthermore, the data used in this experiment are defined to be the following. 

 

 CP configuration and grouping – contains information on what measurements 

are to be observed for CPs and how these are grouped together for occurrence 

monitoring.  Also defines the time and amount of alarm limits.  

 CPs – contains online records of observed process change points. 

 CP occurrence monitoring data – stores history of observed CPs that belong 

to a user-defined group and are within a specified time window. 

 CP occurrence peak reports – contains information about occurrence findings 

that exceed the defined alarm limits. 

 

After the system functionalities, operational sequences, and environment interaction 

are defined it is possible to group these elements into meaningful entities (agents). 

The final version of this iterative grouping process is illustrated below (Figure 26). 

The clustering is based on the generic architectural role definitions presented in 

Chapter 4.4. 

 

 

 
Figure 26 - Grouping of functionalities in change point occurrence monitoring experiment with 

Prometheus notation. Clusters are named Configuring agent (1), Monitoring agent (2), and 

Reporting agent (3). 
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In Change point occurrence monitoring the clustering is defined as follows: 

 Configuring agent: The first cluster (1) holds the User configurability 

functionality, and produces CP configuration and grouping data. Typically 

there is one agent of this type per user in the system. The architectural role 

specified as the Client agent is behind this clustering. 

 Monitoring agent: The second cluster (2) involves monitoring functionalities, 

namely the CP observing and CP occurrence monitoring functionalities. 

These are operations that have to be active in such a way that if something 

happens in the data, these functions should observe it. These functionalities get 

their initialisation from the CP configuration and grouping configuration. The 

number of these agents is not restricted, and it depends on the related process 

configuration and possibly on the number of observed measurements. This 

clustering is influenced by the architectural role definitions of the Information 

and Process agents. 

 Reporting agent: The reporting cluster (3) involves User reporting, which is 

responsible for reporting the issues found in the system to the end user. This 

part of the system functionalities is event-based; they are activated when new 

user reports are stored in the CP occurrence peak reports data store. Typically, 

there is one agent per user of this type. This clustering realises the 

functionalities defined by the architectural role of the Client agent. 

In agent definitions, a question about merging Clusters 1 and 3 together may arise. 

These two clusters are kept separate in this design because their operational activity 

differs and they use different data. The configuring agent may provide a rather 

advanced user interface, based e.g. on process functional and physical models, and it 

may also be integrated with other applications in the control room. On the contrary, 

the reporting interface may be only a simple display giving notification about 

occurrence peaks. Leaving the reporting agent separate and as simple as possible 

gives the opportunity to integrate it directly to e.g. process control system alarm 

functions.  

Interaction protocol development is based on use cases, scenarios, and related agent 

division. Change point occurrence monitoring is divided into two natural parts. Figure 

27 shows the initialisation performed at the beginning of every configured monitoring 

task. The initialisation protocol shows how the peers are first queried from the 

directory and then the peers are requested to report about change points that occurred 

in individual measurements. The initialisation also generates and initialises the CP 

occurrence monitoring data structure. 
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Figure 27 – Change point occurrence monitoring initialisation interaction protocol using 

Prometheus notation. 

 

The change point occurrence monitoring interaction protocol is illustrated below 

(Figure 28). This shows that the initialisation phase is performed once, directly after 

the user has requested occurrence monitoring, and then the actual monitoring is 

performed. There the responsible agent receives notification about CP occurrences in 

the measurements that are of interest, and if enough change points are detected in the 

specified group and given time span then this is reported to the user. This monitoring 

operation continues until the user deactivates it. 
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Figure 28 – Change point occurrence monitoring interaction protocol using Prometheus notation. 

 

These interaction protocols together realise the main use case scenario presented in 

the introduction. In this experiment the role of agent negotiations is strong as they are 

used to organise and delegate the monitoring functionality. 

6.5.3 Change point detection and occurrence monitoring 

In this thesis a Change Point (CP) is defined as a time point at which the time series 

values of individual measurements change significantly. There are two distinct 

motivations for using CP detection. On the one hand, successful CP detection from 

noisy measurement data produces intuitively meaningful events and raises the 

abstraction level for an easier decision-making process. On the other hand, agent-
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based systems operate most naturally with symbolic data and CPs offer a potential 

solution for converting process automation-related numerical data into symbolic form. 

In this thesis the target is not to design and implement the best possible CP detection 

algorithm but to find a suitable system structure that could utilise this kind of 

information for monitoring purposes. Therefore, a demonstrative realisation has been 

made in order to understand the applicability and limitations of CP detection. 

 

In this thesis the actual realisation of the CP observation is based on the simple idea of 

approximating periods of individual time series values with a straight line. Figure 29 

shows an example excerpt in which CPs are observed from time series values 

originating from real processes. The assumptions for the algorithm design are that the 

time series data are piece-wise continuous and the data contain white Gaussian noise. 

These data contain segments that are separated by points at which values change 

substantially, called CPs, and the segments are not necessarily related. In other words 

this means that the data may be seen as a series of linear segments, each having 

stochastic length and these segments may be approximated with a straight line.  

 

 
Figure 29 – Example excerpt of Change Point of observation process produced by demonstration 

implementation. The vertical lines show the points where the CP observation found significant 

changes in the measured values. 

 

In our system the demonstrative implementation of this symbolisation function is 

called Liner. Liner fits lines to data by selecting the best straight lines that can be 

drawn backwards from the current time to the previous CP using least squares 

calculation as the evaluation criterion. The algorithm does not have any assumption 

about the variance of the values. Another important design requirement for Liner is 

that it needs to react to CP occurrences as they happen, on the so-called online 

principle. This is an important issue as the algorithm design cannot make an 

assumption that all the data are already available for processing e.g. in a history 

database, which is typically necessary for e.g. efficient divide and conquer clustering 

algorithms to be able to work. Finally, Liner is also thought to possibly operate on the 

device level, so it needed to be relatively efficient. 

 

As defined in the use case, the user is thought to be interested in the amount of CPs in 

a certain physical process area and in a certain time window. Figure 30 shows an 

example in which it may be seen that the amount of activity in process measurements 

varies in time. The amount of variation depends on the selected measurements, the 

time window that is under consideration, and the activity of the process at the given 

time. 
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Figure 30 - Example graph of 10-minute moving average of amount of detected CPs in one-

minute resolution from selected measurements. The amount of variables in the whole data set 

was 149 and altogether the graph represents an 8-hour time period. The selection of CP observed 

measurements was made on the basis of the process operational task and spatial relations. The 

test data were measured from the bleaching of mechanical pulp in a paper plant. The graph does 

not attempt to be a usable end result as such but it shows that the process activity level varies in 

time, as was discussed in the introduction to this experiment. 

 

As a configuration for this experiment, the user needs to set up the occurrence 

monitoring by grouping the measurements and defining the monitoring parameters. 

Table 8 shows the configuration data structure and its attributes which were used in 

this experiment. 

 
Table 8 - CP configuration and grouping data structure. 

Parameter name Type Example values 

Group identification String Group A 

Monitoring time window Integer, minutes 30 min 

Notification level Integer, events 8 events 

Observed measurements List of names AB10045,  
AC10010,  
AD10011 

 

When the actual monitoring is activated, it uses the following data structure (Table 9) 

to store CP observations. This data structure is used to check if the notification 

condition is achieved. 

  
Table 9 - CP occurrence monitoring data structure. 

Parameter name Type Example values 

Group identification String Group A 

Detected CP list Ordered list of  
(time stamp, name) 

17:14, AB10045 
17:26, AB10045 
17:42, AC10010 
18:03, AD10011 

 

 

The checking of the CP occurrence monitoring data structure is based on the 

following principle (Figure 31): 
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Figure 31 - Specification of CP occurrence monitoring activities, which shows in principle how an 

agent processes received CP observation. Notation is based on Prometheus. 

 

When going through the list of detected CPs there are the following two options: 

A. Count how many distinct elements have generated CP observation in the given 

time span. In this case, only one CP event is memorised for individual 

measurement, and rapidly alternating measurements cannot activate the 

notification. This is thought to be the default option in this experiment. 

B. Count the total number of CP observations in this group within the user-

specified time span. In this option, every received event is calculated and one 

individual measurement may produce more than one event. 

 

The occurrence peak reports are a combination of CP configuration and grouping 

data with the copy of CP occurrence monitoring data that activated the reporting. 

 

On the basis of the demonstration implementation of CP detection, it is possible to 

conclude that it is possible to construct this kind of detection and that it can provide 

results from industrial data with minimal configuration; see Figure 30, for example. 

This is important, as setting up monitoring agents within an industrial context should 

require as little configuration as possible for the overall experiment functionality to be 

feasible. In addition, the amount of CP points seems to vary with respect to time, so 

the functionality of the experiment is potentially usable in an industrial context. 



92 

 

6.5.4 Discussion 

It is possible to develop the functionality of the experiment using an agent design 

methodology. The functionality is well suited to an agent-oriented approach, as agent 

negotiations provide tools to distribute the monitoring. Furthermore, the design 

illustrates how CP detection may be moved to the device level in the future if the 

devices permit this. On the basis of the short discussion about realising CP detection 

with statistical methods, it seems possible to state that it is possible to construct this 

kind of functionality and future research on the issues is proposed.  

 

Change point occurrence monitoring introduces a new functionality that is not 

currently available in commercial process automation systems. The functionality is 

intended for monitoring mode within the normal operation of processes, but it is 

thought that it may also be useful when preplanned tasks are performed in production. 

The real value and usability of this kind of operation is unknown at the time of this 

research as the experiment was not motivated by industrial partners. For this 

functionality to prove its real potential it needs to be tested in an industrial setting. 

6.6 Experiment 4 - Change point pattern monitoring 

6.6.1 Introduction 

Device malfunctions and other frequently-occurring problems may advance quite 

similarly from the first symptom to the realisation that there is a problem. For typical 

and regular problems these sequences may also be known and with corrective 

operations performed in time the resulting losses and damage to equipment may 

possibly be prevented. These types of problems have been studied extensively in the 

past; e.g. Fault Detection and Identification (FDI) research introduced numerous 

methods for practical usage (Chiang et al. 2001). The previous work has been noted in 

this research. In this experiment the basic idea is to use CP detection to build a user-

configurable fault detection functionality. 

 

Example use case for the functionality: 

The user has found out that a certain process activity pattern typically leads to 

problems with process equipment or control. Therefore, the user defines a pattern of 

change points and requests the system to provide notification when this pattern has 

been observed in the process measurements. 

 

This kind of monitoring operation would be helpful for the user in a normal 

monitoring situation, which is defined as monitoring mode by Paunonen (1997). In a 

normal and steady situation the process values do not fluctuate much and the operator 

may sometimes become bored. Generally, a steady situation also makes the change 

point pattern detection more reliable as there is no mixing noise present.  



93 

 

6.6.2 Agent design for change point pattern monitoring 

The design of change point pattern monitoring starts with defining the system goals 

on the basis of the introduction and described use case. For this experiment these 

functionalities are configuring, CP observing, pattern monitoring, and reporting. First, 

the system is activated and configured by the user defining the interest of a certain 

change point pattern. Then the agents perform change point detection for individual 

process measurements. Then patterns of change point notifications are monitored and 

finally, when the occurrence of some configured pattern is observed, the user is 

notified about this. By naming and further refining these we get the following system 

goals. 

 

System goals: 

 User configurability – User defines measurements to be CP monitored, and 

sets up the patterns that should be monitored by the system. 

 CP observing – Observe CP in individual process measurements 

 CP pattern monitoring – Gather individual CP observations and observe CP 

pattern formation based on the user-configured patterns. 

 User reporting – Report CP pattern findings to user. 

 

Next, these system goals are broken down into related functionalities and activities, 

shown in Figure 32. In this experiment the functionalities User configurability and 

User reporting are the ones that are visible to the end user. The actual monitoring 

functionality consists of two separate parts, as follows. CP observing is responsible 

for detecting change points in the measurement value time series (see also Section 

6.5.3). Then CP pattern monitoring gathers change point detections and recognising 

patterns from individual events. 

 

 
Figure 32 – Change point pattern monitoring functionalities with notation from Prometheus. 

 

The next step is the scenario development, which describes how the goals and actions 

are linked together to form a normal operating sequence. Below is the Change point 

pattern monitoring scenario, which presents the normal operating sequence in which 

the user activates the pattern monitoring, change points and their patterns are 

observed, and finally pattern occurrence is reported to the user. This scenario is based 

on the typical use case of this experiment and its operation is triggered by the user. 
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Outline specification of Change point pattern observation scenario: 

1. GOAL: Select measurements and setup pattern to be monitored 

2. ACTION: Activate requested operation 

3. GOAL: Observe CP in measurement 

4. OTHER: wait for substantial change in measurement 

5. PERCEPT: CP observed  

6. ACTION: Notify about CP observation 

7. GOAL: Observe CP pattern 

8. OTHER: Check CP pattern occurrence 

9. ACTION: Notify about CP pattern 

10. GOAL: Report CP pattern to user 

11. ACTION: Notify user 

 

Discussion about the change point detection in the OTHER type step 4 can be found 

in chapter 6.5.3 and the step 8 is covered in the following chapter 6.6.3.The 

interaction of the system with the environment is the following. Perception is 

responsible for triggering activities in the case of user activity and when a CP 

observed is available in measurements. Internally, the system uses actions to trigger 

functions, and the only one that is visible outside the system is Notify user. 

Furthermore, the data used in this experiment are defined as the following. 

 

Data stores for this experiment: 

 CP configuration and pattern setup – contains information on what 

measurements should be observed for CPs and are available for pattern 

observation. Pattern setup contains definitions of CP patterns that are of 

interest to the user. 

 CPs – contains records of online process change points and possibly stores 

some history of observed CPs.  

 Pattern monitoring data – contains information about possible pattern findings 

and, when found, these should be informed to the user. 

 CP pattern reports – records of user-specified patterns that have been found 

by the system.  

 

After the system functionalities, operational sequences, and environment interaction 

are defined it is possible to group these elements into meaningful entities (agents). 

Grouping is an iterative process and the final version of this is illustrated in Figure 33. 

General agent roles specified in the architectural design (Chapter 4.4) are used to 

guideline the grouping. 
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Figure 33 - Grouping of functionalities in change point pattern monitoring experiment with 

Prometheus notation. Clusters are named User agent (1) and Monitoring agent (2). 

In the change point pattern monitoring experiment the grouping of functionalities 

produces the following clusters: 

 User agent: The first cluster (1) holds the User configurability and User 

Reporting functionalities. The configuration functionality produces data for 

the CP configuration and pattern setup data store. The reporting functionality 

is responsible for reporting the patterns found in the system to the end user, on 

the event-based principle. Reporting is activated when new user reports are 

stored in the CP pattern reports data store. Nevertheless, if the user is 

interested in seeing what happens on the way, accessing Pattern monitoring 

data enables him/her to view online how the monitoring is advancing. As 

these events are rather rare in general, one agent of this type per user is 

enough. This cluster of functionalities is motivated by the Client agent 

architectural role.  

 Monitoring agent: The second cluster (2) involves the actual monitoring 

functionalities, namely the CP Observing and CP Pattern Monitoring 

functionalities. These are operations that have to be active all the time so as to 

be able to observe changes in data. These functionalities get their initialisation 

from the configuration file, CP configuration and pattern setup. The number 

of these agents is not restricted, and it depends on the number of observed 

measurements and configured pattern observation. The architectural roles of 

Information and Process agents influence this clustering. 

Closer examination of the clustering may raise the question of why the configuring 

and reporting functionalities are not separated, as was done in the previous 

experiment (Experiment 3) in a fairly similar situation. Keeping these two 

functionalities together is a design choice that has been made in this experiment 

because the reporting of patterns is a rather complex task and it needs an advanced 

user interface. Integrating configuring, supervising, and reporting activities into one 

specialised user interface makes this functionality more useful for the user. 
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Specifying interactions: Interaction protocols are developed on the basis of scenarios 

and the related agent descriptions. Change point pattern monitoring interactions are 

divided into two natural parts. The first of these is the initialisation interaction 

protocol, which is illustrated in Figure 34. The initialisation protocol shows how the 

responsible peers are first searched for from the directory and then these are requested 

to report about change point occurrences. The initialisation also shows the generation 

of the data structure.  

 

Figure 34 – CP pattern monitoring initialisation interaction protocol using Prometheus notation. 

 

The second part of the change point pattern monitoring interaction protocol is 

responsible for the actual monitoring activity, and it is illustrated in Figure 35. This 

shows how change point occurrences are received and pattern occurrence is 

monitored by the information agent. If patterns have appeared then the user is 

notified. And finally, when the user deactivates the whole monitoring, the responsible 

agents are released. 
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Figure 35 – CP pattern monitoring interaction protocol using Prometheus notation. 

 

These interaction protocols together realise the main use case scenario presented in 

the introduction. In change point pattern monitoring roughly half of the operation is 

based on agent negotiations and the other half on the actual pattern monitoring. 
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6.6.3 Monitoring of change point patterns 

This experiment uses Change Point (CP) detection as a method for generating events 

from time series data for inference making. Detecting and observing CPs was already 

discussed in the previous experiment and in Chapter 5.2.3. In this experiment, the user 

is interested in detecting event patterns in which the individual events are the 

respective CP observations. Because these CPs are events, instantaneous points in 

time, they do not have duration. This makes the patterns easier to configure, as there 

are not so many possible temporal relations between the two preceding events. 

Compared, for example, to the approach that was used by Lowe et al. (1999), which 

had 13 different relationships between two events, the pattern model promoted here 

also makes the detection simpler. Without the duration option the pattern definition 

consists of an event sequence specifying order and time constraints specified with not 

before and not after parameters. These properties are illustrated in Figure 36.  

 

 

 
Figure 36 - Example change point pattern. 

 

The illustrated pattern model is designed to be simple and understandable but it can 

easily be updated to a more advanced one in the future if needed. Table 10 shows the 

CP configuration and pattern setup data structure that is used to store the pattern 

monitoring task parameters, and is used to transmit the user-defined pattern 

monitoring task configuration to the monitoring agent.  

 
Table 10 - CP configuration and pattern setup data structure. 

Parameter name Type Example values 

Pattern name String Pattern ABCD 

Observed 
measurements 

List of Strings (names) AB1045,  
AC1110,  
AD1212, 
AE2065 

CP pattern  Ordered list of;  
String (name), 
time (not before),  
time (not after) 

AB1045, null, null, 
AC1110, 15min, 35min, 
AD1212, 20min, 40min, 
AC1110, 15min, 45min, 
AE2065, 5min, 50min 
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When the pattern monitoring task is activated, this configuration data structure is used 

to generate the Pattern monitoring data structure, shown in Table 11. In this 

structure, the Observed CP events is a copy of the CP pattern table with additional 

time stamp information. The time stamp is used to store the CP event occurrence 

information, which is used in the monitoring algorithm. 

 
Table 11 - Pattern monitoring data structure. 

Parameter name Type Example values 

Pattern name String Pattern ABCD 

Observed 
measurements 

List of Strings (names) AB1045,  
AC1110,  
AD1212, 
AE2065 

Observed CP 
events 

Ordered list of;  
String (name), 
timestamp (actual) 
time (not before),  
time (not after) 

AB1045, 15:08, null, null, 
AC1110, 15:20, 15min, 35min, 
AD1212, 15:31, 20min, 40min, 
AC1110, null, 15min, 45min, 
AE2065, null, 5min, 50min 

 

The pattern monitoring algorithm may be implemented to work in both directions; 

based on forward and backward scan principles. Computationally more efficient 

algorithms are based on the backward direction, e.g. the Boyer-Moore string-

matching algorithm (Hume and Sunday 1991). However, the backward direction does 

not enable the user to see how things evolve in time step by step. Therefore, the 

forward direction should be used when applied to process monitoring to allow the 

user to diagnose the operation in an online manner. Support for tracing the monitoring 

as it advances may also be seen in agent design (Figure 28), in which Pattern 

monitoring data is connected to the User reporting functionality.  

 

The pattern monitoring algorithm should be based on a step-by-step comparison of the 

defined patterns presently under observation and newly observed CP events that are 

received by the monitoring agent. In this experiment the CP pattern monitoring is 

based on the following principle (Figure 37): 
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Figure 37 - Specification of CP pattern monitoring related activities, which shows in principle 

how monitoring agent processes newly received CP observation (using Prometheus notation). 

 

This algorithm design does not take into account the possibility of parallelism, as 

there is no option to define the fact that two or more CPs may occur in mixed order. 

Support for this might be added to the algorithm in the future.  

 

Finally, when the monitoring finds a matching pattern from the event flow it copies 

the current monitoring data to the report. Table 12 shows this reporting data structure, 

which is constructed when the pattern being monitored is found. 

 
Table 12 - CP pattern reports data structure. 

Parameter name Type Example values 

Pattern name String Pattern ABCD 

Observed CP 
events 

Ordered list of;  
String (name), 
timestamp (actual) 
time (not before),  
time (not after) 

AB1045, 10:08, null, 
AC1110, 10:21, 15min, 35min, 
AD1212, 10:44, 20min, 40min, 
AC1110, 11:14, 15min, 45min, 
AE2065, 11:25, 5min, 50min 
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6.6.4 Discussion 

This experiment seems to benefit from an agent approach in its design. The 

functionality of the experiment may be designed and constructed relatively easily with 

an agent approach. The CP monitoring may be decentralised with an agent approach 

and the pattern monitoring may be utilised on an event-based principle. In this way 

the agent negotiations are fully utilised and data abstraction may be performed as near 

to the data source as possible. This experiment was the fourth to be designed and it 

used the same CP detection as Experiment 3. The benefits of this experiment 

functionality within industrial-scale process control are unknown, as this operation 

was not motivated by industrial partners. For this functionality to prove its industrial 

potential it should be tested in a real process. 

 

This experiment was about detecting patterns in which individual events are change 

points, observed from time series data. This is a new functionality that is not currently 

available within commercial process automation systems. This functionality was 

thought to be most useful in the normal monitoring of processes, but it is probably 

also beneficial when monitoring the performance of preplanned tasks. Events other 

than CP-type ones could easily be added to the design of this experiment, and the 

functionality could be expanded that way. Such additions could be e.g. definitions of 

exact values that quantities are not supposed to exceed. Consideration of these other 

event generation principles was intentionally excluded from this design in order to 

keep the focus on the principal design issues. 
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6.7 Experiment summary and open questions 

6.7.1 Summary of experiment results 

The agent approach was used to develop four new different types of monitoring 

functions for process automation users. These experiments were developed in order to 

get an understanding about the feasibility of the agent approach, the design 

methodology used, and also of the system architecture developed for services of this 

type in process automation. As these experiments covered different aspects of process 

monitoring, they provided feedback on the design choices from multiple perspectives. 

Table 13 summarises the result of experiments and describes the functionalities that 

were added and used in the architecture.  

 
Table 13 - Summary of results of experiments and functionalities needed in the architecture. 

Experiment name and 
short description 

Experiment results Functionalities in the agent 
architecture  

Experiment 1  
Temporal monitoring 
 

Tool for monitoring relational 
constraints between process 
quantities. Decentralised 
operation using flexible agent 
interactions, and the use of 
directory service to find 
information providers. 

Modularisation of agent’s 
internal operation, separating 
local monitoring (CSP engine) 
and agent interactions 
(handling the overall task). 
First use of monitoring as 
operating principle. 

Experiment 2  
Search of process events 
 

Search tool for finding 
relations in process events 
and measurements. Merging 
of partial information and 
converting from one user 
group’s viewpoint to other. 
Especially, operators’ 
viewpoints on devices differ 
from maintenance personnel 
viewpoint. 

Tool support for use of formal 
data models and common 
base ontology. Wrappers 
covering external data 
sources, conversion from one 
viewpoint to other, enabling 
e.g. legacy databases to be 
used.  
 

Experiment 3 
CP density monitoring 
 

Process “fever” detection 
utilising CP occurrence 
monitoring. A new functionality 
making use of symbolisation 
of process measurements. 

Refinement of agent internal 
modularised design, especially 
separation of numeric 
processing (with change point 
detection) and symbolic 
functionalities. 

Experiment 4 
CP pattern monitoring 
 

CP pattern monitoring 
functionality. A new 
operational idea exploring 
agent interaction capabilities 
and data processing. 

Further refinement of agent’s 
internal modularised design as 
a result of developing CP 
pattern monitoring 
functionality. Outputs the final 
layered structure illustrated in 
Chapter 5. 

 

In the table, the results of experiments present issues related to the general 

applicability of the functionality and are, as such, valuable to a wide audience range. 

The functionalities in the architecture are more about the technology itself and are 

thus more valuable to persons who are making decisions in the software area. 
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6.7.2 Conclusions and open questions 

The experiments demonstrate four new functionalities to be used in process 

monitoring. These all support the flexible and user-configurable use of the monitoring 

functions, although the flexibility is restricted to cover only the designed functionality 

in these simplified cases. The first two experiments were motivated by industrial 

partners in our research project and are, as such, seen as functionalities with real 

potential for usage. The latter two were designed by the author, and these show what 

kind of monitoring functionalities could be offered with agent technology. 

 

On the technical side the most interesting issue is the proposed benefits of goal-based 

operation offered by the BDI model. The literature suggests that goal-based operation 

is suitable for functionalities similar to the experiments that were conducted and 

running in environments comparable with process automation. Nevertheless, as may 

be seen in the agent design part of the experiments, the relatively simple and 

procedural operation does not require or benefit much from the use of goals. This 

aspect is especially visible in the scenario outlines, which shows that the goals and 

actions follow each other in a rather straightforward manner. This is most likely to be 

the result of simple operation, as in the scenarios there is no need to select what to do 

next. However, the outlines do not show the elapsed time. Because much of the 

monitoring functionality is about waiting for some specified event to occur, goal-

based operation is still reasonable for realising the operation. 

 

In addition, the outlined scenarios represent how agent operations interact and control 

the decision making activities. In scenarios OTHER and PERCEPT step types can be 

used to specify other than agent based functionalities. With the presented four 

scenarios the separation between agent functionality and decision making part was 

quite clear and natural. Therefore, from this perspective the used design methodology 

seemed to be suitable for the design of process automation related monitoring tasks. 

In real life applications the presented agent design methodology can be used in an 

early design phase to specify structure of the system and cover the distribution of 

operations. However, on the architectural level the role definitions of Information, 

Process, and Wrapper agent roles are mixed in each of the four experiments. This 

seems to be the result of unclear responsibility definition in the architectural level and 

also because the definition was defined to be related to the process setup and 

respective functionalities. Future research should address the role division issue.   

 

Although all the experiments used the same ideas in the background, the architectural 

design, they were not running in exactly the same environment. This was because, 

between the experiments, the design phase and implementation was always partly 

started again from the beginning. The reason for this was that the experiments gave 

ideas as to how to further refine the design and implementation. This is the major 

issue that should be addressed when directing future research. It would be especially 

interesting to integrate all the demonstrated functionalities into one flexibly and easily 

configured environment and see how users in a real production context used and 

combined these in their monitoring work. However, this study did not aim to provide 

guidelines about what parts and properties of the monitoring task would be directly 

configured by the operator and what should be left to the system engineer.  Therefore, 

a rather extensive study of user interface issues is needed before these functionalities 

and their combinations are on such a level that operators and users are capable of 

using them.  
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7 Discussion and conclusions 

7.1 Discussion 

The thesis is built on a holistic view. The approach is about combining multiple tools 

and methodologies together to form a new kind of system that facilitates flexible 

monitoring in process automation. In the background is the idea of utilising agent 

technology to extend the functionalities of process automation systems, and the aim of 

this thesis is to extend the agent technology research to cover monitoring 

functionalities.  

 

Agents are designed to organise actions and operations in dynamic and distributed 

settings. Additionally, autonomy is argued to be a basic property of an agent, and it 

has been demonstrated to be suitable for the delegation of easy and laborious 

functionalities to machines. The academic research background provides sound 

theories for the utilisation of these aspects and lately systematic design methodologies 

have become available. Currently, one of the most viable approaches to the 

implementation of rationality seems to be the BDI (Belief-Desire-Intention) model, 

which has its basis in human thinking. In addition, a systematic step-by-step design 

methodology supporting BDI with enough quality was found to be available, and in 

the thesis the selected Agent-Oriented Software Engineering (AOSE) methodology 

was Prometheus.  

 

The theoretically proven issues of agent technology seem to match the requirements 

set by monitoring in process automation. Other researchers have also found this 

(Theiss 2007; Wagner 2002) and demonstrations have been presented (Bunch et al. 

2004; Buse and Wu 2007; Cockburn and Jennings 1995; Gentil 2006; McArthur et al. 

2005; Salyda and Taylor 2007; Wörn et al. 2002). Although agents seem to be 

feasible, numerous aspects of it are still under heavy development and this practically 

postpones agent application in large-scale industrial projects. For example, FIPA 

organisation has IEEE accepted standards defining overall agent system structures and 

agent negotiations, but e.g. the Prometheus does not take FIPA issues into account in 

any of its design phases. Furthermore, practically all reported monitoring applications 

used distinct system structures and also implementation tools used varied.  

 

Knowledge representation issues are central in organising rational operation with 

agents in a distributed manner, e.g. decision-making processes, but usable standards 

and tools for this are lacking within agent technology. At the same time knowledge 

representation issues within Semantic Web have much more interest and visibility in 

both academic research and industry than the respective agent community solutions. 

Therefore, in addition to agent technology, the Semantic Web and related tools were 

included in the system design because information-handling, partial data adaptation, 

data modelling, and structuring properties offered by it were seen as being usable in 

monitoring contexts. In addition, the development of Semantic Web has resulted in 

standards and tools that are highly usable. Nevertheless, it was found that the 

Semantic Web is also intended to cover control aspects related to information 

services, which, however, was found to be a rather underdeveloped subject. 

 

Based on studies, agents and Semantic Web seemed to complete each other. And 

although the exploration of combining the best parts from both the Semantic Web and 
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agents has been started, the work is in a fairly embryonic stage (Dickinson and 

Wooldridge 2005; Greenwood et al. 2007; Huhns et al. 2005; Lassila 2007). Actually, 

there was already available an initial implementation of a system combining agents 

and the Semantic Web, but its development was halted before it was finalised (NUIN 

2008). Furthermore, it was found that the OWL-S standard overlaps with the 

structures used in actual agent BDI model implementations; in particular, the plan 

context definition seems to be similar to the IOPE definitions in the OWL-S standard.   

7.2 Conclusions 

Technically process automation environment seems to enable the use of new software 

tools. With respect to studying the requirements of monitoring systems in process 

automation five desired properties were defined. (1) Flexibility is needed to be able to 

adapt to changing situations and (2) delegation to aid users to cope with the increasing 

amount of responsibilities. In addition, as important information is available in 

multiple systems around the organisation (3) system integration is needed to be 

supported. Finally, a system should support (4) Knowledge handling and be able to 

execute (5) data processing. Comparing these to the properties proposed for agent 

technology, the first three were found to be supported. Additionally, integration issues 

and knowledge handling were found to be supported by Semantic Web tools. Finally, 

data processing was determined to be covered by other solutions, e.g. statistical 

mathematic tools. 

 

Based on the technical studies it was decided that the developed system should 

support both the BDI model provided by agent technology and also the use of 

Semantic Web tools. BDI model was selected because literature promotes its use for 

similar functionalities in other application areas. As no viable alternatives were found 

to be available, a tailored system was to be built to be able to study possibilities 

offered by agent technology. The design consisted of an architectural design and an 

internal structure, and the five above mentioned properties were used to direct the 

development process. In addition, available solutions were adapted as much as 

possible, e.g. the FIPA structure and interaction protocols.  

 

As the design covers everything from the overall system structure to the internal 

design of an agent, it does not go deeply into details. Technically it is noted that a 

major part of agent technology and the Semantic Web focuses on processing symbolic 

or logical information. On the contrary, a major part of the important information in 

process automation is in numerical format, e.g. time series data. Although possible 

ways to link numerical and symbolic information together were proposed in this 

thesis, no general solution or algorithms were provided. Furthermore, the layered 

agent design aims to utilise simultaneously BDI model and Semantic Web tools but 

the thesis represents it as a proposal because the subject is generally unstable in the 

research community. On the other hand, the specified architectural design seems to be 

more stabile. 

 

The thesis documents four industrially motivated experiments that were successfully 

realised with agent technology. The experiments were specified with a systematic 

AOSE methodology (Prometheus) and used guidelines defined in agent system 

architecture. Both of these aspects were found to be helpful and suitable for the 

experiments. On the basis of the experiments it is possible to state that the specified 

agent system architecture is general enough that a variety of monitoring 
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functionalities can be designed and implemented with it. The Prometheus agent 

design methodology was found to be useful for the system specification and 

architectural design phases, as these phases were applicable for the design of 

experiments. Furthermore, the step by step design procedure of Prometheus was 

suitable for figuring out issues related to monitoring tasks. However, it was found that 

Prometheus leaves much to be decided by the system designer, especially how to 

select goals to support rational operation in a distributed manner. Furthermore, the 

design of experiments revealed that the specified agent roles in architectural design 

were not yet strict enough, as information, process and wrapper agent roles were 

mixed. 

 

The documented experiments demonstrate successfully that agent design covering 

structural and timing issues of operation can be separated from algorithm design. 

Although this was possible in the presented experiments it is unclear if this is true also 

more generally in monitoring. In addition, it may be stated that guidelines for 

selecting appropriate algorithms for decision-making would be beneficial. 

Nevertheless, the experiments failed to test and demonstrate how different decision-

making modules and their results could be fused together. In addition, it may be stated 

that the relatively simple functionalities demonstrated in the experiments could have 

been realised without the BDI model, e.g. with procedural operation. This does not 

verify that a BDI model-based operation would not be useful when used in larger and 

more complex situations. However, in relation to monitoring functions in process 

automation the question about the benefits provided by the BDI model is left open.  

 

All in all, this thesis shows that agent technology provides a natural and usable way to 

structure monitoring systems and the systematic agent design methodology may be 

exploited to develop monitoring functionalities in real industrial settings. In addition, 

an implementable system architecture using agent technology and Semantic Web was 

also successfully specified. Furthermore, new types of monitoring functionalities were 

successfully developed with the design methodology and presented agent architecture. 

The experiments described here are examples of functionalities that could be provided 

to monitoring users, and in the future these and a number of others should be gathered 

together to form a valuable toolkit for operators. These should be designed in such a 

way that the user is easily capable of restructuring and modifying them to automate 

the variety of operations that are needed to monitor processes successfully.  

7.3 Future work 

There are many possible directions for future research in the area of IT-supported 

monitoring in process automation. Although an agent-based system was used as the 

technical approach within this research, the ideas and possibilities are accessible with 

a multitude of software tools. On the one hand, the basic idea of providing the 

possibility of using user-configurable and predefined elements mixed together goes 

way beyond one specific implementation technique. Therefore, one possible future 

task could be to generalise the architectural design and functionalities of experiments 

that were conducted and implement these with different technology. On the other 

hand, it would be interesting to apply the system developed here to other problem 

domains, such as detecting weather fronts with monitoring agents from temperature, 

humidity, and air pressure measurement values. 
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One important aspect of further development could be process automation data 

models, which should be created in the future. Extensive models in the process 

automation area would offer the possibility of integrating information provided by 

individual functionalities. Quality models would also provide improved deduction 

properties and structurally more complex operations could be developed. The research 

in this has already started in many directions, e.g. in connection to the development of 

OPC UA, but a lot of work needs to be done before industrial applicability is gained. 

 

In the long term new versions of technologies having similar properties to agents and 

Semantic Web will be available. When utilising these successfully in a process 

environment it will be possible to provide users a total monitoring solution with 

controlled mesh up of things that has great structural flexibility of handling modular 

information processing and accessing elements. The system would enable static 

information describing known aspects of process setup (general process structure, 

device properties and manuals, etc.) combined with dynamic information (values, 

trends, events, etc.) generated from physical processes to provide new functions to 

users. For example, navigation in process automation related information could and 

should be based on these both aspects. In addition, relevant information could be 

offered to human users similarly as news background stories. Partial technical 

solutions for all of these functionalities are already demonstrated or at least visible but 

systems combining them are not yet available. 
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