563 research outputs found

    AUSz: Acta Biologica Tomus XXV. Fasc. 1-2.

    Get PDF

    Holocentric plants of the genus Rhynchospora as a new model to study meiotic adaptations to chromosomal structural rearrangements

    Get PDF
    Climate change, world hunger and overpopulation are some of the biggest challenges the world is currently facing. Moreover, they are part of a multidimensional single scenario: as climate change continues to modify our planet, we might see a decrease of arable land and increase in extreme weather patterns, posing a threat to food security. This has a direct impact on regions with high population growth, where food security is already scarce. Considering additionally the unsustainability of intensive global food production and its contribution to greenhouse emissions and biodiversity loss, it´s clear that all these factors are interconnected (Cardinale et al., 2012; Prosekov & Ivanova, 2018; Wiebe et al., 2019). Plants are the main source of staple food in the world and are also the main actors in carbon fixation, they are therefore key protagonists in controlling climate change. Plants are also an essential habitat-defining element balancing our ecosystem. Thus, how we grow plants and crops will, aside from the obvious implications for food security, also have a profound impact on the climate and biodiversity. The natural variability of species is considered an immense pool of genes and traits, and their understanding is key to generate new useful knowledge. For instance, natural populations can be more tolerant to abiotic and biotic stresses, or carry traits that combined together in hybrids, might achieve a higher seed number, or a faster growth. Classical breeding has exploited unrelated varieties to achieve traits of interest like dwarfism and higher grain production. However, only a limited number of crop species have been the focus of recent scientific and technological approaches, and they do not represent the extremely vast natural diversity of species that could generate useful knowledge for future applications (Castle et al., 2006; Pingali, 2012). The key to this natural variability is a process called meiotic recombination, the exchange of genomic material between homologous parental chromosomes. Meiotic recombination takes place during meiosis, a specialized cell division in which sexually reproducing organisms reduce the genomic complement of their gametes by half in preparation for fertilization. Meiotic recombination takes place at the beginning of meiosis, in a stage called prophase I. To exchange DNA sequences, the strands of two homologous chromosomes must be fragmented. This specific process of physiologically induced DNA fragmentation is conserved in the vast majority of eukaryotes (Keeney et al., 1997). After the formation of double-strand breaks, the 3’ ends that are left are targeted by recombinases that help the strands search and invade templates for repair. After invasion, the 3’ end is extended by DNA synthesis, exposing sequences on the opposite strand that can anneal to the other 3’ end of the original double strand break. DNA synthesis at both ends generates a new structure called a double Holliday Junction (dHJ), forming a physical link between homologous chromosomes, named chiasma (Wyatt & West, 2014). The resolutions of these structures are called crossovers (COs), which is the molecular event representing the outcome of meiotic recombination. Other outcomes are possible, like noncrossovers (NCOs). In this case, the invading strand is ejected and anneals to the single-strand 3´end of the original double-strand break (Allers & Lichten, 2001). Crossovers can be divided into two main groups, called class I and class II. COs of the first group are considered to be sensitive to interference, which means that there are mechanisms that prevent two class I COs from happening in proximity of each other. Class II is insensitive to interference. Class I COs are the result of a pathway called ZMM, which involves a group of specialised proteins that are highly conserved among eukaryotes (Lambing et al., 2017; Mercier et al., 2015). Class I COs are the most common, studied and important type of COs. Centromeres are structures, located on regions of the chromosomes, that allow proper chromosome segregation during mitosis and meiosis. Centromeres have a profound effect on plant breeding and crop improvement, as it is known that meiotic recombination is suppressed at centromeres in most eukaryotes. This represents a great limitation for crop improvement, as many possibly useful traits might be in regions not subject to recombination and thus might not be available for breeding purposes. Additionally, the mechanisms behind how recombination is regulated and prevented from happening at centromeres are still unclear. In most model organisms centromeres are single entities localized on specific regions on the chromosomes. This configuration is called monocentric. However, another type of configuration can be found in nature, but is less studied. In fact, some organisms harbour multiple centromeric determinants distributed over their whole chromosomal length. This configuration is called holocentric. The Cyperaceae comprise a vast, diverse family of plants, with a cosmopolitan distribution in all habitats (Spalink et al., 2016). Despite the presence of this family worldwide, knowledge about it is limited. Few genomes are available and molecular insights are scarce. This family is also known to be mainly formed by holocentric species (Melters et al., 2012). Understanding if and how meiotic recombination is achieved in holocentric plants will generate new knowledge that in the future might unlock new traits in elite crops, previously unavailable to breeding, that could help humanity face global climatic, economic and social challenges. Recent studies have reported new knowledge about important meiotic, chromosome and genome adaptions found in species of the Cyperaceae family and in particular the genus Rhynchospora (Marques et al., 2015, 2016a). With the recent publication of the first reference genomes for several Rhynchospora species, we could already perform a comprehensive analysis of their unique genome features and trace the evolutionary history of their karyotypes and how these have been determined by chromosome fusions (Hofstatter et al., 2021, 2022). This new resource paves the way for future research utilising Rhynchospora as a model genus to study adaptations to holocentricity in plants. With this work, my intention is to shed light on the underexplored topic of holocentricity in plants. Using cutting edge techniques, I examine the conservation of meiotic recombination together with other species-specific adaptations like achiasmy and polyploidy in holocentrics. My results reveal new insights into how plant meiotic recombination is regulated when small centromere units are found distributed chromosome-wide, challenging the classic dogma of suppression of recombination at centromeres

    Taxonomy, phylogeny and reproductive ecology of Gentiana lutea L.

    Get PDF
    This research focuses on taxonomy, phylogeny and reproductive ecology of Gentiana lutea. L.. Taxonomic analysis is a critical step in botanical studies, as it is necessary to recognize taxonomical unit. Herbarium specimens were observed to assess the reliability of several subspecies-diagnostic characters. The analysis of G. lutea genetic variability and the comparison with that of the other species of sect. Gentiana were performed to elucidate phylogenetic relationships among G. lutea subspecies and to propose a phylogenetic hypothesis for the evolution and the colonization dynamics of the section. Appropriate scientific information is critical for the assessment of species conservation status and for effective management plans. I carried out field work on five natural populations and performed laboratory analyses on specific critical aspects, with special regard to G. lutea breeding system and type and efficiency of plant-pollinator system. Bracts length is a reliable character to identify subsp. vardjanii, however it is not exclusive, hence to clearly identify subsp. vardjanii, other traits have to be considered. The phylogenetic hypotheses obtained from nuclear and chloroplast data are not congruent. Nuclear markers show a monophyly of sect. Gentiana, a strongly species identity of G. lutea and clear genetic identity of subsp. vardjanii. The little information emerging from plastid markers indicate a weak signal of hybridization and incomplete sorting of ancestral lineages. G. lutea shows a striking variation in intra-floral dichogamy probably evolved to reduce pollen-stigma interference. Although the species is partially self-compatible, pollen vectors are necessary for a successful reproduction, and moreover it shows a strong inbreeding depression. G. lutea is a generalist species: within its spectrum of visitors is possible to recognize "nectar thieves" and pollinators with sedentary or dynamic behaviour. Pollen limitation is frequent and it could be mainly explained by poor pollen quality

    Fractals and implications for mineral favorability maps: the example of iron oxide-copper-gold deposits from Carajás (PA)

    Get PDF
    Orientadores: Carlos Roberto de Souza Filho, Emmanuel John Muico CarranzaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de GeociênciasResumo: Desde a definição do conceito da geometria fractal na segunda metade do século XX, a importância dos fractais para a descrição e entendimento de feições geológicas gradualmente ganhou importância. Mais recentemente, diversos trabalhos têm sugerido que a distribuição espacial de depósitos minerais apresenta geometria fractal, a qual representaria a complexa interação de processos geológicos necessários para a gênese de uma mineralização. A manifestação da geometria fractal se dá através da invariância escalar, ou seja, a propriedade de uma feição conservar suas características geométricas independente da escala espacial. Esta característica é promissora para o estudo de depósitos minerais, pois sugere a possibilidade de que informações sobre a geometria da mineralização em uma escala possa ser usada para inferir aspectos da geometria em outras escalas. Uma vez que a geometria das mineralizações é consequência dos controles que atuaram durante e após sua formação, a possibilidade de estudos com uma abordagem fractal tem aplicações teóricas e práticas. Considerando o exposto, a presente pesquisa dedicou-se a investigar se de fato a geometria de depósitos minerais apresenta invariância escalar, e em caso positivo, que informações ela permite inferir sobre os controles de mineralização. Para esta investigação foi escolhida como área de estudo a região do depósito Iron Oxide-Copper-Gold (IOCG) de Sossego, na Província Mineral de Carajás (PA). Depósitos IOCG apresentam forte controle estrutural, que somados a farta disponibilidade de dados nas escalas regional, local e microscópica tornam a área da mina de Sossego ideal para a pesquisa proposta. Assim, os dados já disponíveis na literatura foram integrados com novas medidas estruturais e novas lâminas orientadas de amostras coletadas nas cavas da mina. A geometria da mineralização foi avaliada em três diferentes escalas: na escala regional examinou-se a distribuição espacial dos depósitos IOCG conhecidos; na escala local examinou-se a geometria das estruturas e corpos mineralizados no depósito de Sossego; na escala microscópica foi avaliada a geometria da distribuição espacial e da forma dos grãos de minerais de minério. O conjunto de resultados indica que os depósitos IOCG da região de Carajás, e em particular o depósito de Sossego, apresentam geometria fractal, conservando a orientação e anisotropia nas diferentes escalas. A orientação e anisotropia das mineralizações são aspectos geométricos que resultam diretamente do controle exercido pela trama estrutural subjacente. Desta forma, os resultados indicam que o controle estrutural gera a invariância escalar devido à influência que exerce sobre a permeabilidade das rochas, um fator essencial para a geração de depósitos hidrotermais. A permeabilidade é definida em escala microscópica através de planos de foliação, microfraturas e vênulas, as quais se relacionam diretamente com estruturas de escalas maiores, tais como zonas de cisalhamento, falhas e veios, criando uma rede permeável consistente através das escalas. No caso de Carajás, a geometria destas áreas permeáveis reflete a interação entre uma trama dúctil anterior, de permeabilidade difusa, e uma trama rúptil posterior, com permeabilidade focada. Os resultados deste trabalho sugerem que a abordagem fractal para o estudo da gênese de depósitos minerais tem potencial concreto para gerar resultados relevantes, inclusive para a avaliação da favorabilidade mineral de áreas em exploraçãoAbstract: Since the concept of fractal geometry was defined in the second half of the twentieth century, the importance of fractals for the description and understanding of geological features has gradually gained importance. More recent work has suggested that the spatial distribution of mineral deposits presents fractal geometry, which represents the complex interaction of geological processes necessary for the genesis of a mineralization. The manifestation of fractal geometry occurs through scale invariance, i.e. the property of a feature that conserves its geometrical characteristics independent of the spatial scale. This property is promising for the study of mineral deposits because it suggests the possibility that information about the geometry of a mineralization at one scale can be used to infer aspects of its geometry at other scales. Since mineralization geometry is a consequence of controls that acted during and after its formation, studies with a fractal approach have theoretical and practical applications. Considering the above, the present research investigated if the geometry of mineral deposits presents scale invariance, and if so, what information it permits to infer about the mineralization controls. For this investigation the study area chosen was the iron oxide-copper-gold (IOCG) Sossego deposit, in the Carajás Mineral Province (PA). IOCG deposits present strong structural control, which taken in conjunction with data availability at the regional, local and microscopic scales make the Sossego deposit area ideal for the proposed research. Thus, data already available in the literature were integrated with new structural measurements and new oriented thin sections of samples collected in the mine pits. Mineralization geometry was evaluated at three different scales: in the regional scale the spatial distribution of the known IOCG deposits was examined; in the local scale the geometry of the mineralized structures and orebodies at the Sossego deposit was examined; in the microscale the geometry of the spatial distribution and the shape of ore mineral grains were evaluated. The bulk of results indicate that the IOCG deposits of Carajás province, and in particular the Sossego deposit, present fractal geometry, conserving the orientation and anisotropy at the different scales. The orientation and anisotropy of the mineralization are geometric aspects that result directly from the control exerted by the underlying structural framework. As a consequence, the results indicate that the structural control generates the scale invariance due to its influence on rock permeability, an essential factor for the genesis of hydrothermal deposits. Permeability is defined at the microscale through foliation planes, microfractures and veinlets, which are directly related to structures of larger scales, such as shear zones, faults and veins, creating a consistent permeable network throughout the scales. In the case of Carajás, the geometry of these permeable areas reflects the interaction between an older ductile framework with diffuse permeability, and a posterior brittle network with focused permeability. The results of this work suggest that the fractal approach to the study of the genesis of mineral deposits has concrete potential to generate relevant results, including for the evaluation of the mineral favorability on exploration areasMestradoGeologia e Recursos NaturaisMestre em Geociências2015/11186-3401316/2014-9CAPESFAPESPCNP

    Tribological and Structural Characterisation of Ceramic on Metal Hip Replacements

    Get PDF
    A tribological investigation of ceramic on metal hip replacements was carried out using in vitro wear testing methods. Two ceramic materials, pure alumina and an alumina matrix compound (zirconia toughened alumina (ZTA)), were articulated against as-cast CoCrMo alloy cups. The diameter was changed from 38 mm to 60 mm to explore the effect of diameter on the tribological performance. Three distinct wear tests were undertaken to allow a direct comparison between materials and sizes. These were; wear testing using standard loading and motion profiles, microseparation (edge loading) in which the loading and motion profiles were modified to allow medial-lateral and inferior-superior displacement of the head, and third body particle tests which incorporated 0.5 g of <1 μm alumina particle in the lubricant. The Durham Mark I Hip Wear Simulator was used to simulate the standard walking cycle, and was further modified to incorporate microseparation during the swing phase of the walking cycle. All simulator tests were gravimetrically analysed and linear regression analysis was used to determine running in and steady state wear rates. In addition, surface analytical techniques including non contacting profilometery, atomic force, scanning electron and optical microscopy were used to identify changes in surface topography throughout the wear tests. Parameters such as the root mean squared roughness and skewness were monitored to provide quantitative changes in the surface features. The roughness was also used to calculate the ratio of minimum film thickness to equivalent roughness known as the lambda ratio. This provided an theoretical indication of the lubrication regime. Dynamic friction measurements were undertaken on the Durham Friction Simulator, using water based bovine serum based lubricants, which allowed the lubrication mechanism to be identified through the generation of a Stribeck Curve. The results showed low wear rates for all materials and sizes tested, compared with standard metal on polyethylene and metal on metal components. The wear of the ceramic heads was unmeasurable using the gravimetric method, as the volume change of the heads fluctuated with a similar trend and magnitude to the control head which did not experience wear. Wear was detected for the softer metallic cups in all tests. The standard wear test produced the lowest cup wear rates, compared with microseparation and third body tests which showed increased wear rates through extensive abrasive and adhesive wear mechanisms. After microseparation testing, characteristic stripe wear patterns were found on the ceramic heads and a flattened lip on the metallic cups. Metal transfer was also identified, which was thought to be due to impact during dislocation of the head during the swing phase of the walking cycle. Third body tests resulted in significant grain loss from the ceramic components compared with both standard or microseparation testing. Low friction factors were recorded for all ceramic on metal components, generally showing the joints to be working close to full fluid film lubrication during the high load stance phase of the walking cycle

    Pierre Schaeffers typo-morphology of sonic objects.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D174501 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    An affinity score for grains merging and touching grains separation

    No full text
    International audienceThe physical properties of granular materials on a macro-scopic scale derive from their microstructures. The segmentation of CT-images of this type of material is the first step towards simulation and modeling but it is not a trivial task. Non-spherical, elongated or non-convex objects fail to be separated with classical methods. Moreover, grains are commonly fragmented due to external conditions: aging, storage conditions, or even user-induced mechanical deformations. Grains are crushed into multiple fragments of different shape and volume; those fragments drift from one another in the binder phase. This paper focuses on reconstruction of grains from these fragments using scores that match the local thickness and the regularity of the interface between two objects from a given primary segmentation of the material. An affinity graph is built from those scores and optimized for a given application using a user-generated ground truth on a 2D slice of the tridimensional structures. A minimum spanning tree is generated, and a hierarchical cut is performed. This process allows to reassemble drifted fragments into whole grains and to solve the touching grains problem in tridimensional acquisitions

    ACARORUM CATALOGUS IX. Acariformes, Acaridida, Schizoglyphoidea (Schizoglyphidae), Histiostomatoidea (Histiostomatidae, Guanolichidae), Canestrinioidea (Canestriniidae, Chetochelacaridae, Lophonotacaridae, Heterocoptidae), Hemisarcoptoidea (Chaetodactylidae, Hyadesiidae, Algophagidae, Hemisarcoptidae, Carpoglyphidae, Winterschmidtiidae)

    Get PDF
    The 9th volume of the series Acarorum Catalogus contains lists of mites of 13 families, 225 genera and 1268 species of the superfamilies Schizoglyphoidea, Histiostomatoidea, Canestrinioidea and Hemisarcoptoidea. Most of these mites live on insects or other animals (as parasites, phoretic or commensals), some inhabit rotten plant material, dung or fungi. Mites of the families Chetochelacaridae and Lophonotacaridae are specialised to live with Myriapods (Diplopoda). The peculiar aquatic or intertidal mites of the families Hyadesidae and Algophagidae are also included.Publishe

    Sintering

    Get PDF
    This book is addressed to a large and multidisciplinary audience of researchers and students dealing with or interested in sintering. Though commonly known as a method for production of objects from fines or powders, sintering is a very complex physicochemical phenomenon. It is complex because it involves a number of phenomena exhibiting themselves in various heterogeneous material systems, in a wide temperature range, and in different physical states. It is multidisciplinary research area because understanding of sintering requires a broad knowledge - from solid state physics and fluid dynamics to thermodynamics and kinetics of chemical reactions. Finally, sintering is not only a phenomenon. As a material processing method, sintering embraces the wide group of technologies used to obtain such different products as for example iron ore agglomerate and luminescent powders. As a matter of fact, this publication is a rare opportunity to connect the researchers involved in different domains of sintering in a single book
    corecore