776 research outputs found

    AMCTD: Adaptive Mobility of Courier nodes in Threshold-optimized DBR Protocol for Underwater Wireless Sensor Networks

    Full text link
    In dense underwater sensor networks (UWSN), the major confronts are high error probability, incessant variation in topology of sensor nodes, and much energy consumption for data transmission. However, there are some remarkable applications of UWSN such as management of seabed and oil reservoirs, exploration of deep sea situation and prevention of aqueous disasters. In order to accomplish these applications, ignorance of the limitations of acoustic communications such as high delay and low bandwidth is not feasible. In this paper, we propose Adaptive mobility of Courier nodes in Threshold-optimized Depth-based routing (AMCTD), exploring the proficient amendments in depth threshold and implementing the optimal weight function to achieve longer network lifetime. We segregate our scheme in 3 major phases of weight updating, depth threshold variation and adaptive mobility of courier nodes. During data forwarding, we provide the framework for alterations in threshold to cope with the sparse condition of network. We ultimately perform detailed simulations to scrutinize the performance of our proposed scheme and its comparison with other two notable routing protocols in term of network lifetime and other essential parameters. The simulations results verify that our scheme performs better than the other techniques and near to optimal in the field of UWSN.Comment: 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Emerging Routing Method Using Path Arbitrator in Web Sensor Networks

    Get PDF
    Sophisticated Routing has a big impact on wireless sensor network performance and data delivery. Because nodes join and leave the network on a whim, routing in WSN is not as simple a task as it is throughout sensor networks that are wireless. The fact that the most of WSN devices are resource constrained is another restriction on how routing is implemented in WSN. The WSN uses a variety of routing protocols. However, the primary goal of this research is to determine the best route from the source to the destination using wireless sensor networks and machine learning techniques Which is Particle Swarm Optimization. In this study, an innovative and intelligent machine dubbed the Path Arbitrator or selector, which will store all sensor data and use machine learning methods, is used to develop a new routing mechanism

    Horizontal trajectory based mobile multi-sink routing in underwater sensor networks

    Get PDF
    Scientific, commercial, exploration, and monitoring applications of underwater sensor networks have drawn the attention of researchers toward the investigation of routing protocols that are robust, scalable, and energy efficient. This has brought significant research in network layer routing protocols. Irrespective of the field of application it is desirable to increase network lifetime by reducing energy consumed by sensor nodes in the network or by balancing energy in the entire network. Energy balancing refers to the uniform distribution of the network’s residual energy such that all nodes remain alive for a long time. It requires uniform energy consumption by each sensor node in the network instead of the same node being involved in every transmission. In this paper, we discuss two routing methods for three-dimensional environments in which the water region under monitor is divided into subregions of equal height and each subregion has a sink. Nodes in the subregion send data to the sink designated for that subregion. The first method called static multi-sink routing uses static sinks and the second method called horizontal trajectory-based mobile multi-sink routing (HT-MMR) uses mobile sinks with a horizontal trajectory. Simulation results show that the proposed HT-MMR reduces average energy consumption and average energy tax by 16.69% and 16.44% respectively. HT-MMR is energy efficient as it enhances network lifetime by 11.11%

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research

    Routing Protocols for Underwater Acoustic Sensor Networks: A Survey from an Application Perspective

    Get PDF
    Underwater acoustic communications are different from terrestrial radio communications; acoustic channel is asymmetric and has large and variable end‐to‐end propagation delays, distance‐dependent limited bandwidth, high bit error rates, and multi‐path fading. Besides, nodes’ mobility and limited battery power also cause problems for networking protocol design. Among them, routing in underwater acoustic networks is a challenging task, and many protocols have been proposed. In this chapter, we first classify the routing protocols according to application scenarios, which are classified according to the number of sinks that an underwater acoustic sensor network (UASN) may use, namely single‐sink, multi‐sink, and no‐sink. We review some typical routing strategies proposed for these application scenarios, such as cross‐layer and reinforcement learning as well as opportunistic routing. Finally, some remaining key issues are highlighted

    A Survey of Routing Issues and Associated Protocols in Underwater Wireless Sensor Networks

    Get PDF
    Underwater Wireless Sensor Network is newly emerging wireless technology in which small size sensors with limited energy, limited memory and bandwidth are deployed in deep sea water and various monitoring operation like tactical surveillance, environmental monitoring and data collection are performed through these tiny sensor. Underwater Wireless Sensor Network is used for exploration of underwater resources, oceanographic data collection, flood or disaster prevention, tactical surveillance system and unmanned underwater vehicles. Sensor node consist of small memory, central processing unit and antenna. Underwater network is much different from terrestrial sensor network as radio waves cannot be used in Underwater Wireless Sensor Network. Acoustic channels are used for communication in deep sea water. Acoustic Signals carries with itself many limitation. Such as Limited bandwidth, higher end to end delay, network path loss, higher propagation delay and dynamic topology. Usually these limitation results in higher energy consumption with less number of packets delivered. The main aim now a days is to operate sensor node having smaller battery for a longer time in network. This survey has discussed the state of the art Localization based and Localization free routing protocols. Routing associated issues in the area of Underwater Wireless Sensor Network has also been discussed

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Investigating Master-Slave Architecture for Underwater Wireless Sensor Network.

    Full text link
    A significant increase has been observed in the use of Underwater Wireless Sensor Networks (UWSNs) over the last few decades. However, there exist several associated challenges with UWSNs, mainly due to the nodes' mobility, increased propagation delay, limited bandwidth, packet duplication, void holes, and Doppler/multi-path effects. To address these challenges, we propose a protocol named "An Efficient Routing Protocol based on Master-Slave Architecture for Underwater Wireless Sensor Network (ERPMSA-UWSN)" that significantly contributes to optimizing energy consumption and data packet's long-term survival. We adopt an innovative approach based on the master-slave architecture, which results in limiting the forwarders of the data packet by restricting the transmission through master nodes only. In this protocol, we suppress nodes from data packet reception except the master nodes. We perform extensive simulation and demonstrate that our proposed protocol is delay-tolerant and energy-efficient. We achieve an improvement of 13% on energy tax and 4.8% on Packet Delivery Ratio (PDR), over the state-of-the-art protocol
    corecore