318 research outputs found

    Visual Importance-Biased Image Synthesis Animation

    Get PDF
    Present ray tracing algorithms are computationally intensive, requiring hours of computing time for complex scenes. Our previous work has dealt with the development of an overall approach to the application of visual attention to progressive and adaptive ray-tracing techniques. The approach facilitates large computational savings by modulating the supersampling rates in an image by the visual importance of the region being rendered. This paper extends the approach by incorporating temporal changes into the models and techniques developed, as it is expected that further efficiency savings can be reaped for animated scenes. Applications for this approach include entertainment, visualisation and simulation

    An anti-aliasing method for parallel rendering

    Get PDF
    We describe a parallel rendering method based on the adaptive supersampling technique to produce anti-aliased images with minimal memory consumption. Unlike traditional supersampling methods, this one does not supersample every pixel, but only those edge pixels. We consider various strategies to reduce the memory consumption in order for the method to be applicable in situations where limited or fixed amount of pre-allocated memory is available. This is a very important issue, especially in parallel rendering. We have implemented our algorithm on a parallel machine based on the message passing model. Towards the end of the paper, we present some experimental results on the memory usage and the performance of the method.published_or_final_versio

    A parallel rendering approach to the adaptive supersampling method

    Get PDF
    Original z-buffer method is a very efficient method for image generation. The limitation is that it introduces aliases into the output image. Although many methods have been proposed to address this problem. Most of them suffer from requiring a large memory space, demanding for high computational power, or having some other limitations. Recently, we presented a simple anti-aliasing method based on the supersampling method. Instead of supersampling every pixel, we supersample edge pixels only. In this paper, we discuss various approaches for parallelizing the method and their effects on memory usage and performance.published_or_final_versio

    Image synthesis based on a model of human vision

    Get PDF
    Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision

    Decoupled Sampling for Graphics Pipelines

    Get PDF
    We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at reduced shading cost, as well as controllable or adaptive shading rates which trade off shading quality for performance. It can be thought of as a generalization of multisample antialiasing (MSAA) to support complex and dynamic mappings from visibility to shading samples, as introduced by motion and defocus blur and adaptive shading. It works by defining a many-to-one hash from visibility to shading samples, and using a buffer to memoize shading samples and exploit reuse across visibility samples. Decoupled sampling is inspired by the Reyes rendering architecture, but like traditional graphics pipelines, it shades fragments rather than micropolygon vertices, decoupling shading from the geometry sampling rate. Also unlike Reyes, decoupled sampling only shades fragments after precise computation of visibility, reducing overshading. We present extensions of two modern graphics pipelines to support decoupled sampling: a GPU-style sort-last fragment architecture, and a Larrabee-style sort-middle pipeline. We study the architectural implications of decoupled sampling and blur, and derive end-to-end performance estimates on real applications through an instrumented functional simulator. We demonstrate high-quality motion and defocus blur, as well as variable and adaptive shading rates

    Decoupled Sampling for Real-Time Graphics Pipelines

    Get PDF
    We propose decoupled sampling, an approach that decouples shading from visibility sampling in order to enable motion blur and depth-of-field at reduced cost. More generally, it enables extensions of modern real-time graphics pipelines that provide controllable shading rates to trade off quality for performance. It can be thought of as a generalization of GPU-style multisample antialiasing (MSAA) to support unpredictable shading rates, with arbitrary mappings from visibility to shading samples as introduced by motion blur, depth-of-field, and adaptive shading. It is inspired by the Reyes architecture in offline rendering, but targets real-time pipelines by driving shading from visibility samples as in GPUs, and removes the need for micropolygon dicing or rasterization. Decoupled Sampling works by defining a many-to-one hash from visibility to shading samples, and using a buffer to memoize shading samples and exploit reuse across visibility samples. We present extensions of two modern GPU pipelines to support decoupled sampling: a GPU-style sort-last fragment architecture, and a Larrabee-style sort-middle pipeline. We study the architectural implications and derive end-to-end performance estimates on real applications through an instrumented functional simulator. We demonstrate high-quality motion blur and depth-of-field, as well as variable and adaptive shading rates

    Adaptive learning rate clipping stabilizes learning

    Get PDF
    Artificial neural network training with gradient descent can be destabilized by 'bad batches' with high losses. This is often problematic for training with small batch sizes, high order loss functions or unstably high learning rates. To stabilize learning, we have developed adaptive learning rate clipping (ALRC) to limit backpropagated losses to a number of standard deviations above their running means. ALRC is designed to complement existing learning algorithms: Our algorithm is computationally inexpensive, can be applied to any loss function or batch size, is robust to hyperparameter choices and does not affect backpropagated gradient distributions. Experiments with CIFAR-10 supersampling show that ALCR decreases errors for unstable mean quartic error training while stable mean squared error training is unaffected. We also show that ALRC decreases unstable mean squared errors for scanning transmission electron microscopy supersampling and partial scan completion. Our source code is available at https://github.com/Jeffrey-Ede/ALRC
    • …
    corecore