
Title An anti-aliasing method for parallel rendering

Author(s) Lin, WS; Lau, RWH; Lin, X; Cheung, PYS

Citation
The 1998 International Conference on Computer Graphics,
Hannover, Germany, 22-26 June 1998. In Computer Graphics
International Proceedings, 1998, p. 228-235

Issued Date 1998

URL http://hdl.handle.net/10722/46067

Rights

©1998 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37884855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


An Anti-Aliasing Method for Parallel Rendering

Sam Lin Rynson W.H. Lau* Xiaola Lin P.Y.S. Cheung

Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong

E-mail: wslin@eee.hku.hk

*Department of Computer Science,
City University of Hong Kong, Hong Kong
E-mail: rynson@cs.cityu.edu.hk

Abstract

This paper describes a parallel rendering method
based on the adaptive supersampling technique to produce
anti-aliased images with minimal memory consumption.
Unlike traditional supersampling methods, this one does
not supersample every pixel, but only those edge pixels. In
this paper, we consider various strategies to reduce the
memory consumption in order for the method to be
applicable in situations where limited or fixed amount of
pre-allocated memory is available. This is a very
important issue, especially in parallel rendering. We have
implemented our algorithm on a parallel machine based
on the message-passing model. Towards the end of the
paper, we present some experimental results on the
memory usage and the performance of the method.

1. Introduction

Most graphics applications nowadays demand both high
level of interactivity and high quality of output images.
Applications such as computer games, computer-aided
design and scientific visualization may expect the
hardware system to be able to render anti-aliased images
in a high frame rate, but most anti-aliasing methods
developed consume a large amount of memory and are
computationally very expensive. Recently, we presented a
scan-conversion method called the Adaptive
Supersampling Method [11], with some initial results. It is
based on the z-buffer method, and requires minimal extra
computational and memory costs to do anti-aliasing. The
method is simple and suitable for hardware
implementation or for running on a parallel machine. In
this paper, we present an enhanced algorithm, which can
further reduce the memory requirement when generating
anti-aliased images. With this enhancement, the adaptive
supersampling method could have better memory
management so that it can be run on systems with limited

memory. We have targeted to implement this algorithm
under the hardware-based or software-based parallel
system, which may provide a promising performance for
rendering complex anti-aliased images.

The rest of the paper is organized as follows. In section
2, we review traditional image rendering methods and anti-
aliasing techniques. In section 3, we summarize our
original adaptive supersampling algorithm. In section 4,
we present two techniques for memory saving and
management. In section 5, we briefly discuss various
parallel architectures and different parallel algorithms, and
suggest one which may give the best performance. We also
describe our parallelized algorithm implemented using the
Message Passing Interface, MPI. Finally, in section 6, we
discuss the overall memory usage and the performance of
our algorithm on parallel architectures.

2. Image Rendering Methods

Image generation based on the original z-buffer
algorithm [4] requires only the color value and the depth
value of the closest object at each pixel. Because of the
point sampling nature of the z-buffer method, the images
generated usually have aliases. To solve this problem
means that we need to solve the visibility problem in
subpixel level. This requires the calculation of the visible
area of each polygon at each pixel.

There are many rendering methods proposed to solve
the aliasing problem. The supersampling z-buffer method
[7] supersamples the scene and then filters the
supersampled image down into the output resolution. The
limitations of this method are that it requires a lot of
memory to store the supersampled image and high
computational cost to generate the image. The advantages
are that it is a simple extension of the z-buffer method and
hence it can be implemented in hardware without too
much additional effort [1, 13]. The RealityEngine [2] is a
hardware implementation of this kind, but the color and
depth values are only sampled once per pixel to improve



the performance.
Another well-known anti-aliasing method is called the

A-buffer method [3]. This method basically breaks
polygons into pixel fragments. The visible fragments are
accumulated in a temporary buffer for hidden surface
removal and anti-aliasing. Memory usage of this method
depends on the complexity of the scene and there is no
theoretical upper limit. As such, this method normally
requires run-time memory allocation, which makes the
implementation of the A-buffer algorithm in hardware
difficult. A rare example can be found in [20], which
employs a multiple-pass algorithm to perform front-to-
back hidden surface removal and shading. In order to
reduce the memory cost and the required memory
bandwidth, the image is partitioned into 16x32 pixel
blocks. Each block is rendered independently one after
another. Hence a double-buffered z-buffer and an image
buffer can be stored on-chip.

In [16], an adaptive sampling method is proposed.
Whenever a pixel is covered by one or more polygons, a
linked-list of these polygons is created. These polygons are
clipped, and extra samples, or oversamples, will be taken
in rasterization. They described this as a pixel-level virtual
camera. However, this algorithm creates a lot of linked-
lists and involves a lot of clipping operations, which
greatly affect their performance.

3. Adaptive Supersampling Method

Because the traditional supersampling method allocates
memory to store the depth and color values of each
subpixel as shown in Figure 1(a), a lot of memory is
needed and the actual memory usage is directly
proportional to the subpixel resolution. Obviously, a lot of
supersampled pixels are not use, because the aliasing
problem occurs largely around polygon edges and lines
where surfaces intersect each other. As these edge pixels
contribute only to a small portion of the total number of
pixels in the image (not exceeding 20% for the complex
test images used in our initial experiment [11]), our idea
here is to supersample a polygon only when we need. This
may result in a considerable amount of saving in both
memory and processing time compared to the
supersampling method.

To achieve this, when scan-converting a polygon, if the
polygon covers the whole pixel, we sample the polygon
once only. When the polygon partially covers the pixel, we
perform a supersampling of the polygon within the pixel
region. We do this by calculating where the polygon edge
crosses the boundaries of the pixel and using the
intersection information to form a bitmask index. A
bitmask index stores the enter and exit positions of the
polygon edge. This bitmask index is then used to access an
appropriate bitmask from a pre-computed bitmask table
[10]. The bitmask can be used to set the subpixel coverage.
In order for the buffer to handle the information generated
from either of the two sampling resolutions, we employ a

technique similar to the one used in the A-buffer method
[3]. A standard 2D buffer is used for normal z-buffer scan-
conversion (one sample per pixel).  When a polygon edge
is encountered, a larger memory block is allocated to the
pixel for storing the subpixel samples. Figure 1(b) shows
the distribution of memory blocks in an image.

Figure 1.  Images rendered with: (a) the
traditional supersampling method, and (b)
the adaptive supersampling method, (c) the
resultant image after filtered the
supersampled pixels down from (a) or (b).

Unlike the A-buffer method, there is at most one
memory block allocated to a pixel no matter how many
polygon edges are found in the pixel. In the A-buffer
method, there are two dimensions of uncertainty. The first
one is the number of edge pixels in an image and the
second one is the number of fragments in each edge pixels.
The new method reduces it to one dimension - the number
of edge pixels in an image. There is no need to traverse
through a possible long list of fragments as in the A-buffer
method. The new method greatly simplifies the algorithm
and makes it easier to be implemented into hardware. In
addition, our method, like the supersampling method, can
resolve surface intersection in subpixel level while the A-
buffer method deals with the problem using
approximation.

The new buffer uses two data structures as in our
orignal paper [11], but there are some changes in the
definitions of the two data structures. The major one is
Subpixel. In the original paper, Subpixel was defined to
contain enough memory to store the color and depth
values of all subpixels. Here, it is redefined to store the
color and depth value of a single subpixel, so that the
number of subpixels in a pixel can be dynamically
adjusted according to the amount of memory available in
the memory pool. This will be described in details in the
next section. The definitions of the two data structures are
as follows:

typedef struct {
   Color rgb;
   Boolean SuperPixel;
   union {
      int z;
      Subpixel  * pblock;
   } zOrpblock;
   short dxz, dyz;
} Pixel ;

typedef struct {
   Color rgb;
   int z;
} Subpixel ;



Pixel is the basic element of a 2D pixel buffer. If a
polygon completely covers a pixel, the Pixel element is
used in a similar way as in the traditional z-buffer method.
If a polygon partially covers a pixel, the memory location
for storing the z value is used as a pointer instead.
SuperPixel indicates if the pixel has been supersampled.
If it is set to 0, the pixel has been sampled once only; if it
is set to 1, the pixel is a supersampled pixel. The attributes
dxz and dyz are used to store the depth increments of the
polygon in the x and y directions respectively. These two
values are calculated once for each polygon and are used
to generate the depth values for each subpixel so that
hidden surface removal may be done in subpixel level.

4. Memory Management

Although our method could greatly reduce the memory
consumption when compared with the traditional
supersampling method, we target to further reduce the
memory consumption in order to generate high resolution
images with minimal memory. We propose two techniques
to reduce the memory usage, the memory adaptation
technique and the memory reclaiming technique. The
memory adaptation technique concerns how to change the
sampling frequency in the rendering process while the
memory reclaiming technique concerns how to reclaim
some of the Subpixel cells in an image.

4.1. Memory Adaptation Technique

In our algorithm, we employ a technique to allow the
sampling frequency in a supersampled pixel to be changed
according to the availability of memory resources and the
statistical information of the previous frame. To ensure
that all 100% of pixels can be supersampled without the
need for dynamically allocated memory, we preallocate
enough memory for supersampling the whole image using
the lowest subpixel resolution, i.e. 2x2. We use three
different subpixel resolutions for the edge pixels (4x4, 3x3,
and 2x2), depending on the total number of edge pixels in
the image. If it is small, we can supersample the edge
pixels using a higher subpixel resolution, and vice versa.

In our method, the preallocated memory can be used to
supersample 25% of the total number of pixels in the
image at a subpixel resolution of 4x4. When rendering the
first frame, we set the subpixel resolution to the highest
one, i.e. 4x4. Whenever a new edge pixel is to be created,
16 Subpixel cells will be allocated to the pixel. If the
memory usage in this frame exceeds the preallocated
amount, no further supersampling will be done. Because
of frame-to-frame coherence, the memory usage of the
next frame is expected to be similar to that of the current
frame. Based on the actual total number of edge pixels
found in the current frame, the algorithm will decrease the
subpixel resolution of the next frame from 4x4 to 3x3 as
shown in Figure 2. This will allow up to 44% of the pixels

in the image to be supersampled. We may further reduce
the subpixel resolution to 2x2, which will then allow up to
100% of the pixels to be supersampled. The decision of
using which subpixel resolution for rendering the next
frame depends on the memory consumption of the current
frame.

Preallocated
Subpixel cells

16 Subpixel cells
assigned for
supersampling

9 Subpixel cells
assigned for
supersampling

Reducing subpixel
resolution if memory
usage exceeds limit

Figure 2. The subpixel resolution decreases
when the memory usage of the previous
frame exceeded the preallocated amount.

4.2. Memory Reclaiming Technique

The second technique to reduce memory consumption
is to reclaim those unnecessary Subpixel cells. When
scan-converting a polygon edge, a lot of edge pixels may
be created. Some edge pixels may not represent the real
edges of the object, as two adjacent polygon edge
fragments may together cover the whole pixel as shown in
Figure 3.

Pixels fully
covered by 2
polygons.

Pixels not fully
covered, no
memory
reclamation

Subpixel cells inserted to the
top of linked-list.

Figure 3.  When all the subpixels are filled
with the same color and similar depth values,
Subpixel cells can be reclaimed.

If an object is composed of a large number of polygons,
it will have a lot of “internal” edges, and a lot of
supersampled pixels may be resulted. In order to release
these Subpixel cells, we have to keep track of the
supersampled pixels to see if all the subpixels have the
same color and similar depth values. Polygons sharing a
common edge will result in the same color values along



the edge pixels. The depth value, however, may have some
variations due to the interpolation of dxz and dyz of the
two polygons. Hence, when computing the subpixel depth
values, if the difference between the maximum and
minimum depth values is smaller than 1 unit, we may
consider the pixel fully covered by two adjacent polygons
and reclaim all the Subpixel cells allocated to the pixel.
The reclaimed Subpixel cells will be inserted to a linked-
list for later use. Thus, we can reuse preallocated memory
and avoid memory fragmentation during the rendering of
an image. Although this technique imposes an overhead on
the algorithm, as a result of more comparisons, a large
amount of supersampled pixels can be reclaimed. We will
discuss some results of this technique in section 7.

5. Parallel Rendering

In image rendering, there are two major phases that
account for most of the computational cost.
z Transformation phase: object transformation and

clipping, and
z Rasterization phase: rasterization and anti-

aliasing.
The parallelism in the transformation phase is generally

called object parallelism, in which geometric primitives
are sent to different processors for transformation and
clipping. The parallelism in the rasterization phase is
called image or pixel parallelism [5, 6], in which the
screen is divided into regions and each processor is
responsible for one or more of the regions.

5.1. Parallel Rendering Systems

Parallel rendering is not a new issue. The design and
implementation of either hardware-based systems or
software-based systems can be found in many literatures
[5, 18]. One way to parallelize the rendering process is to
implement the rendering pipeline directly into a parallel
hardware system [9]. This approach has been very
successful in producing very high performance rendering
systems. However, these systems can only perform
graphics operations and are not suitable for general-
purpose computations.

Another way to parallelize the rendering process is by
implementing the rendering algorithms on a massively
parallel architecture [18]. Theoharis in [17] explored the
algorithms on SIMD and hybrid SIMD/MIMD systems.
Whitman also evaluated several algorithms for MIMD
shared memory systems [18]. In these systems, the
processors are not specifically designed for graphics
operations, and the communication between processes
often has bandwidth limitations. Most of the research cited
above, therefore, tries to cope with these limitations in
order to maximize the parallelism and the potential of the
underlying hardware. Although a massively parallel
machine may have a large number of processors, each

processor usually contains a very limited amount of
memory. If anti-aliasing is used, the memory requirement
may increase dramatically. Thus, memory management on
this kind of machine is important. Whitman in [18] has
derived different caching methods to minimize the cost of
remote memory access.

Sometimes, a network of workstations or personal
computers can also be configured as a parallel rendering
system. Although most of these computers are inexpensive,
the aggregate processing power and memory capacity can
be quite high. However, due to the high communication
latency and low network bandwidth, the performance of
the resulting rendering system is usually low. To overcome
these limitations, the rendering algorithm should break the
jobs with a larger granularity, and sometimes, replicate the
object database in order to minimize the communication
between processors.

From the above discussions, we may have noticed that
many systems suffer from the degradation of performance
when applying anti-aliasing due to either the limited
amount of memory available to each processor or the
amount of information needed to be sent through the
network. In [16], a parallel anti-aliasing method was
described, although no results were presented. In the
current stage, we are focusing on measuring the memory
usage and its distribution among the processors. We would
like to determine the minimum amount of memory that we
should preallocate to each processor, and the strategies for
handling memory usage when it exceeds the preallocated
amount. Apart from the issue of different implementation
platforms, the design of the algorithm is also important in
developing an efficient parallel rendering system.

5.2. Sorting Algorithms

As a polygon may be projected anywhere on the screen,
polygons rendering may be viewed as a sorting problem
on the screen space. Hence, the selection of different
sorting methods will affect the technique used for data
decomposition and the frequency of data communication,
which in turn affect the performance of the parallel
algorithm. Molnar et al. in [14] have a detailed description
of different kinds of sorting methods. The choice of
sorting methods leads to taxonomy of different
architectures. They are sort-first, sort-middle and sort-last.

In sort-first, each processor is assigned a portion of the
screen to render. Before the polygons are distributed, they
are first transformed to determine where they should be
transferred. The corresponding processors will then
perform the remaining operations in the transformation
phase and the complete rasterization phase. Sort-first will
minimize the communication between processors if the
objects in the image are static or moving very slowly. This
is because there is no need to redistribute the transformed
polygons to other processors. However, sort-first induces
to load imbalance as polygons may all fall into a single
region. In addition, more data would be replicated among



the processors if most objects are overlapped in many
regions. Mueller implemented a sort-first rendering system
in [15].

In sort-middle, polygons are distributed evenly among
the processors without concerning the screen location of
the polygons. After the transformation phase, the polygons
need to be redistributed among processors depending on
which region of the screen they fall in. However, it is not
necessary to transfer the whole polygon structure to the
other processors. Only information such as screen
coordinates of the polygon, and color of each vertex is
needed. This can minimize the amount of data transferred
through the network. Rasterization takes place after the
information related to the polygons has reached the
corresponding processors. Sort-middle is a natural
architecture because it performs redistribution between the
transformation and rasterization phases. We can design
different algorithms for object parallelism and image
parallelism independently. There are many examples on
this type of architecture [2, 6, 8].

In sort-last, polygons are distributed among the
processors. Transformation and rasterization are carried
out on the same processor. Hence, polygons may fall into
different positions of the screen. The images from all
processors are then collected and combined together to
form an output image [12]. Since the whole image
generated by each processor needs to be transferred to one
of the processors to do image composition, the amount of
data transferred can be very high. The situation could be
worse if traditional anti-aliasing method is applied.
Additional samples of the image will increase the amount
of data to be transferred by several times. Our adaptive
anti-aliasing algorithm would obviously minimize the
amount of data to be transferred during the image
composition stage, and improve the performance
significantly.

5.3. Load Balancing

Screen subdivision is one of the image parallelism
methods by which primitives are divided according to their
projected screen positions. In most cases, processors are
assigned to handle a group of subdivided screen regions.
The transformed geometric primitives are transferred to
the corresponding processors for rasterization. Therefore,
the strategy used to subdivide the screen would affect the
method for task decomposition, and hence the load
balancing between the processors. We can classify the
strategies for handling load balancing as either static or
dynamic.

5.3.1. Static load balancing

Static load balancing schemes rely on fixed screen
partitioning to distribute polygon primitives to specific
regions of the screen, and are therefore totally affected by
the granularity ratio. Granularity refers to the degree of

data decomposition. A fine-grained decomposition breaks
the dataset into smaller units, while coarse-grained
decomposition breaks the dataset into larger units.
Experiments show that coarse-grained decomposition
usually results in poor load balancing, while fine-grained
decomposition generally results in better load balancing
but at the time higher overheads for tasks scheduling,
communication, redundant calculations and more data
replication among processors. The overheads are more
significant on distributed memory systems as mentioned
earlier. The granularity ratio has been studied in [8] and
[18]. Hence, using the coarsest granularity that allows
reasonable load balancing may be the best way for
achieving good parallel timings in distributed memory
architectures. However, the optimal granularity ratio is
different for different architectures. Figure 4 shows our
method of subdivision in which the screen is subdivided
into small square regions, each region consists of 64x64
pixels. Regions of the same pattern are assigned to the
same processor for scan-conversion and display.

Figure 4.  Regions of the screen with the
same pattern are assigned to the same
processor.

5.3.2. Dynamic Load Balancing

Two major approaches are currently used in dynamic
load balancing, the demand-driven approach and task
adaptive approach [19]. The demand-driven approach
decomposes the problem domain into smaller independent
tasks, and then assigns them to different processors to
finish the tasks. Once a processor has finished its current
task, another task is assigned to it until all the tasks are
completed. The task adaptive approach decomposes the
problem into a relatively small number of coarse-gained
tasks, which are then assigned to different processors. If a
processor has finished all its tasks, it communicates with
another processor with the largest remaining workload,
and then helps it to finish half of its remaining job. In this
approach, additional costs including communications
among processors and subdivision calculations would
increase the overheads. Because the cost of remote
memory references makes dynamic task assignment, data
migration, and maintaining global status information more
expensive, this approach is not suitable for use in message-
passing systems. Therefore, most of the algorithms using
dynamic load balancing strategy are implemented on
shared-memory architectures.



6. The Message-Passing Parallel Renderer

With the sort-first model, it is possible that most
polygons are assigned to one processor in the
transformation and rasterization phases. Thus, this
processor will be heavily loaded while others stay idle.
The sort-middle model also suffers from load imbalance
during the rasterization phase. But it does not have the
problem in the transformation phase because the polygons
are evenly distributed among the processors for
transformation. For the sort-last model, the transformed
polygons may have various sizes, and the size of job may
vary significantly. We have developed a renderer to test the
memory distribution when rendering an anti-aliased image
using our adaptive method. Although we can foresee the
improvement of the sort-last model used in our method,
the sort-middle model is simple and easy to break the
rendering pipeline into 2 stages. It also provides a better
load balancing than the other two models. In view of this,
we have adopted the sort-middle model to implement our
renderer using the message-passing paradigm.

Graphics database

(Arbitrarily partitioned)

G G G G G G
Geometric transformation

Object parallelism phase

R R R R R R

Data Redistribution

Rasterization

 Image parallelism phase

Root process Display result image

Figure 5.  Overall algorithm of the message-
passing renderer.

The renderer is implemented on an SGI Power
Challenge with 8 processors using the library of message
passing interface, MPI. The structure of the algorithm is
shown in Figure 5. At first, objects in the database are
divided into geometric primitives in the form of polygons.
They are distributed evenly among the processors for
transformation, back-face culling, and clipping. The
transformed polygons may fall into different regions of the
screen, and hence redistribution of data is necessary. In
order to lower the volume of transferred data, only screen
coordinates, and color values of the transformed polygons
are sent to the corresponding processor, where
rasterization takes place.

In the image parallelism stage, we adopt the static load
balancing technique to minimize the communication
between processors. The strategy for partitioning the
screen has been described in section 5. A root process is
responsible for collecting resultant regional images and
displaying them.

7. Results and Discussions

In this section, we discuss the memory consumption,
the distribution of memory, and the load balancing
between processors of the new adaptive method.

7.1. Memory Usage

We have tested some images of various complexities.
From our experiments, majority of the complex images
contain no more than 20% of edge pixels. Figure 6 shows
the percentages of the supersampled pixels when rendering
Figure 8(a) and 8(b). Figure 8(a) contains the letter ‘B’
comprising of roughly 800 large polygons. The object was
made to rotate randomly on the screen.

±

±¯±¶

±¯²

±¯²¶

±¯³

±¯³¶

±¯´

² ³ ´ µ ¶ · ¸ ¹ º ²±
Âïêîâõêðï çóâîæô

Ô
ö
ñ
æó
ôâ
î
ñ
íæ
å
ñ
êù
æí
ô
°
Õ
ð
õâ
í
ñ
êù
æí
ô

Çêèöóæ ¹©ãª øêõéðöõ îæîðóú óæäíâîâõêðï

Çêèöóæ ¹©ãª øêõé îæîðóú óæäíâîâõêðï

Çêèöóæ ¹©âª øêõéðöõ îæîðóú óæäíâîâõêðï

Çêèöóæ ¹©âª øêõé îæîðóú óæäíâîâõêðï

Figure 6.  Memory usage in Figure 8(a) and
8(b), before and after memory reclamation.

The total number of supersampled pixels used without
memory reclamation was less than 5% of the total number
of pixels in the image. If we render the image with
512x512 pixels and 4x4 subpixels resolution, the 2D array
of Pixel cells consumes about 3.14MB of memory and the
Subpixel cells consume about 1.47MB. In other words,
the whole image consumes about 4.61MB of memory.
When rendering the same image using memory
reclamation technique, the number of supersampled pixels
drops to 1.3% of the total number of pixels in the image.
Thus, only about 3.52MB of memory is consumed, and up
to a maximum of 74% supersampled pixels were
reclaimed. To render Figure 8(b), 10.14MB of memory
was used and about 24% of the pixels were supersampled.
By using the memory reclamation technique, about 28% of
the supersampled pixels were reclaimed. Thus, the
percentage of supersampled pixels decreased to about 17%.
Comparing with the traditional supersampling method
where 29.4MB of memory is needed for rendering an
image with the same pixel and subpixel resolutions,
tremendous amount of memory has been saved. Figure 8(c)
shows a test image of the space shuttle. The number of
supersampled pixels created was also below 5% of the



total number of pixels in the image.
Figure 8(d) shows an extreme test case of a very

complex scene. The test file contains more than 3,000
tetrahedral objects randomly distributed on the image.
With our memory reclamation technique, the total number
of Subpixel cells used to render the image was below 50%.
In this situation, the subpixel resolution has been set to
2x2. However, such complex scene is not likely to appear
in most applications because polygons are normally
clustered to form objects, instead of randomly distributed
around the screen resulting in a lot of edge pixels being
created.

In some applications, the scene complexity may vary
greatly. In order to handle images with any complexity, we
need to preallocate enough memory for supersampling all
pixels of the image at a 2x2 subpixels resolution. In such
situation, we need about 10.44MB of memory for
rendering an image of 512x512 pixels. Of course, if we are
certain that the application will never have to handle
scenes with 100% of supersampled pixels, we may reduce
the amount of preallocated memory accordingly.

In some cases, consecutive images may not preserve the
frame-to-frame coherence, e.g. a rapid change of the
viewing direction, the memory adaptation technique may
give a wrong prediction. Thus, some edge pixels may not
be supersampled when all the preallocated memory is used
up. However, this problem normally occurs only for a very
short moment, and our adaptive algorithm will correct the
situation in the next frame.

Figure 7 shows the maximum and minimum memory
usage among the 8 processors when rendering Figure 8(b).
The distributions of memory among the processors were
very close, which means that every processor handled
similar number of supersampled pixels during the
rendering process. This actually reflects the situation of
load balancing. The average memory usage of each
processor is about 0.98MB.

Figure 7.  The maximum and minimum
amount of memory usage of the 8
processors during 20 frames of animation on
Figure 8(b).

7.2. Performance Analysis

Table 1 shows the performance results of rendering
Figure 8(a). The image contains large polygons of over

50x50 pixels each. The timings on each phase of the
rendering process for 20 frames were measured. It can be
seen that the workload of the transformation phase was
evenly distributed as all processors spent the same amount
of time on the transformation. From our measurements,
the renderer can approximately process up to 20-30K large
anti-aliased polygons per second.

Min. Time Max. Time
Transformation Phase 0.0002s 0.0002s
Data redistribution 0.0006s 0.0120s
Rasterization Phase 0.0170s 0.0300s
Table 1. The minimum and maximum times
spent on each stage of the message-passing
renderer when rendering Figure 8(a).

8. Conclusions

From the results of our implementation, although the
traditional supersampling method solves the aliasing
problem, it increases the rendering time and memory
usage dramatically. The new adaptive supersampling
method requires less memory and has a much higher
performance. Unlike the A-buffer method, the new method
never has to traverse a possibly long list of fragments.
Here, we have presented two memory saving techniques to
further reduce the memory usage of our adaptive method.
We have also investigated the parallelization of our
method.

Toward the end of the paper, we have discussed the
memory usage and the performance of our adaptive anti-
aliasing method when running in parallel architectures. As
a future work, we are currently considering the possibility
of implementing the method in hardware.

References

[1] K. Akeley and T. Jermoluk. High-Performance Polygon
Rendering. ACM Computer Graphics, 22(4):239-246,
August 1988.

[2] K. Akeley. RealityEngine Graphics. ACM Computer
Graphics:109-116, August 1993.

[3] L. Carpenter. The A-buffer, an Antialiased Hidden Surface
Method. ACM Computer Graphics, 18(3):103-108, July
1984.

[4] E. Catmull. A Subdivision Algorithm for Computer Display
of Curved Surfaces. Ph.D. Dissertation, Computer Science
Department, University of Utah, 1974.

[5] T. Crockett. Parallel Rendering. Technical Report 95-31,
Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, 1995.

[6] T. Crockett and T. Orloff. A MIMD Rendering Algorithm
for Distributed Memory Architectures. ACM Parallel
Rendering Symposium:35-42, 1993.

[7] F. Crow. The Aliasing Problem in Computer-Generated
Shaded Images. Communications of the ACM, 20(11):799-
805, November 1977.



[8] D. Ellsworth. A New Algorithm for Interactive Graphics
on Multicomputers. IEEE Computer Graphics and
Applications, 14(4):33-40, July 1994.

[9] H. Fuchs. VLSI for Graphics. Techniques for Computer
Graphics, Springer-Verlag:281-294, 1987.

[10] R.W.H. Lau and N Wiseman. Accurate Image Generation
and Interactive Image Editing with the A-buffer.
Proceedings of EuroGraphics ’92, II(3):279-288,
September 1992.

[11] R.W.H. Lau. An Adaptive Supersampling Method. Image
Analysis Applications and Computer Graphics, LNCS
1024, Springer-Verlag:205-214, December 1995.

[12] T.Y. Lee, C.S. Raghavendra and J.N. Nicholas. Image
Composition Methods for Sort-Last Polygon Rendering on
2D Mesh Architectures. ACM Parallel Rendering
Symposium:55-62, 1995.

[13] S. Molnar, J. Eyles and J. Poulton. PixelFlow: High-Speed
Rendering Using Image Compo-sition. ACM Computer
Graphics, 26(2):231-340, July 1992.

[14] S. Molnar, M. Cox, D. Ellsworth and H. Fushs. A Sorting
Classification of Parallel Rendering. IEEE Computer
Graphics and Applications, 14(4):23-31, July 1994.

[15] C. Mueller. The Sort-First Rendering Architecture for
High-Performance Graphics. ACM Symposium on
Interactive 3D Graphics:75-84, 1995.

[16] F.V. Reeth, R. Welter and E. Flerackers. Virtual Camera
Oversampling: A New Parallel Anti-Aliasing Method for
Z-Buffer Algorithms. CG International’90:241-254, 1990.

[17] T. Theoharis. Algorithms for Parallel Polygon Rendering.
LNCS 373, Springer-Verlag, Berlin, 1989.

[18] S. Whitman. Multiprocessor Methods for Computer
Graphics Rendering. AK Peters, 1992.

[19] S. Whitman. A Task-Adaptive Parallel Graphics Renderer.
IEEE Computer Graphics and Applications, 14(4):41-48,
July 1994.

[20] S. Winner, M. Kelly, B. Pease, B. Rivard and A. Yen.
Hardware Accelerated Rendering Of Antialiasing Using A
Modified A-buffer Algorithm. ACM Computer
Graphics:307-316, 1997.

(a) (b)

(c) (d)

Figure 8.  (a) shows the letter ‘B’, containing about 800 very large polygons. (b) shows 500
tetrahedral objects scattered on the screen and rotate randomly. (c) shows the output image of a
shuttle. (d) shows 3000 tetrahedral objects scatter on screen; about 50% of the whole image are
supersampled pixels, and the subpixel resolution is lowered to increase the availability of memory.


