-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

Title An anti-aliasing method for parallel rendering

Author(s) Lin, WS; Lau, RWH,; Lin, X; Cheung, PYS

The 1998 International Conference on Computer Graphics,
Citation Hannover, Germany, 22-26 June 1998. In Computer Graphics
International Proceedings, 1998, p. 228-235

Issued Date | 1998

URL http://hdl.handle.net/10722/46067

©1998 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Rights

https://core.ac.uk/display/37884855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Anti-Aliasing Method for Parallel Rendering

Sam Lin Rynson W.H. Lau* Xiaola Lin P.Y.S. Cheung

Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong
E-mail: wslin@eee.hku.hk

*Department of Computer Science,
City University of Hong Kong, Hong Kong
E-mail: rynson@cs.cityu.edu.hk

Abstract memory. We have targeted to implement this algorithm
under the hardware-based or software-based parallel
system, which may provide a promising performance for

This paper describes a parallel rendering method éendering complex anti-aliased images.

based on the adaptive supersampling technique to produc) . .
anti-aliased images with minimal memory consumption. The rest of the_ paper is organlzed_ as follows. In section
Unlike traditional supersampling methods, this one doesz'.we review trgdmonal |mage_render|ng methods a_nd anti-
not supersample every pixel, but only those edge pixels. Ir"fl“.a?"ng techmques. In section 3, We summarizeé our
this paper, we consider various strategies to reduce theOrlglnal adaptive supersampllng algorithm. In section 4,
memory consumption in order for the method to be W& Present two techniques for memory saving and
applicable in situations where limited or fixed amount of Management. In section 5, we briefly discuss various
pre-allocated memory is available. This is a very parallel architectures and different parallel algorithms, and
important issue, especially in parallel rendering. We have SU99est one which may give the best performance. We also
implemented our algorithm on a parallel machine based describe our parallelized algorithm implemented using the

on the message-passing model. Towards the end of thMessage Passing InterfackPl. Finally, in section 6, we
paper, we present some experimental results on thediscuss the overall memory usage and the performance of

memory usage and the performance of the method. our algorithm on parallel architectures.

2. Image Rendering Methods

1. Introduction
Image generation based on the original z-buffer

Most graphics applications nowadays demand both high@lgorithm [4] requires only the color value and the depth
level of interactivity and high quality of output images. value of the closest object at each pixel. Because of the
Applications such as computer games, computer-aided?0int sampling nature of the z-buffer method, the images
design and scientific visualizaton may expect the generated usually have aliases. To solve this problem
hardware system to be able to render anti-aliased imageg'€ans that we need to solve the visibility problem in
in a high frame rate, but most anti-aliasing methods Subpixel level. This requires the calculation of the visible
developed consume a large amount of memory and aré@réa of each polygon at each pixel.
computationally very expensive. Recently, we presented a 1here are many rendering methods proposed to solve
scan-conversion method called the Adaptive the aliasing problem. The supersampling z-buffer method
Supersampling Methdd 1], with some initial results. Itis [7] supersamples the scene and then filters the
based on the z-buffer method, and requires minimal extraSUPersampled image down into the output resolution. The
computational and memory costs to do anti-aliasing. Thelimitations of this method are that it requires a lot of
method is simple and suitable for hardware Mmemory to store the supersampled image and high
implementation or for running on a parallel machine. In computational cost to generate the image. The advantages
this paper, we present an enhanced algorithm, which carf® that_ itis a S|mple extension qf the z-buffer method and
further reduce the memory requirement when generatinghence it can be implemented in hardware without too
anti-aliased images. With this enhancement, the adaptivanuch additional effort [1, 13]. The RealityEngine [2] is a
supersampling method could have better memoryhardware implementation of this kind, but the color and

management so that it can be run on systems with limiteddepth values are only sampled once per pixel to improve

the performance. technique similar to the one used in the A-buffer method

Another well-known anti-aliasing method is called the [3]. A standard 2D buffer is used for normal z-buffer scan-
A-buffer method [3]. This method basically breaks conversion (one sample per pixel). When a polygon edge
polygons into pixel fragments. The visible fragments are is encountered, a larger memory block is allocated to the
accumulated in a temporary buffer for hidden surface pixel for storing the subpixel samples. Figure 1(b) shows
removal and anti-aliasing. Memory usage of this methodthe distribution of memory blocks in an image.
depends on the complexity of the scene and there is no
theoretical upper limit. As such, this method normally
requires run-time memory allocation, which makes the
implementation of the A-buffer algorithm in hardware
difficult. A rare example can be found in [20], which
employs a multiple-pass algorithm to perform front-to-
back hidden surface removal and shading. In order to _. . - o
reduce the memory cost and the required memory Figure 1. Images rendered with: (a) the
bandwidth, the image is partitioned into 16x32 pixel traditional supersampling method, and (b)
blocks. Each block is rendered independently one after the adaptive supersampling method, (c) the
another. Hence a double-buffered z-buffer and an image resultant —image after filtered the
buffer can be stored on-chip. supersampled pixels down from (a) or (b).

In [16], an adaptive sampling method is proposed.
Whenever a pixel is covered by one or more polygons, a Unlike the A-buffer method, there is at most one
linked-list of these polygons is created. These polygons aranemory block allocated to a pixel no matter how many
clipped, and extra samples, aversampleswill be taken polygon edges are found in the pixel. In the A-buffer
in rasterization. They described this as a pixel-level virtual method, there are two dimensions of uncertainty. The first
camera. However, this algorithm creates a lot of linked-one is the number of edge pixels in an image and the
lists and involves a lot of clipping operations, which second one is the number of fragments in each edge pixels.

greatly affect their performance. The new method reduces it to one dimension - the number
of edge pixels in an image. There is no need to traverse
3. Adaptive Supersampling Method through a possible long list of fragments as in the A-buffer

method. The new method greatly simplifies the algorithm

Because the traditional supersampling method allocate@nd makes it easier to be implemented into hardware. In
memory to store the depth and color values of eachaddition, our me.thod, Ilkg thg super;ampllng mgthod, can
subpixel as shown in Figure 1(a), a lot of memory is resolve surface intersection in subpixel level while the A-
needed and the actual memory usage is directlyPuffer ~method deals with the problem using
proportional to the subpixel resolution. Obviously, a lot of &PProximation. _
supersampled pixels are not use, because the aliasing 1h€ new buffer uses two data structures as in our
problem occurs largely around polygon edges and linesdrignal paper [11], but there are some changes in the
where surfaces intersect each other. As these edge pixef@efinitions of the two data structures. The major one is
contribute only to a small portion of the total number of Subpixel In the original paperSubpixel was defined to
pixels in the image (not exceeding 20% for the complex contain enough memory to store the color and depth
test images used in our initial experiment [11]), our idea Values of all subpixels. Here, itis redeﬂned to store the
here is to supersample a polygon only when we need. Thisolor and depth value of a single subpixel, so that the

may result in a considerable amount of saving in bothnumber of subpixels in a pixel can be dynamically
memory and processing time compared to the @djusted according to the amount of memory available in

supersampling method. the memory pool. This will be described in details in the
To achieve this, when scan-converting a polygon, if the next section. The definitions of the two data structures are

polygon covers the whole pixel, we sample the polygonas follows:
once only. When the polygon partially covers the pixel, we

. s . typedef struct {
perform a supersampling of the polygon within the pixel Color rgb;
region. We do this by calculating where the polygon edge Boolean SuperPixel;
crosses the boundaries of the pixel and using the ‘Mot
intersection information to form a bitmask index. A Subpixel * pblock:
bitmask index stores the enter and exit positions of the }Sﬁgzpdfjgc'é? .
polygon edge. This bitmask index is then used to access an ; piel ; ve
appropriate bitmask from a pre-computed bitmask table
[10]. The bitmask can be used to set the subpixel coverage. “Zgaeoi{
In order for the buffer to handle the information generated intz;

from either of the two sampling resolutions, we employ a } Subpixel

Pixel is the basic element of a 2D pixel buffer. If a in the image to be supersampled. We may further reduce
polygon completely covers a pixel, tiixel element is the subpixel resolution to 2x2, which will then allow up to
used in a similar way as in the traditional z-buffer method. 100% of the pixels to be supersampled. The decision of
If a polygon partially covers a pixel, the memory location using which subpixel resolution for rendering the next
for storing the z value is used as a pointer instead.frame depends on the memory consumption of the current
SuperPixel indicates if the pixel has been supersampled. frame.

If it is set to 0, the pixel has been sampled once only; if it

is set to 1, the pixel is a supersampled pixel. The attributes | | | | | | | | l | l | l | l | l | | | | | Preallocated
dxz anddyz are used to store the depth increments of the T Subpixel cells
polygon in the x and y directions respectively. These two 9 Subpixel cells
values are calculated once for each polygon and are used\ 16 Subpixelcells assigned for
to generate the depth values for each subpixel so that ajgfgﬂgi’ng supersampling
hidden surface removal may be done in subpixel level.

\ Reducing subpixel

4. Memory Management resolution if memor
usae exceeds limit
— >

Although our method could greatly reduce the memory
consumption when compared with the traditional
supersampling method, we target to further reduce the _. . .
memory consumption in order to generate high resolution Figure 2. The subpixel resolution decrea_ses
images with minimal memory. We propose two techniques When the memory usage of the previous
to reduce the memory usage, the memory adaptation frame exceeded the preallocated amount.
technique and the memory reclaiming technique. The o]
memory adaptation technique concerns how to change thé.2. Memory Reclaiming Technique
sampling frequency in the rendering process while the
memory reclaiming technique concerns how to reclaim The second technique to reduce memory consumption

some of theSubpixel cells in an image. is to reclaim those unnecessaBubpixel cells. When
scan-converting a polygon edge, a lot of edge pixels may
4.1. Memory Adaptation Technique be created. Some edge pixels may not represent the real

edges of the object, as two adjacent polygon edge
In our algorithm, we employ a technique to allow the fragments may together cover the whole pixel as shown in

sampling frequency in a supersampled pixel to be changedrigure 3.
according to the availability of memory resources and the

statistical information of the previous frame. To ensure Bl Pixels fully
that all 100% of pixels can be supersampled without the HH | covered by 2
need for dynamically allocated memory, we preallocate 2k polygons.
enough memory for supersampling the whole image using
the lowest subpixel resolution, i.e. 2x2. We use three
different subpixel resolutions for the edge pixels (4x4, 3x3, Subpixelcells inserted to the
and 2x2), depending on the total number of edge pixels in op of finked-fist.
the image. If it is small, we can supersample the edge Pixels not fully Ll e
pixels using a higher subpixel resolution, and vice versa. B | covered, no
In our method, the preallocated memory can be used to [HH memory
supersample 25% of the total number of pixels in the reclamation

image at a subpixel resolution of 4x4. When rendering the]))

first frame, we set the subpixel resolution to the highest Figure 3. When all the subpixels are filled

one, i.e. 4x4. Whenever a new edge pixel is to be created, With the same color and similar depth values,

16 Subpixel cells will be allocated to the pixel. If the Subpixel cells can be reclaimed.

memory usage in this frame exceeds the preallocated

amount, no further supersampling will be done. Because If an object is composed of a large number of polygons,
of frame-to-frame coherence, the memory usage of theit will have a lot of “internal” edges, and a lot of
next frame is expected to be similar to that of the currentsupersampled pixels may be resulted. In order to release
frame. Based on the actual total number of edge pixelshese Subpixel cells, we have to keep track of the
found in the current frame, the algorithm will decrease thesupersampled pixels to see if all the subpixels have the
subpixel resolution of the next frame from 4x4 to 3x3 as same color and similar depth values. Polygons sharing a
shown in Figure 2. This will allow up to 44% of the pixels common edge will result in the same color values along

the edge pixels. The depth value, however, may have somerocessor usually contains a very limited amount of
variations due to the interpolation dkz anddyz of the memory. If anti-aliasing is used, the memory requirement
two polygons. Hence, when computing the subpixel depthmay increase dramatically. Thus, memory management on
values, if the difference between the maximum and this kind of machine is important. Whitman in [18] has
minimum depth values is smaller than 1 unit, we may derived different caching methods to minimize the cost of
consider the pixel fully covered by two adjacent polygons remote memory access.

and reclaim all theSubpixel cells allocated to the pixel. Sometimes, a network of workstations or personal
The reclaimedSubpixel cells will be inserted to a linked- computers can also be configured as a parallel rendering
list for later use. Thus, we can reuse preallocated memongystem. Although most of these computers are inexpensive,
and avoid memory fragmentation during the rendering of the aggregate processing power and memory capacity can
an image. Although this technique imposes an overhead ope quite high. However, due to the high communication
the algorithm, as a result of more comparisons, a largdatency and low network bandwidth, the performance of
amount of supersampled pixels can be reclaimed. We willthe resulting rendering system is usually low. To overcome

discuss some results of this technique in section 7. these limitations, the rendering algorithm should break the
jobs with a larger granularity, and sometimes, replicate the
5. Parallel Rendering object database in order to minimize the communication

between processors.
In image rendering, there are two major phases that From the above discussions, we may have noticed that
account for most of thé computational cost. many systems suffer from the degradation of performance

® Transformation phaseobject transformation and Wnen applying anti-aliasing due to either the limited
amount of memory available to each processor or the

clipping, and . .
° Ra?srzcer?zation phase rasterization and anti- amount of information needed to be sent through the
aliasing. network. In [16], a parallel anti-aliasing method was

The parallelism in the transformation phase is generallydescribed, although no results were presented. In the
called object parallelism in which geometric primitives CurTent stage, we are focusing on measuring the memory
are sent to different processors for transformation andUSage and its distribution among the processors. We would
clipping. The parallelism in the rasterization phase is like to determine the minimum amount of memory that we

called image or pixel parallelism[5, 6], in which the should preallocate to each processor, and the strategies for

screen is divided into regions and each processor id'2ndling memory usage when it exceeds the preallocated

responsible for one or more of the regions. amount. Apart from the issue of different implementation
platforms, the design of the algorithm is also important in

5.1. Parallel Rendering Systems developing an efficient parallel rendering system.

Parallel rendering is not a new issue. The design and®-2- Sorting Algorithms
implementation of either hardware-based systems or _
software-based systems can be found in many literatures AS @ Polygon may be projected anywhere on the screen,
[5, 18]. One way to parallelize the rendering process is toP0lYgons rendering may be viewed as a sorting problem

implement the rendering pipeline directly into a parallel " the screen space. Hence, the selection of different
hardware system [9]. This approach has been Verysortlng mgt_hods will affect the technique used fo_r dgta
successful in producing very high performance renderingd®composition and the frequency of data communication,
systems. However, these systems can only performWh'Ch in turn affect the performance of the parallel

graphics operations and are not suitable for genera|_algor_ithm. Mollnar et al. in [_14] have a detailed desgription
purpose computations. of different kinds of sorting methods. The choice of

Another way to parallelize the rendering process is by SOrting methods leads to taxonomy of different
implementing the rendering algorithms on a massively architectures. They asort-first, sort-middleandsort-last

parallel architecture [18]. Theoharis in [17] explored the N sort-first each processor is assigned a portion of the
algorithms on SIMD and hybrid SIMD/MIMD systems. SCreen to render. Before the pol_ygons are distributed, they
Whitman also evaluated several algorithms for MIMD &€ first transformed to determlne where they should be
shared memory systems [18]. In these systems, thdransferred. The 'c'orrespond{ng processors will then
processors are not specifically designed for graphicsperform the remaining operations in the transformatlon
operations, and the communication between processthase and the complete rasterization phase. Sort-first will

often has bandwidth limitations. Most of the research citedMiNimize the communication between processors if the
above, therefore, tries to cope with these limitations in OPI€CtS in the image are static or moving very slowly. This

order to maximize the parallelism and the potential of the S because there is no need to redistribute the transformed
underlying hardware. Although a massively parallel polygons to other processors. However, sort-first induces

machine may have a large number of processors, eacff !0ad imbalance as polygons may all fall into a single
region. In addition, more data would be replicated among

the processors if most objects are overlapped in manydata decomposition. A fine-grained decomposition breaks
regions. Mueller implemented a sort-first rendering systemthe dataset into smaller units, while coarse-grained
in [15]. decomposition breaks the dataset into larger units.

In sort-middle polygons are distributed evenly among Experiments show that coarse-grained decomposition
the processors without concerning the screen location ofusually results in poor load balancing, while fine-grained
the polygons. After the transformation phase, the polygonsdecomposition generally results in better load balancing
need to be redistributed among processors depending ohut at the time higher overheads for tasks scheduling,
which region of the screen they fall in. However, it is not communication, redundant calculations and more data
necessary to transfer the whole polygon structure to thereplication among processors. The overheads are more
other processors. Only information such as screensignificant on distributed memory systems as mentioned
coordinates of the polygon, and color of each vertex isearlier. The granularity ratio has been studied in [8] and
needed. This can minimize the amount of data transferred18]. Hence, using the coarsest granularity that allows
through the network. Rasterization takes place after thereasonable load balancing may be the best way for
information related to the polygons has reached theachieving good parallel timings in distributed memory
corresponding processors. Sort-middle is a naturalarchitectures. However, the optimal granularity ratio is
architecture because it performs redistribution between thelifferent for different architectures. Figure 4 shows our
transformation and rasterization phases. We can desigmethod of subdivision in which the screen is subdivided
different algorithms for object parallelism and image into small square regions, each region consists of 64x64
parallelism independently. There are many examples orpixels. Regions of the same pattern are assigned to the
this type of architecture [2, 6, 8]. same processor for scan-conversion and display.

In sort-last polygons are distributed among the
processors. Transformation and rasterization are carried
out on the same processor. Hence, polygons may fall into
different positions of the screen. The images from all
processors are then collected and combined together to
form an output image [12]. Since the whole image : —
generated by each processor needs to be transferred to one rigure 4. Regions of the screen with the
of the processors to do image composition, the amount of <o 1a pattern are assigned to the same
data transferred can be very high. The situation could be

: s A X . processor.

worse if traditional anti-aliasing method is applied.
Additional samples of the image will increase the amount . :
of data to be transferred by several times. Our adaptive5'3'2' Dynamic Load Balancing
anti-aliasing algorithm would obviously minimize the
amount of data to be transferred during the image
composition stage, and improve the performance
significantly.

Two major approaches are currently useddymamic
load balancing the demand-driven approach and task
adaptive approach [19]. The demand-driven approach
decomposes the problem domain into smaller independent
tasks, and then assigns them to different processors to
finish the tasks. Once a processor has finished its current
. _ . task, another task is assigned to it until all the tasks are

Screen subdivision is one of the image parallelism ¢ompjeted. The task adaptive approach decomposes the
methods by which primitives are divided according to their 5,oniem into a relatively small number of coarse-gained
projected screen positions. In most cases, processors aFSsks, which are then assigned to different processors. If a
assigned to handle a group of subdivided screen regions,rcessor has finished all its tasks, it communicates with

The transformed geometric primitives are transferred 05n6ther processor with the largest remaining workload,
the corresponding processors for rasterization. Thereforeg,q then helps it to finish half of its remaining job. In this

the strategy used to subdivid.e.the screen would affect th%pproach, additional costs including communications
method for task decomposition, and hence the loadgmong processors and subdivision calculations would
balancing between the processors. We can classify th,crease the overheads. Because the cost of remote
strategies for handling load balancing as eitstatic or memory references makes dynamic task assignment, data
dynamic migration, and maintaining global status information more

_ _ expensive, this approach is not suitable for use in message-
5.3.1. Static load balancing passing systems. Therefore, most of the algorithms using

. . , dynamic load balancing strategy are implemented on
Static load balancingschemes rely on fixed screen shared-memory architectures.

partitioning to distribute polygon primitives to specific
regions of the screen, and are therefore totally affected by
the granularity ratio. Granularity refers to the degree of

5.3. Load Balancing

6. The Message-Passing Parallel Renderer 7. Results and Discussions

With the sort-first model, it is possible that most In this section, we discuss the memory consumption,
polygons are assigned to one processor in thethe distribution of memory, and the load balancing
transformation and rasterization phases. Thus, thisbetween processors of the new adaptive method.
processor will be heavily loaded while others stay idle.

The sort-middle model also suffers from load imbalance 7.1. Memory Usage

during the rasterization phase. But it does not have the

problem in the transformation phase because the polygons \We have tested some images of various complexities.
are evenly distributed among the processors forFrom our experiments, majority of the complex images
transformation. For the sort-last model, the transformedcontain no more than 20% of edge pixels. Figure 6 shows
polygons may have various sizes, and the size of job mayhe percentages of the supersampled pixels when rendering
vary significantly. We have developed a renderer to test therigure 8(a) and 8(b). Figure 8(a) contains the letter ‘B’

memory distribution when rendering an anti-aliased imagecomprising of roughly 800 large polygons. The object was
using our adaptive method. Although we can foresee themade to rotate randomly on the screen.

improvement of the sort-last model used in our method,
the sort-middle model is simple and easy to break the
rendering pipeline into 2 stages. It also provides a better
load balancing than the other two models. In view of this, . |

we have adopted the sort-middle model to implement our , | —— ——u0u. _—

renderer using the message-passing paradigm.

=
o

[= Figure 8(b), wit

-#- Figure 8(b), witl

Figure 8(a), wit

Graphics database

N " hout memory reclamation
(Arbitrarily partitioned)

l l l l l l Geometric transformation
G Object parallelism phase T

Data Redistribution —

h memory reclamation

=

hout memory reclamation

Supersampled pixels / Total pixels
s
b

—=—Figure 8(a), with memory reclamation

1 2 3 N 9 10

. . 5 6
Rasterization Animation frames

Image parallelism phase . . .
Figure 6. Memory usage in Figure 8(a) and

8(b), before and after memory reclamation.

Root process Display result image

Figure 5. Overall algorithm of the message- The total number of supersampled pixels used without
passing renderer. memory reclamation was less than 5% of the total number
of pixels in the image. If we render the image with
The renderer is implemented on an SGI Power 512x512 pixels and 4x4 subpixels resolution, the 2D array
Challenge with 8 processors using the librarymefssage of Pixel cells consumes about 3.14MB of memory and the
passing interfaceMPI. The structure of the algorithm is Subpixel cells consume about 1.47MB. In other words,
shown in Figure 5. At first, objects in the database arethe whole image consumes about 4.61MB of memory.
divided into geometric primitives in the form of polygons. When rendering the same image using memory
They are distributed evenly among the processors forreclamation technique, the number of supersampled pixels
transformation, back-face culling, and clipping. The drops to 1.3% of the total number of pixels in the image.
transformed polygons may fall into different regions of the Thus, only about 3.52MB of memory is consumed, and up
screen, and hence redistribution of data is necessary. lit0 a maximum of 74% supersampled pixels were
order to lower the volume of transferred data, only screenreclaimed. To render Figure 8(b), 10.14MB of memory
coordinates, and color values of the transformed polygonsvas used and about 24% of the pixels were supersampled.
are sent to the corresponding processor, whereBy using the memory reclamation technique, about 28% of
rasterization takes place. the supersampled pixels were reclaimed. Thus, the
In the image parallelism stage, we adopt the static loadpercentage of supersampled pixels decreased to about 17%.
balancing technique to minimize the communication Comparing with the traditional supersampling method
between processors. The strategy for partitioning thewhere 29.4MB of memory is needed for rendering an
screen has been described in section 5. A root process ignage with the same pixel and subpixel resolutions,
responsible for collecting resultant regional images andtremendous amount of memory has been saved. Figure 8(c)
displaying them. shows a test image of the space shuttle. The number of
supersampled pixels created was also below 5% of the

total number of pixels in the image. 50x50 pixels each. The timings on each phase of the
Figure 8(d) shows an extreme test case of a veryrendering process for 20 frames were measured. It can be
complex scene. The test file contains more than 3,000seen that the workload of the transformation phase was
tetrahedral objects randomly distributed on the image.evenly distributed as all processors spent the same amount
With our memory reclamation technique, the total numberof time on the transformation. From our measurements,
of Subpixel cells used to render the image was below 50%.the renderer can approximately process up to 20-30K large
In this situation, the subpixel resolution has been set toanti-aliased polygons per second.
2x2. However, such complex scene is not likely to appear

in most applications because polygons are normally Min. Time Max. Time
clustered to form objects, instead of randomly distributed |Transformation Phase 0.0002s 0.0002%
around the screen resulting in a lot of edge pixels being |Data redistribution 0.0006s 0.0120s
created. Rasterization Phase 0.0170s 0.0300s

In some applications, the scene complexity may vary Table 1. The minimum and maximum times

greatly. In order to handle images with any complexity, we gpent on each stage of the message-passing
need to preallocate enough memory for supersampling all randerer when rendering Figure 8(a).

pixels of the image at a 2x2 subpixels resolution. In such
situation, we need about 10.44MB of memory for :
rendering an image of 512x512 pixels. Of course, if we are8' Conclusions
certain that the application will never have to handle
scenes with 100% of supersampled pixels, we may reduc%a

the amount of preallocated memory accordingly. h%roblem, it increases the rendering time and memory

In some cases, consecutive images may not preserve t X : X
frame-to-frame coherence, e.g. a rapid change of the!S29€ dramatically. The new adaptive supersampling

viewing direction, the memory adaptation technique maymemOd reqwres_less memory and has a much higher
give a wrong prediction. Thus, some edge pixels may notperformance. Unlike the A-buffgr method,_the new method
be supersampled when all the preallocated memory is use ever has to traverse a possibly long list of fragments.

s ere, we have presented two memory saving techniques to
up. However, this problem normally occurs only for a very further reduce tF;\e memory usage ofyour adgptive rr?ethod.
short ‘moment, and our adaptive algorithm will correct the We have also investigated the parallelization of our
situation in the next frame.

Figure 7 shows the maximum and minimum memory me'lt'r(;ev%rd the end of the paper, we have discussed the
usage armong the 8 processors when rendering Figure 8(b?'hemory usage and the performénce of our adaptive anti-
Igrey déf;ggmi,(\)/ﬂﬁ;r? fn?;ZT: r;t/hgtm gcgr;hzrg::%%izsroﬁar\:\éelg%aliasing method when running in parallel architectures. As
similar number of supersampled pixels during the gffilﬁr:urlz%vg;l:ihwihzr?ngrhr(r)%nitrayhgg\?\;g?enng the possibility
rendering process. This actually reflects the situation of P 9 :
load balancing. The average memory usage of each
processor is about 0.98MB. References

From the results of our implementation, although the
ditional supersampling method solves the aliasing

[1] K. Akeley and T. Jermoluk. High-Performance Polygon
Rendering. ACM Computer Graphigs 22(4):239-246,
August 1988.
[2] K. Akeley. RealityEngine GraphicsACM Computer
) 3 e ————— Graphics109-116, August 1993.
- [3] L. Carpenter. The A-buffer, an Antialiased Hidden Surface
- Method. ACM Computer Graphi¢s18(3):103-108, July
1984,
[4] E. Catmull.A Subdivision Algorithm for Computer Display
of Curved Surfaces?h.D. Dissertation, Computer Science
Frames Department, University of Utali974.
Figure 7. The maximum and minimum [5] T. Crockett.Parallel Rendering Technical Report 95-31,
amount of memory usage of the 8 Institute for Computer Applications in Science and

processors during 20 frames of animation on Engineering, NASA Langley Research Center, 1995.
Figure 8(b) [6] T. Crockett and T. Orloff. A MIMD Rendering Algorithm

for Distributed Memory ArchitecturesACM Parallel
) Rendering Symposiugb-42, 1993.
7.2. Performance Analysis [71 F. Crow. The Aliasing Problem in Computer-Generated
Shaded Imageommunications of the AGN0(11):799-
Table 1 shows the performance results of rendering 805, November 1977.
Figure 8(a). The image contains large polygons of over

o
®

\

Super sampled pizek f Total pixek
|

=
o
=
=
=]

(8]

9]
(10]

[11]

(12]

(13]

Figure 8.

D. Ellsworth. A New Algorithm for Interactive Graphics [14]
on Multicomputers. IEEE Computer Graphics and
Applications 14(4):33-40, July 1994.

H. Fuchs. VLSI for GraphicsTechniques for Computer
Graphics, Springer-Verlag81-294, 1987.

R.W.H. Lau and N Wiseman. Accurate Image Generation
and Interactive Image Editing with the A-buffer.
Proceedings of EuroGraphics '92 1I(3):279-288,
September 1992.

R.W.H. Lau. An Adaptive Supersampling Methdochage
Analysis Applications and Computer Graphics, LNCS
1024, Springer-Verla@05-214, December 1995.

T.Y. Lee, C.S. Raghavendra and J.N. Nicholas. Image
Composition Methods for Sort-Last Polygon Rendering on [19]
2D Mesh Architectures. ACM Parallel Rendering
Symposiund5-62, 1995.

S. Molnar, J. Eyles and J. Poulton. PixelFlow: High-Speed [20]
Rendering Using Image Compo-sitioACM Computer
Graphics 26(2):231-340, July 1992.

(15]

(16]

(17]

(18]

S. Molnar, M. Cox, D. Ellsworth and H. Fushs. A Sorting
Classification of Parallel RenderingEEE Computer
Graphics and Applications 4(4):23-31, July 1994.

C. Mueller. The Sort-First Rendering Architecture for
High-Performance Graphics.ACM Symposium on
Interactive 3D Graphic§5-84, 1995.

F.V. Reeth, R. Welter and E. Flerackers. Virtual Camera
Oversampling: A New Parallel Anti-Aliasing Method for
Z-Buffer Algorithms.CG International’90241-254, 1990.

T. TheoharisAlgorithms for Parallel Polygon Rendering.
LNCS 373, Springer-Verlag, Berlin, 1989.

S. Whitman. Multiprocessor Methods for Computer
Graphics RenderingAK Peters, 1992.

S. Whitman. A Task-Adaptive Parallel Graphics Renderer.
IEEE Computer Graphics and Applications4(4):41-48,
July 1994.

S. Winner, M. Kelly, B. Pease, B. Rivard and A. Yen.
Hardware Accelerated Rendering Of Antialiasing Using A
Modified A-buffer Algorithm. ACM Computer

Graphics307-316, 1997.

(a) shows the letter ‘B’, containing about 800 very large polygons. (b) shows 500

tetrahedral objects scattered on the screen and rotate randomly. (c) shows the output image of a
shuttle. (d) shows 3000 tetrahedral objects scatter on screen; about 50% of the whole image are
supersampled pixels, and the subpixel resolution is lowered to increase the availability of memory.

