837 research outputs found

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    A STUDY ON RECEIVED SIGNAL STRENGTH BASED INDOOR LOCALIZATION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications

    Get PDF
    This work takes a critical look at the application of conventional machine learning methods to wireless communication problems through the lens of reliability and robustness. Deep learning techniques adopt a frequentist framework, and are known to provide poorly calibrated decisions that do not reproduce the true uncertainty caused by limitations in the size of the training data. Bayesian learning, while in principle capable of addressing this shortcoming, is in practice impaired by model misspecification and by the presence of outliers. Both problems are pervasive in wireless communication settings, in which the capacity of machine learning models is subject to resource constraints and training data is affected by noise and interference. In this context, we explore the application of the framework of robust Bayesian learning. After a tutorial-style introduction to robust Bayesian learning, we showcase the merits of robust Bayesian learning on several important wireless communication problems in terms of accuracy, calibration, and robustness to outliers and misspecification.Comment: Submitted for publicatio

    A Review of Radio Frequency Based Localization for Aerial and Ground Robots with 5G Future Perspectives

    Full text link
    Efficient localization plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned aerial vehicles (UAVs), which would contribute to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities for enhancing localization of UAVs and UGVs. In this paper, we review the radio frequency (RF) based approaches for localization. We review the RF features that can be utilized for localization and investigate the current methods suitable for Unmanned vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localization for both UAVs and UGVs is examined, and the envisioned 5G NR for localization enhancement, and the future research direction are explored

    Surface Modeling and Analysis Using Range Images: Smoothing, Registration, Integration, and Segmentation

    Get PDF
    This dissertation presents a framework for 3D reconstruction and scene analysis, using a set of range images. The motivation for developing this framework came from the needs to reconstruct the surfaces of small mechanical parts in reverse engineering tasks, build a virtual environment of indoor and outdoor scenes, and understand 3D images. The input of the framework is a set of range images of an object or a scene captured by range scanners. The output is a triangulated surface that can be segmented into meaningful parts. A textured surface can be reconstructed if color images are provided. The framework consists of surface smoothing, registration, integration, and segmentation. Surface smoothing eliminates the noise present in raw measurements from range scanners. This research proposes area-decreasing flow that is theoretically identical to the mean curvature flow. Using area-decreasing flow, there is no need to estimate the curvature value and an optimal step size of the flow can be obtained. Crease edges and sharp corners are preserved by an adaptive scheme. Surface registration aligns measurements from different viewpoints in a common coordinate system. This research proposes a new surface representation scheme named point fingerprint. Surfaces are registered by finding corresponding point pairs in an overlapping region based on fingerprint comparison. Surface integration merges registered surface patches into a whole surface. This research employs an implicit surface-based integration technique. The proposed algorithm can generate watertight models by space carving or filling the holes based on volumetric interpolation. Textures from different views are integrated inside a volumetric grid. Surface segmentation is useful to decompose CAD models in reverse engineering tasks and help object recognition in a 3D scene. This research proposes a watershed-based surface mesh segmentation approach. The new algorithm accurately segments the plateaus by geodesic erosion using fast marching method. The performance of the framework is presented using both synthetic and real world data from different range scanners. The dissertation concludes by summarizing the development of the framework and then suggests future research topics
    corecore