256 research outputs found

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Geometry-based spherical JND modeling for 360∘^\circ display

    Full text link
    360∘^\circ videos have received widespread attention due to its realistic and immersive experiences for users. To date, how to accurately model the user perceptions on 360∘^\circ display is still a challenging issue. In this paper, we exploit the visual characteristics of 360∘^\circ projection and display and extend the popular just noticeable difference (JND) model to spherical JND (SJND). First, we propose a quantitative 2D-JND model by jointly considering spatial contrast sensitivity, luminance adaptation and texture masking effect. In particular, our model introduces an entropy-based region classification and utilizes different parameters for different types of regions for better modeling performance. Second, we extend our 2D-JND model to SJND by jointly exploiting latitude projection and field of view during 360∘^\circ display. With this operation, SJND reflects both the characteristics of human vision system and the 360∘^\circ display. Third, our SJND model is more consistent with user perceptions during subjective test and also shows more tolerance in distortions with fewer bit rates during 360∘^\circ video compression. To further examine the effectiveness of our SJND model, we embed it in Versatile Video Coding (VVC) compression. Compared with the state-of-the-arts, our SJND-VVC framework significantly reduced the bit rate with negligible loss in visual quality

    State of the art in 2D content representation and compression

    Get PDF
    Livrable D1.3 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D3.1 du projet

    High dynamic range video compression exploiting luminance masking

    Get PDF

    Saliency-Enabled Coding Unit Partitioning and Quantization Control for Versatile Video Coding

    Get PDF
    The latest video coding standard, versatile video coding (VVC), has greatly improved coding efficiency over its predecessor standard high efficiency video coding (HEVC), but at the expense of sharply increased complexity. In the context of perceptual video coding (PVC), the visual saliency model that utilizes the characteristics of the human visual system to improve coding efficiency has become a reliable method due to advances in computer performance and visual algorithms. In this paper, a novel VVC optimization scheme compliant PVC framework is proposed, which consists of fast coding unit (CU) partition algorithm and quantization control algorithm. Firstly, based on the visual saliency model, we proposed a fast CU division scheme, including the redetermination of the CU division depth by calculating Scharr operator and variance, as well as the executive decision for intra sub-partitions (ISP), to reduce the coding complexity. Secondly, a quantization control algorithm is proposed by adjusting the quantization parameter based on multi-level classification of saliency values at the CU level to reduce the bitrate. In comparison with the reference model, experimental results indicate that the proposed method can reduce about 47.19% computational complexity and achieve a bitrate saving of 3.68% on average. Meanwhile, the proposed algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality

    A simple encoder scheme for distributed residual video coding.

    Get PDF
    Rate-Distortion (RD) performance of Distributed Video Coding (DVC) is considerably less than that of conventional predictive video coding. In order to reduce the performance gap, many methods and techniques have been proposed to improve the coding efficiency of DVC with increased system complexity, especially techniques employed at the encoder such as encoder mode decisions, optimal quantization, hash methods etc., no doubt increase the complexity of the encoder. However, low complexity encoder is a widely desired feature of DVC. In order to improve the coding efficiency while maintaining low complexity encoder, this paper focuses on Distributed Residual Video Coding (DRVC) architecture and proposes a simple encoder scheme. The main contributions of this paper are as follows: 1) propose a bit plane block based method combined with bit plane re-arrangement to improve the dependency between source and Side Information (SI), and meanwhile, to reduce the amount of data to be channel encoded 2) present a simple iterative dead-zone quantizer with 3 levels in order to adjust quantization from coarse to fine. The simulation results show that the proposed scheme outperforms DISCOVER scheme for low to medium motion video sequences in terms of RD performance, and maintains a low complexity encoder at the same time

    Uniform Color Space-Based High Dynamic Range Video Compression

    Get PDF
    © 1991-2012 IEEE. Recently, there has been a significant progress in the research and development of the high dynamic range (HDR) video technology and the state-of-the-art video pipelines are able to offer a higher bit depth support to capture, store, encode, and display HDR video content. In this paper, we introduce a novel HDR video compression algorithm, which uses a perceptually uniform color opponent space, a novel perceptual transfer function to encode the dynamic range of the scene, and a novel error minimization scheme for accurate chroma reproduction. The proposed algorithm was objectively and subjectively evaluated against four state-of-the-art algorithms. The objective evaluation was conducted across a set of 39 HDR video sequences, using the latest x265 10-bit video codec along with several perceptual and structural quality assessment metrics at 11 different quality levels. Furthermore, a rating-based subjective evaluation ( n=40n=40 ) was conducted with six sequences at two different output bitrates. Results suggest that the proposed algorithm exhibits the lowest coding error amongst the five algorithms evaluated. Additionally, the rate-distortion characteristics suggest that the proposed algorithm outperforms the existing state-of-the-art at bitrates ≥ 0.4 bits/pixel

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    3D Wavelet-Based Video Codec with Human Perceptual Model

    Get PDF
    This thesis explores the use of a human perceptual model in video compression, channel coding, error concealment and subjective image quality measurement. The perceptual distortion model just-noticeable-distortion (JND) is investigated. A video encoding/decoding scheme based on 3D wavelet decomposition and the human perceptual model is implemented. It provides a prior compression quality control which is distinct from the conventional video coding system. JND is applied in quantizer design to improve the subjective quality ofcompressed video. The 3D wavelet decomposition helps to remove spatial and temporal redundancy and provides scalability of video quality. In order to conceal the errors that may occur under bad wireless channel conditions, a slicing method and a joint source channel coding scenario that combines RCPC with CRC and uses the distortion information toallocate convolutional coding rates are proposed. A new subjective quality index based on JND is proposed and used to evaluate the overall performance at different signal to noise ratios (SNR) and at different compression ratios.Due to the wide use of arithmetic coding (AC) in data compression, we consider it as a readily available unit in the video codec system for broadcasting. A new scheme for conditional access (CA) sub-system is designed based on the cryptographic property of arithmetic coding. Itsperformance is analyzed along with its application in a multi-resolution video compression system. This scheme simplifies the conditional access sub-system and provides satisfactory system reliability
    • …
    corecore