68 research outputs found

    Performance Analysis of Priority-Based IEEE 802.15.6 Protocol in Saturated Traffic Conditions

    Get PDF
    Recent advancement in internet of medical things has enabled deployment of miniaturized, intelligent, and low-power medical devices in, on, or around a human body for unobtrusive and remote health monitoring. The IEEE 802.15.6 standard facilitates such monitoring by enabling low-power and reliable wireless communication between the medical devices. The IEEE 802.15.6 standard employs a carrier sense multiple access with collision avoidance protocol for resource allocation. It utilizes a priority-based backoff procedure by adjusting the contention window bounds of devices according to user requirements. As the performance of this protocol is considerably affected when the number of devices increases, we propose an accurate analytical model to estimate the saturation throughput, mean energy consumption, and mean delay over the number of devices. We assume an error-prone channel with saturated traffic conditions. We determine the optimal performance bounds for a fixed number of devices in different priority classes with different values of bit error ratio. We conclude that high-priority devices obtain quick and reliable access to the error-prone channel compared to low-priority devices. The proposed model is validated through extensive simulations. The performance bounds obtained in our analysis can be used to understand the tradeoffs between different priority levels and network performance.info:eu-repo/semantics/publishedVersio

    Design and performance analysis of human body communication digital transceiver for wireless body area network applications

    Get PDF
    Wireless body area network (WBAN) is a prominent technology for resolving health-care concerns and providing high-speed continuous monitoring and real-time help. Human body communication (HBC) is an IEEE 802.15.6 physical layer standard for short-range communications that is not reliant on radio frequency (RF). Most WBAN applications can benefit from the HBC's low-latency and low-power architectural features. In this manuscript, an efficient digital HBC transceiver (TR) hardware architecture is designed as per IEEE 802.15.6 standard to overcome the drawbacks of the RF-wireless communication standards like signal leakage, on body antenna and power consumption. The design is created using a frequency selective digital transmission scheme for transmitter and receiver modules. The design resources are analyzed using different field programmable gate array (FPGA) families. The HBC TR utilizes <1% slices, consumes 101 mW power, and provides a throughput of 24.31 Mbps on Artix-7 FPGA with a latency of 10.5 clock cycles. In addition, the less than 10-4bit error rate of HBC is achieved with a 9.52 Mbps data rate. The proposed work is compared with existing architectures with significant improvement in performance parameters like chip area, power, and data rate

    Performance Analysis of IEEE 802.15.6 Contention-based MAC Protocol

    Get PDF
    IEEE International Conference on Communications (IEEE ICC 2015). 8 to 12, Jun, 2015, IEEE ICC 2015 - Communications QoS, Reliability and Modeling, London, United Kingdom.IEEE 802.15.6 facilitates communication in the vicinity of or even inside a human body to serve heterogeneous medical, consumer electronics, and entertainment applications. This standard operates in beacon and non-beacon communication modes, and each mode employs different protocols, including CSMA/CA, for resource allocation on the channel. The CSMA/CA protocol presented in IEEE 802.15.6 allows quick and prioritized access to the channel by differentiating contention window bounds of nodes with different priorities. This paper provides a simple and accurate analytical model to estimate the throughput, energy consumption, and delay of this protocol for different priority classes, under the assumption of a finite number of nodes in saturated and lossy channel conditions. The accuracy of the proposed model is validated by simulations. The results obtained in this paper can be used to design standard priority parameters for medical and non-medical applications

    Challenges in body area networks for healthcare: The MAC

    Get PDF
    Body area wireless sensor networks (BANs) are a key component to the ubiquitous healthcare revolution and perhaps one of its most challenging elements from a communications standpoint. The unique characteristics of the wireless channel, coupled with the need for extreme energy efficiency in many healthcare applications, require novel solutions in medium access control protocols. We present the main characteristics and challenges associated with BANs from a healthcare perspective, and present some MAC techniques based on studies of the BAN channel that could be used to address these challenges

    Wireless Body Area Network (WBAN): A Survey on Reliability, Fault Tolerance, and Technologies Coexistence

    Get PDF
    Wireless Body Area Network (WBAN) has been a key element in e-health to monitor bodies. This technology enables new applications under the umbrella of different domains, including the medical field, the entertainment and ambient intelligence areas. This survey paper places substantial emphasis on the concept and key features of the WBAN technology. First, the WBAN concept is introduced and a review of key applications facilitated by this networking technology is provided. The study then explores a wide variety of communication standards and methods deployed in this technology. Due to the sensitivity and criticality of the data carried and handled by WBAN, fault tolerance is a critical issue and widely discussed in this paper. Hence, this survey investigates thoroughly the reliability and fault tolerance paradigms suggested for WBANs. Open research and challenging issues pertaining to fault tolerance, coexistence and interference management and power consumption are also discussed along with some suggested trends in these aspect

    Delay, Reliability, and Throughput Based QoS Profile: A MAC Layer Performance Optimization Mechanism for Biomedical Applications in Wireless Body Area Sensor Networks

    Get PDF
    Recently, increasing demand for remote healthcare monitoring systems poses a specific set of Quality of Services (QoS) requirements to the MAC layer protocols and standards (IEEE 802.15.6, IEEE 802.15.4, etc.) of Wireless Body Area Sensor Networks (WBASNs). They mainly include time bounded services (latency), reliable data transmission, fair channel distribution, and specified data rates. The existing MAC protocols of WBASNs are lack of a specific set of QoS. To address this, the paper proposes a QoS profile named delay, reliability, and throughput (DRT). The QoS values computed through DRT profile provide maximum reliability of data transmission within an acceptable latency and data rates. The DRT is based on the carrier sense multiple access with collision avoidance (CSMA/CA) channel access mechanism and considers IEEE 802.15.4 (low-rate WPAN) and IEEE 802.15.6 (WBASN). Further, a detailed performance analysis of different frequency bands is done which are standardized for WBASNs, that is, 420 MHz, 868 MHz, 2.4 GHz, and so forth. Finally, a series of experiments are conducted to produce statistical results for DRT profile with respect to delay, reliability, and packet delivery ratio (PDR). The calculated results are verified through extensive simulations in the CASTALIA 3.2 framework using the OMNET++ network simulator

    On Research Challenges in Hybrid Medium Access Control Protocols for IEEE 802.15.6 WBANs

    Get PDF
    IEEE 802.15.6 is a Wireless Body Area Network (WBAN) standard proposed to facilitate the exponentially growing interest in the field of health monitoring. This standard is flexible and outlines multiple basic Medium Access Control (MAC) protocols that are contention based and collision free to meet the WBAN Quality of Service (QoS) challenges. Typically, current research trends in WBAN MAC focus on designing a hybrid MAC that is a combination of basic MAC protocols. In this paper, we provide a first detailed survey of existing hybrid MAC protocols based on IEEE 802.15.6 which would be useful for the related research community. Firstly, the paper lists the design challenges of a WBAN MAC. Secondly, it highlights the significance of hybrid MAC protocols in meeting the design challenges while comparing them to standard MAC protocols. Thirdly, a critical and thorough comparison of existing hybrid MAC protocols is presented in terms of network QoS and WBAN specific parameters. Lastly, we identify key open research areas that are often neglected in hybrid MAC design and further propose some possible directions for future research

    A token-based dynamic scheduled MAC protocol for health monitoring

    Get PDF
    Developments of wireless body area networks (WBANs) facilitate the pervasive health monitoring with mHealth applications. WBANs can support continuous health monitoring for the human body in convenience and high efficiency without any intervention. The monitoring data in health care have the characteristics of various data flows and heterogeneous data arrival rates, the transmission of which must be in timeliness and reliability, especially the burst data. Moreover, the energy-constraint nodes should be provident in energy consumption. Designing MAC protocols with high reliability and energy efficiency for WBANs is the prime consideration. In this paper, we propose a token-based two-round reservation MAC (TTR MAC) protocol based on IEEE 802.15.6 with considering the data features of health monitoring. With analyzing the characteristics of monitoring data, one-round reservation is conducted for periodic data and two-round reservation is generated adaptively for burst data to save energy. Besides, TTR MAC protocol assigns appropriate number of allocation slots to nodes in heterogeneous data arrival rates. Furthermore, a token is introduced on the basis of user priority and health severity index to indicate the transmission order of nodes with burst data, which highly decreases the average delay. In addition, a bit sequence scheduled algorithm is proposed for m-periodic (m>1) monitoring data for network capacity expansion. The simulation results show that TTR MAC protocol achieves higher energy efficiency and longer lifetime compared with IEEE 802.15.6 and other one-round reservation MAC (OR MAC) protocols for both 1-periodic and m-periodic data.info:eu-repo/semantics/publishedVersio
    • …
    corecore