1,656 research outputs found

    The crew-scheduling module in the GIST system

    Get PDF
    The public transportation is gaining importance every year basically due the population growth, environmental policies and, route and street congestion. Too able an efficient management of all the resources related to public transportation, several techniques from different areas are being applied and several projects in Transportation Planning Systems, in different countries, are being developed. In this work, we present the GIST Planning Transportation Systems, a Portuguese project involving two universities and six public transportation companies. We describe in detail one of the most relevant modules of this project, the crew-scheduling module. The crew-scheduling module is based on the application of meta-heuristics, in particular GRASP, tabu search and genetic algorithm to solve the bus-driver-scheduling problem. The metaheuristics have been successfully incorporated in the GIST Planning Transportation Systems and are actually used by several companies.Integrated transportation systems, crew scheduling, metaheuristics

    Solution Approaches for Vehicle and Crew Scheduling with Electric Buses

    Get PDF
    The use of electric buses is expected to rise due to its environmental benefits. However, electric vehicles are less exible than conventional diesel buses due to their limited driving range and longer recharging times. Therefore, scheduling electric vehicles adds further operational dificulties. Additionally, various labor regulations challenge public transport companies to find a cost-effcient crew schedule. Vehicle and crew scheduling problems essentially define the cost of operations. In practice, these two problems are often solved sequentially. In this paper, we introduce the integrated electric vehicle and crew scheduling problem (E-VCSP). Given a set of timetabled trips and recharging stations, the E-VCSP is concerned with finding vehicle and crew schedules that cover the timetabled trips and satisfy operational constraints, such as limited driving range of electric vehicles and labor regulations for the crew while minimizing total operational cost. An adaptive large neighborhood search that utilizes branch-and-price heuristics is proposed to tackle the E-VCSP. The proposed method is tested on real-life instances from public transport companies in Denmark and Sweden that contain up to 1,109 timetabled trips. The heuristic approach provides evidence of improving efficiency of transport systems when the electric vehicle and crew scheduling aspects are considered simultaneously. By comparing to the traditional sequential approach, the heuristic finds improvements in the range of 1.17-4.37% on average. A sensitivity analysis of the electric bus technology is carried out to indicate its implications for the crew schedule and the total operational cost. The analysis shows that the operational cost decreases with increasing driving range (120 to 250 kilometers) of electric vehicles

    A Combined Adaptive Tabu Search and Set Partitioning Approach for the Crew Scheduling Problem with an Air Tanker Crew Application

    Get PDF
    This research develops the first metaheuristic approach to the complete air crew scheduling problem. It develops the first dynamic, integrated, set-partitioning based vocabulary scheme for metaheuristic search. Since no benchmark flight schedules exist for the tanker crew scheduling problem, this research defines and develops a Java™ based flight schedule generator. The robustness of the tabu search algorithms is judged by testing them using designed experiments. An integer program is developed to calculate lower bounds for the tanker crew scheduling problem objectives and to measure the overall quality of solutions produced by the developed algorithms

    Rich Vehicle Routing Problems and Applications

    Get PDF

    Combining and Analyzing the Tanker and Aircrew Scheduling Heuristics

    Get PDF
    Air refueling is an integral part of U.S. air power across a wide range of military operations. It is an essential capability in the conduct of air operations worldwide and is especially important when overseas basing is limited or not available. The planning, tasking, and scheduling of aerial refueling require solution of two major problems: assigning and scheduling of tankers to refueling points and efficiently assigning crews to each tanker. To address the scheduling of tankers, Wiley (2001) developed an efficient tabu search approach. Combs (2002) developed another tabu search approach to assign crews to tankers. This research combines the two scheduling heuristics so that the tanker schedules generated by the tanker scheduling heuristics can feed the crew scheduling heuristic

    An Adaptive Tabu Search Heuristic for the Location Routing Pickup and Delivery Problem with Time Windows with a Theater Distribution Application

    Get PDF
    The time constrained pickup and delivery problem (PDPTW) is a problem of finding a set of routes for a fleet of vehicles in order to satisfy a set of transportation requests. Each request represents a user-specified pickup and delivery location. The PDPTW may be used to model many problems in logistics and public transportation. The location routing problem (LRP) is an extension of the vehicle routing problem where the solution identifies the optimal location of the depots and provides the vehicle schedules and distribution routes. This dissertation seeks to blend the PDPTW and LRP areas of research and formulate a location scheduling pickup and delivery problem with time windows (LPDPTW) in order to model the theater distribution problem and find excellent solutions. This research utilizes advanced tabu search techniques, including reactive tabu search and group theory applications, to develop a heuristic procedure for solving the LPDPTW. Tabu search is a metaheuristic that performs an intelligent search of the solution space. Group theory provides the structural foundation that supports the efficient search of the neighborhoods and movement through the solution space

    Supply chain management: An opportunity for metaheuristics

    Get PDF
    In today’s highly competitive and global marketplace the pressure on organizations to find new ways to create and deliver value to customers grows ever stronger. In the last two decades, logistics and supply chain has moved to the center stage. There has been a growing recognition that it is through an effective management of the logistics function and the supply chain that the goal of cost reduction and service enhancement can be achieved. The key to success in Supply Chain Management (SCM) require heavy emphasis on integration of activities, cooperation, coordination and information sharing throughout the entire supply chain, from suppliers to customers. To be able to respond to the challenge of integration there is the need of sophisticated decision support systems based on powerful mathematical models and solution techniques, together with the advances in information and communication technologies. The industry and the academia have become increasingly interested in SCM to be able to respond to the problems and issues posed by the changes in the logistics and supply chain. We present a brief discussion on the important issues in SCM. We then argue that metaheuristics can play an important role in solving complex supply chain related problems derived by the importance of designing and managing the entire supply chain as a single entity. We will focus specially on the Iterated Local Search, Tabu Search and Scatter Search as the ones, but not limited to, with great potential to be used on solving the SCM related problems. We will present briefly some successful applications.Supply chain management, metaheuristics, iterated local search, tabu search and scatter search
    • …
    corecore