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A multi-level variable neighborhood search heuristic for a practical

vehicle routing and driver scheduling problem

Min Wen **, Emil Krapper, Jesper Larsen, and Thomas K. Stidsen

Department of Management Engineering, Technical University of Denmark,
Produktionstorvet DTU-Building 426, DK-2800 Kongens Lyngby, Denmark

November 6, 2009

Abstract. This paper addresses an integrated vehicle routing and driver scheduling problem arising
at the largest fresh meat producer in Denmark. The problem consists of a one-week planning horizon,
heterogeneous vehicles, and drivers with predefined work regulations. These regulations include, among
other things, predefined workdays, fixed starting time, maximum weekly working duration, break rule.
The objective is to minimize the total delivery cost.

The real-life case study is first introduced and modelled as a mixed integer linear program. A multi-
level variable neighborhood search heuristic is then proposed for the problem. At the first level, the
problem size is reduced through an aggregation procedure. At the second level, the aggregated weekly
planning problem is decomposed into daily planning problems, each of which is solved by a variable
neighborhood search. At the last level, the solution of the aggregated problem is expanded to that of the
original problem. The method is implemented and tested on real-life data consisting of up to 2000 orders
per week. Computational results show that the aggregation procedure and the decomposition strategy
are very effective in solving this large scale problem, and our solutions are superior to the industrial
solutions given the constraints considered in this work.

Keywords: vehicle routing, driver scheduling, Variable Neighborhood Search, node aggregation.

1 Introduction

In this paper, we consider a Multi-Period Vehicle Routing and Crew Scheduling Problem (MPVRCSP) arising at
the largest fresh meat producer in Denmark, Danish Crown. Danish Crown delivers the fresh meat from
its distribution terminals to the supermarkets all over Denmark. The supermarkets place their orders with
specified demand for different days of the week before the week starts. The distributor then makes a weekly
delivery plan for the drivers and vehicles so that the orders are fulfilled, the drivers’ working regulations

are respected and the total travel cost is minimized.

** Corresponding author (mw@transport.dtu.dk)



Danish Crown is the largest Danish producer of fresh meat. It slaughters over 20 million pigs and 0.5 million
pieces of livestock each year. Its pork production is the largest in Europe and the second largest in the
world. Danish Crown is also responsible for the delivery of fresh meat to supermarkets all over Denmark
every day. There are two distribution terminals in Kolding and Ringsted, operating independently. Here
we consider the Kolding terminal, which is located in Jutland. It receives more than 2000 orders every week
and delivers meat to over 800 Danish supermarkets across western Denmark. Figure 1 shows the locations
of the customers and of the terminal. The total amount of meat delivered varies from day to day, ranging
from 60 tons to 300 tons. As a result, the need for drivers varies daily as well. Danish Crown has a number
of internal drivers who work on regular workdays with a fixed number of hours every week. For busier
days, Danish Crown needs to hire external drivers to take the routes that can not be covered by the limited
number of internal drivers. Different types of drivers are associated with different costs, the objective is to

minimize the total cost of the delivery.

Jutland

Zealand

Figure 1. Locations of customers and depot (represented by a square) in the Danish Crown case study



The literature on the integrated Vehicle Routing and Crew Scheduling Problem (VRCSP) is rather limited.
To our best knowledge, the most relevant work is that of Zaepfel and Boegl (2008). They addressed a weekly
planning problem for postal companies, in which pickup tours and delivery tours must be decided for ve-
hicles and drivers based on variable vehicle capacities and drivers’ working regulations. Similar to our
work, they also considered the driving rules and different types of drivers with different costs and working
regulations. In their work, a solution framework was proposed, which consists of four parts: initializa-
tion, route generation, personnel assignment and solution evaluation. The framework was tested with two
guiding metaheuristics, Tabu Search and Genetic Algorithm. The Tabu Search procedure was found to be
competitive in solving their application. Another integrated vehicle routing and driver scheduling prob-
lem that has been studied in the literature is about the urban mass transit system, in which the buses and
drivers are scheduled to serve a number of trips defined by a timetable (Huisman et al. (2005), Huisman and
Wagelmans (2006), Freling et al. (2003) and Mesquita and Paias (2008)). Most of the solution methods for
the VRCSP in the urban mass transit system are based on Column Generation and Lagrangian Relaxation.
The integrated aircraft routing and crew scheduling problem is also relevant. This problem is solved by
the Benders decomposition in Cordeau et al. (2001b), Mercier and Soumis (2007), Papadakos (2009), which

decomposes the integrated problem into an aircraft routing problem and a crew pairing problem.

The vehicle routing part of our problem can be viewed as a Heterogeneous Vehicle Routing Problem with
Time Windows (HVRPTW) in which a limited number of heterogeneous vehicles, characterized by differ-
ent capacities, are available and the customers have a specified time window for service. The HVRPTW is
usually solved by heuristics. The best known algorithms for this problem include: adaptive large neigh-
borhood search (Pisinger and Ropke (2007)), variable neighborhood search (Paraskevopoulos et al. (2008),
Imran et al. (2009)) and simulated annealing (Li et al. (2007), Braysy et al. (2008)). Choi and Tcha (2007)
proposed an exact method based on column generation for the problem. For a recent literature review, see
Baldacci et al. (2008).

The remainder of this paper is organized as follows. The MPVRCSP arising at the Danish Crown is defined
in Section 2. In Section 3, the problem is formulated as a mixed integer linear program. A multi-level vari-
able neighborhood search method is proposed in Section 4. Section 5 presents the computational results on

the real-life data and conclusions follow in Section 6.

2 Problem Description

The problem is to determine routes for delivering fresh food to a set of supermarkets (or customers) every
day over a one-week planning horizon. The routes are planned for a fleet of heterogeneous vehicles and a

number of drivers with predefined working regulations.



A number of practical constraints need to be considered regarding the delivery. First of all, each customer
orders a different amount of meat every day, measured in weight (Kg) and volume (pallets). Each vehicle
has limited capacities both in weight and in volume. Secondly, each customer has a certain time window
for receiving its order. These time windows are based on numerous factors such as working hours of the
employees in the supermarket, city traffic etc. Lastly, certain special customers have requirements on the
vehicle size. This is usually because of small roads or limited parking lot sizes. If an inappropriate vehicle
type is used to serve such a customer, the driver usually needs to park some distance from the supermarket.

This results in additional service time, which is proportional to the number of pallets ordered.

There are two kinds of drivers hired to carry out the delivery: internal and external. The internal drivers
work on the predefined workdays and for no more than a maximum weekly working duration (37 hours)
over a week. Both the internal and external drivers start from given starting times and finish before given
latest ending times. The drivers cannot drive for more than 4.5 hours without a 45-minute break according

to the EU driving legislation.

Several different types of costs are considered in this problem. We assume that the internal drivers have
regular salaries according to their contracts. Hence only the fuel cost of the internal routes are considered,
which depends on the distance travelled and the cost per kilometer. The external drivers are paid at a fixed
price every hour, which covers both the salary for the driver and the vehicle cost. Therefore, the cost of the

external routes is calculated by multiplying the route duration and the cost factor.

The objective of this problem can therefore be translated to minimize the fuel cost of the internal routes
and the cost of the external routes over the planning horizon in such a way that each order must be served
by one vehicle within its time window, vehicle capacities are not exceeded, each driver starts working at a
predefined time and finishes before a given time on every workday, the internal drivers work for no more
than a maximum weekly duration over the planning horizon, and the break rule regarding the driving

legislation is respected.

This problem integrates vehicle routing and driver scheduling. The complexity of this problem can be char-
acterized in many respects: the multiple periods, the heterogeneous vehicles, different types of drivers with
different working regulations and the simultaneous planning of vehicles and drivers. Note that the orders
on different days are fixed. The only constraint connecting the routes on different days is therefore the max-
imum 37 weekly hours for the internal drivers. This means that a certain driving schedule for an internal
driver on one day will affect the maximum duration of the driver on the remaining days. Without this
constraint, this weekly planning problem can be viewed as several independent daily planning problems,

each of which considers the vehicle routing and crew scheduling problem on a single day, namely the daily



planning problem. This property is utilized in the solution method described in Section 4, and helps solve

the large size problem effectively and efficiently.

3 Mathematical Formulation

This section presents a mixed integer linear programming formulation for the MPVRCSP. We denote the
planning horizon by 7" and the set of drivers by D. The set of workdays for driver [ € D is denoted by
T, C T. The start working time and latest ending time for driver [ € D on day ¢ € T are given by ¢} and
h!, respectively. Let D; and Dy denote the set of the internal and external drivers (D = D; U Dg). For each
internal driver [ € Dy, let H denote the maximum weekly working duration. We denote the maximum
elapsed driving time without break by F' and the duration of a break by G (according to the EU driver
legislation).

Let K denote the set of vehicles. For each vehicle k& € K, let Q. and P;, denote the capacity in weight and in
volume, respectively. We assume the number of vehicles equals to the number of drivers. Denote the set of
n customers (/nodes) by N = {1,2,...,n}. Denote the depot by {0,n + 1}. Each vehicle starts from {0} and
terminates at {n + 1}. Each customer i € N specifies a set of days to be visited, denoted by T; C T'. On each
day ¢ € T;, customer i € N requests service with demand of ¢! in weight and p! in volume, service duration
d! and time window [a;, b;]. Note that, for the depot i € {0,n + 1} on day ¢, we set ¢} = p! = d! = 0. Denote
the set of preferable vehicles for visiting customer i by K; (K; € K) and the extra service time per pallet by
e if a customer is not visited by a preferable vehicle. The travel time between customer ¢ and j is given by
ci;- Denote the cost coefficients of the travel time of the internal drivers by A and the working duration of

the external drivers by B.

We define binary variable xgjk to be 1 if vehicle k travels from node i to j on day ¢, binary variable w! to be 1
if customer i is not visited by a preferred vehicle on day ¢. Variable v}, is the time that vehicle & visits node
i on day ¢. Binary variable z{, indicates whether vehicle k takes a break after serving customer i on day ¢.
Variable u!, is the elapsed driving time for vehicle k at customer i after the previous break on day ¢. Binary
variable yj, is set to 1 if vehicle % is assigned to driver [ on day ¢. Variables r{ and s! are the total working

duration and the total travel time for driver [ on day t, respectively.

This notation can be summarized as follows:



Notation:

Parameter:

Variables:

t
Tijk
w§

t
Vik

The set of workdays in the planning horizon,

The set of internal drivers,

The set of external drivers,

The set of drivers D = D; U Dg,

The set of workdays for driver [ € D,

The set of vehicles,

The set of customers,

The set of customers and depot Ny = {0,n + 1} U N,
The set of preferable vehicles for customer i € N,

The set of days on which customer i € N orders,

The weight capacity of vehicle k € K,

The volume capacity of vehicle k € K,

The travel time from node i € Ny to node j € Ny,

The earliest and the latest visit time at node i € NN,

The service time of node i € Np onday t € T;,

The weight demand of node i € Ny on day ¢ € T;,

The volume demand of node i € Nyo onday ¢ € T3,

The extra service time per pallet when a non-preferable vehicle is used,
The start time and the latest ending time of driver/ € Dondayt € T,
The maximum working duration for each internal driver over the planning horizon,
The maximum elapsed driving time without break,

The duration of the break for drivers,

The cost factor on the total travel time of internal drivers,

The cost factor on the total working duration of the external drivers,

Binary variable indicating whether vehicle k£ € K travels fromnodei € Notoj € Npoondayt € T,
Binary variable indicating whether customer i € Ny is visited by a non-preferable vehicleonday ¢t € T,
The time at which vehicle k& € K starts service at node i € Npondayt € T,

Binary variable indicating whether vehicle k € K takes break after serving node i € Noondayt € T,
The elapsed driving time of vehicle £ € K at node i € Ny after the previous break onday ¢ € T,

Binary variable indicating whether vehicle k € K is assigned to driver/ € Dondayt € T,

The total working duration of driverl € Dondayt € T,

The total travel distance of driver/ € Dondayt € T.



The mathematical formulation for this problem is presented as follows:
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The objective function (1) minimizes weighted sum of the travel time of the internal drivers and the working

duration of the external drivers over the planning horizon.

The constraints can generally be divided into two classes: one focuses on the vehicle routing (constraints

(2-8) and (12-13)) and the remaining emphasizes the driver scheduling.

Constraints (2) state that each customer must be visited by one vehicle on each of its delivery days. Con-
straints (3) define whether each customer is visited by a preferable vehicle. Constraints (4—b5) guarantee
that the vehicle capacities are respected in both weight and volume. Constraints (6—8) ensure that each

vehicle must start and terminate at the depot and that the flow is conserved at each customer on each day.

Constraints (9—10) define the elapsed driving time. More specifically, for the vehicle (k) travelling from
customer ¢ to j on day ¢, the elapsed driving time at j equals the elapsed driving time at 7 plus the driving
time from i to j (i.e., v}, > uj, + c;;) if the vehicle does not take a break at customer i (i.e., zf;, = 0);
Otherwise, if the vehicle takes a break at customer i (i.e., zf, = 1), the elapsed driving time at j will be
constrained by (10) which make sure it is greater than or equal to the travel time between i and j (i.e.,
u;k > ¢;;). Constraints (11) guarantee that the elapsed driving time never exceeds an upper limit £ by
imposing a break at customer i (i.e., z},, = 1) if driving from customer 1 to its successor results in a elapsed

driving time greater than F.

Constraints (12) determine the time to start the service at each customer. If j is visited immediately after 4,
the time v§k to start the service at j should be greater than or equal to the service starting time v}, at i plus
its service duration d!, the extra service time e - p! if i is visited by an inappropriate vehicle (i.e., w}f =1),the
travel time between the two customers ¢;;, and the break time G if the driver takes a break after serving ¢

(i.e., zf, = 1). Constraints (13) make sure the services start within the customers’ time window.

Constraints (14) assign each driver a route on each of his/her workday. Constraints (15) make sure each
route on each day is assigned to exactly one driver. Constraints (16—17) ensure that the starting time and
ending time of each route must lie between the start working time and latest ending time of the assigned
driver. Constraints (18) calculate the total travel time for each internal driver. Constraints (19) define the
working duration for each driver on every workday, which equals the time the driver returns to the depot
minus the time he/she starts work. Constraints (20) make sure that the internal drivers work for no more
than a maximum weekly working duration, referred to as 37 week-hour constraints. Constraints (21—22)

define the binary and positive variables used in this formulation.

The formulation contains O(|N|?|K||T'|) variables and O(|N|?|K||T|) constraints. Without Constraints (9-
11) and (14-20), the problem can be reduced to a multi-period Heterogeneous Vehicle Routing Problem with

Time Windows, which has already been proved to be NP-hard. Therefore, our problem is also NP-hard.



4 Multi-level Variable neighborhood search heuristic

We propose to solve this problem using a heuristic. Firstly, the problem is NP-hard and secondly we fore-
seen that the size of the problems that needs to be solved makes an exact approach prohibitive. The pro-
posed method is named Multi-Level Variable Neighborhood Search heuristic (MLVNS) and illustrated in
Figure 2.

Level |

Node aggregation

Level 11

select the busiest unplanned day t

|

Update the maximum working durations for internal drivers on day t

|

Vehicle routing and driver scheduling for day t
(variable neighborhood search)

Any unplanned day?

Level 11

Node segregation

End

Figure 2. The flowchart of the MLVNS.

The MLVNS consists of three levels. The first level reduces the problem size through a node aggregation
procedure. The second level constructs the solution to the aggregated problem. To reduce the computational
overhead, we decompose the weekly planning problem into six daily planning problems, which are then
solved sequentially in a given order. Before a specific daily problem is solved, the maximum daily duration
of each internal driver is updated based on the 37 week-hour constraints and the workload that has been
assigned to the driver on the previously planned days. Given the updated information on the internal
drivers, the daily distribution plan is determined by means of a variable neighborhood search. At the last
level, the solution of the aggregated problem is expanded to a solution for the original problem and the

time to visit each customer is determined.



In the remainder of this section, the aggregation procedure is described in Section 4.1. How to update
the maximum daily durations for the internal drivers is described in detail in Section 4.2. The variable
neighborhood search that is applied to solve the daily planning problem is presented in Section 4.3. The

overall method is summarized in Section 4.4.

4.1 Aggregation procedure

The basic idea of the aggregation procedure is to reduce the problem size by combining several nodes (cus-
tomers) to a single supernode. The nodes to be aggregated are selected by analyzing their time windows,
demands, and the travel times between them. Intuitively, it is preferable to visit supermarkets located close
to each other, if possible, by the same vehicle in order to minimize the total travel distance. We hence treat

such supermarkets as one supernode in order to reduce the size of the planning problem.

Our aggregation procedure is an iterative process and focuses on pairs of customers at each iteration, as
shown in Algorithm 1. If two nodes ¢ and j are close enough to each other (i.e., ¢;; < p), have sufficient
overlap in time windows (i.e., min{b;,b;} — max{a;,a;} > ¢) and the total amount of their orders is no
more than x; and x2 in weight and volume, they are allowed to be aggregated. In each iteration, the pair
of nodes that satisfies the aggregation condition and has the minimum distance is selected to form a su-
pernode, which replaces the two nodes and is treated as a new basic node available for further aggregation
with other basic nodes or supernodes. Suppose at a certain aggregation stage, a supernode A is obtained,
which contains a sequence of basic nodes, denoted as { A1, ..., b }. The first node h, is called entry point and
the last node %y the exit point. The entry point and the exit point are used to update the distance between
h and other nodes/supernodes. The demand of the aggregated node is defined by ¢» = 3 ;c(; . 4y an,
and pn = > cq1,... 3 Ph,- The internal distance of £ is calculated as ¢, = 3_,cq1  ¢_1} Chihiy, - FOF SIM-

plicity, the earliest start time to serve h is set to the maximum starting times of the nodes included in 5,

I.e., ap = maz;cq,... ryan,. Since certain customers have special requirements on the vehicle size, we define
the internal duration of h visited by vehicle & by df, which is the sum of total travel time, total service
time and total additional service time caused by using vehicle k. The internal duration dj, of the supernode
issetto d, = maxkeKd’g to ensure the feasibility of the solution. The latest visit time of & is defined as
b = minie,... ry(bn, — dp).

Without loss of generality, a basic node is also viewed as a special supernode consisting of only the single
basic node. Therefore, in the preprocessing, we convert each basic node in the node set N’ to a supernode.
In each iteration, the best pair of nodes (i*, j*) are selected and aggregated to a supernode h by using the
approach mentioned above. We then replace node i* and j* in N’ by the supernode h. The aggregation

procedure stops when no more nodes can be aggregated.
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Algorithm 1: Level | (Aggregation procedure)

1. Input: the set of nodes N

2. Output: the set of Node N’ after aggregation

3: N’ «<Preprocessing(V)

4: repeat

5 (%)« 0

6 minDist < oo

7. for(i,j) € N’ do

8 if (cij < p)& (min{bi, b;} — maz{ai,a;} > 6 )& (¢: + ¢; < k1)& (pi + pj < k2) then
9 if ¢c;; < minDist then

10: (@*,5%) = (4, 7)
11: minDist < cij
12: end if

13: end if

14:  end for

15:  if (i*, %) # 0 then

16: h + Aggregate(i*, j*)
17: N« N'\ {i*,5*}
18: N’ + N'U{h}

19:  endif

20: until (i*,5%) =0
21: return N’

11



The parameters p, §, k1 and ko control the degree of aggregation. Increasing the values of p, k1 and ko, or
decreasing the value of § results in more aggregation of nodes. Generally, aggressive aggregation leads to
a problem with small size and quick convergence. However, it also narrows down the feasible region, and
may decrease the solution quality. The effects of the aggregation on solution quality and computational

time are investigated in Section 5.

4.2 Updating driver duration

In order to accelerate the algorithm, we decompose the weekly planning problem into several daily prob-
lems and solve these daily problems sequentially. When decomposing, we only need to consider how to dis-
tribute the 37 weekly hours to each workday of the internal drivers. To respect this constraint, a maximum
daily duration is imposed for each internal driver on each workday. There are several ways to determine

this maximum daily duration.

A simple way is to evenly distribute the 37 hours to each workday, namely an even allocation strategy. This
can be achieved by setting maximum daily duration M; to 37 hours divided by the number of workdays for
each internal driver [ on each workday:. In this case the internal drivers will never be assigned for more than
37 working hours over the week. However, since this simple strategy fails to take the significant variation
of daily workload into account, some internal drivers might be idle on days with lower demand, while a

lot of external drivers have to be hired for busier days.

In order to overcome this, we propose another strategy which adaptively determines the maximum daily
duration before each daily plan is made, namely an adaptive allocation strategy. We first sort the days
according to the number of orders and plan the busy days ahead of the quieter days. For a specific day
t, if internal driver [ works on day ¢ (i.e., t € T;), we determine his/her unplanned work duration W, by
subtracting the total work duration already assigned to driver [ on the previous planned days from the 37
hours and determine the number of unplanned workdays U, for driver [. If day ¢ is the last workday to be
planned for [ (i.e., U; = 1), M, is set to W, so that the 37 week-hour constraints are respected. Otherwise, if
U > 1, W, is set to W; /U, + ©, where W, /U, is the average daily workload for the remaining unplanned
days, and O is a user defined parameter. An appropriate value of © gives a degree of flexibility in the
plan and leads to a good utilization of internal drivers on busy days since the daily problems are solved
in descending order of workload. The adaptive allocation strategy is summarized in Algorithm 2 and a

comparison of the two strategies is conducted in Section 5.

12



Algorithm 2 : Level Il (Update daily work duration for internal drivers for day ¢)

1: Input: The planning day ¢; The set of routes R = {R1,..., Rj7|}

2: Output: The maximum daily work duration M = {M,,..., M|p,} for day ¢
3: forl=1,...,|D;|do

4: U, < GetTotalWorkDays(l)

5 Wi+ H

6: forieT)\{t}do

7: if (R; # 0) &(i € T;) then
8: o < GetPlannedDailyWorkDuration(R;, [)
9: Wi« W,—o

10: U +U -1

11 end if

12:  endfor

13:  if U, > 1 then

14: M, + W, /U, + 6

15:  else

16: M, «+ Wi /U

17:  endif

18: end for

4.3 Variable Neighborhood Search

The VNS was first introduced by Mladenovic and Hansen (1997) to "exploit systematically the idea of
neighborhood change, both in the descent to local minima and in the escape from the valleys which con-
tains them" (Hansen and Mladenovic (2001), Hansen and Mladenovic (2005)). During the past decade, this
method has been successfully applied to a wide range of rich vehicle routing problems (Paraskevopoulos
et al. (2008), Imran et al. (2009), Hemmelmayr et al. (2009)).

In this work we also develop a VNS to solve the daily planning problem which is an integrated vehicle
routing and driver scheduling problem. The proposed VNS consists of three components: initialization,
a shaking phase, and a local search. An initial solution is constructed and improved iteratively. In each
iteration, one of five large neighborhoods is first exploited in order to diversify the search, referred to as
shaking phase, and a local search is then applied in order to find the local optima. These components and

the overall framework of the VNS are detailed below.

Initialization Our initial solution is generated by means of a sweep heuristic, as shown in Algorithm 3.
We first assign each vehicle a random driver and sort the nodes in an ascending order of the angle they

make with the depot and an arbitrary radius. The nodes are then assigned to the vehicles sequentially.

13



For each unrouted node, it is assigned to the vehicle considered currently if the vehicle capacities and the
corresponding driver’s duration are not exceeded or if the vehicle is the last available vehicle. Otherwise,

the node is assigned to a new vacant vehicle.

Algorithm 3 : Level Il (Initialization of VNS)

: Sort the customers in an ascending order of the angle they make with the depot and an arbitrary radius {1, ...,n}
: Assign each vehicle a random driver
. Set the first vehicle k:= 1.
» fori=1,...,ndo
if insertion of 7 to k results in violation of capacities or duration constraints then
k < min{k + 1,]1K] }.
end if
Insert i to k so as to minimize the total travel time of k.

. end for

Local Search The local search in our VNS is performed by the Unified Tabu Search Algorithm (UTSA)
(Cordeau et al. (2001a)). The UTSA allows intermediate infeasible solutions during the search by means of
a penalized objective f(s,t) = c(s,t) +ap(s,t)+ Bq(s, t) +vd(s,t)+Ew(s,t), where ¢(s, t) is the delivery cost
ondayt,p(s,t) = Y e FCien 2jen, Pivijr —Pe) T and q(s,t) = 3k (ien 2jen, Gt —Qn) " arethe
total violations of the capacities in weight and in volume on day ¢, d(s,t) = > c (V51 & — 2 iep Pi - Yie) ™
is the total violation of the daily duration of all the drivers on day ¢, and w(s,t) = 3,y (v, — b;)™ is the
total violation of the service time window on day ¢, where (z)" = maz{0, z}. The coefficients «, 3, v and
& are positive self-adjusting penalties. A simple insertion is employed to improve the solution iteratively,
which transfers customers from their original routes to other routes. The UTSA stops when the solution is

not improved for a given number of iterations ¢.

Shaking phase Five large neighborhoods are proposed for the shaking phase. The first three are based on
the Ruin and Recreate Approach (RRA) (Schrimpf et al. (2000), Pisinger and Ropke (2007)). The basic idea
of the RRA is to diversify the search by removing a number of bad customers from the current solution
according to a removal scheme and then reinsert them into the routes again based on a reinsertion scheme.
All these three neighborhoods use the same reinsertion scheme, i.e., regret heuristic (Potvin and Rousseau
(1993), Ropke and Pisinger (2006)), but different removal schemes.

The first neighborhood uses a worst removal heuristic which selects a certain percentage (6) of customers

with the largest removal costs (Ropke and Pisinger (2006)). The removal cost of a customer is defined to
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be the change in the solution value when it is removed from the route. This neighborhood is named the
Worst Removal Neighborhood and denoted by WRN. The second neighborhood removes the customers
covered by the external driver with the shortest working duration, namely the Driver Removal Neighbor-
hood (DRN). The neighborhood helps not only to minimize the cost caused by using the external drivers
but also reduce the number of vehicles used. The third neighborhood, Overlap Removal Neighborhood
(ORN), removes all the customers in those routes that have the largest overlapping areas. The area of a
route is defined as the area of the smallest rectangle that covers the depot and all the customers on that
route. The areas of routes may overlap with each other. We define the overlapping area of each route to be
the sum of its overlapping areas with all the other routes. In the ORN, we sort all the routes in a descending
order of the overlapping area and remove the customers on the first A routes. Since most of the customers
have wide time windows, reducing the overlapping areas of routes may lead to a better solution. Such an
example is illustrated in Figure 3, where, for simplicity, we consider two vehicles with capacity 4 and seven
customers with unit demand. The solution before reducing the overlapping area is shown in (a). The area
of each route in the solution and the overlapping area are defined in (b). The solution after reducing the
overlapping area is depicted in (c) and the overlapping area is given in (d). As we can see from this small

example, reducing the overlapping area leads to a better solution with smaller travel distance.

After the removal of customers, a regret heuristic, as detailed in Algorithm 4, is applied to reinsert the

removed customer into the routes.

Algorithm 4 : Level Il (Regret heuristic for the WRN, DRN and ORN in VNS)

1. Nrgem IS the set of nodes to be inserted into solution s
2. while Ngen, # (0 do

3:  fori € Ngem do

4 bestIC; < CalculateBestInsertionCost(s, s)

5 secondlC; < CalculateSecondBestInsertionCost(s, s)
6: endfor

7. i* + argmaxcnpg,,, (secondIC; — bestIC})

8: s« InsertCustomer(i*, s)

9. Ngem < Ngem \ {1}
10: end while

The other two neighborhoods are constructed by a swap move. The fourth neighborhood, Swap Driver
Neighborhood (SDN), swaps the drivers to find a good match between the drivers and the routes in terms

of starting time and ending time. Similarly, the last neighborhood, Swap Truck Neighborhood (STN), swaps
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vehicles, as shown in Figure 4. In the SDN (/STN), all possible pairs of drivers (/vehicles) are tried and the

pair that leads to the minimum objective value is selected and applied.

To sum up, the five neighborhoods proposed for the shaking phase fall into two categories. The first three,
WRN, DRN, and ORN, emphasize the construction of good routes, whereas the other two, SDN and STN,
focus on assigning the right vehicles and right drivers to the routes. A sensitivity analysis on the effects of

these neighborhoods is conducted in Section 5.

/-;t /‘1’;[;/_.?/[

(a) Original solution (b) Overlapped area of solution in (a)

(c) New solution (d) Overlapped area of solution in (c)

Figure 3. An example of two solutions with different overlapping areas

(a) solution before swapping vehicles (b) solution after swapping vehicles

Figure 4. An example of swapping vehicles

VNS framework The overall framework of the VNS is given in Algorithm 5. Set L = {W RN, DRN,ORN,
SDN,STN} denotes the set of five large neighborhoods used in the shaking phase. Set L’ denotes the set

of available neighborhoods during the search procedure. The VNS starts with the initial solution given by
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the sweep heuristic and improves the solution iteratively until the stop criteria reached. In each iteration, it
exploits a neighborhood selected from L’ and updates the current solution with a solution from the selected
neighborhood. The UTSA is then applied on the neighboring solution and it stops when the best solution
found so far has not been improved within ¢ iterations. There are two possible values, ¢1 and s (91 < @2),
for parameter ¢ depending on whether the UTSA is supposed to search thoroughly (i.e., ¢ = ¢>) or not
(i.e., ¢ = 1). If the best solution found by the UTSA (s}, 4) is better than the best solution found in the
previous VNS iteration (s*), s* is updated by sj;,¢, and the boolean parameter improved is set to T'rue,
meaning that the best solution is improved in the current VNS iteration. Otherwise, improved is set to

False. The VNS stops once a certain time limit 7 has been reached.

We now describe how the VNS selects the value of ¢ from {1, v1} and how it adaptively selects a neighbor-
hood in the shaking phase at each iteration. The parameter ¢ is initialized by the small value ;,and L' by L.
If the best solution (s*) is updated in the previous iteration (i.e., improved = True), the same neighborhood
used in the previous iteration is applied again in the current iteration. Otherwise, if improved = False, the
neighborhood used in the previous iteration is removed from the set of potential neighborhoods L’ and an-
other neighborhood from L’ takes over. If the removal leads to an empty L’, which means the best solution
has not been improved by the last five iterations, we set  to be the large value ¢- so that the UTSA will
search thoroughly in future, and reset L’ to be L so that all neighborhoods become available again. As soon
as the best solution is updated, ¢ is set back to ; and L’ back to L. When selecting a neighborhood from L/,
we first consider the SDN. If the SDN is not in L, the neighborhood that has not been used for the longest
time is selected. The reason of giving the SDN a higher preference is that the assignment of the right drivers
to the routes is found to be very crucial due to the various starting times of the drivers, as we will show in
Section 5. Besides, the three neighborhoods, WRN, DRN and ORN, as well as the UTSA all emphasize on
the route optimization, therefore a higher selection probability of the SDN balances the optimization efforts

on all aspects of the problem.

4.4 Overall method
The overall MLVNS is summarized in Algorithm 6. Line (3—6), line (7—13) and line (14—16) correspond

to Level I, Il and |11, respectively.

5 Computational Results

In this section we present the computational experiments on the real-life data provided by Danish Crown.

Our method was programmed in C# and executed on a Pentium 2.66GHz machine and two GB of memory.
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Algorithm 5: Level Il (VNS framework)

1: Input: The planning day ¢; The set of customers N; to be planned on day ¢; The maximum duration M for internal

drivers on day t.

2: Output: The route plan R; for day ¢.
3. tmproved < False

4. L'+ L

5. s < SweepHeuristic(V¢)
6: while CPUTime < T do
7
8
9

if improved then

PP
L'+ L
10:  else
11: L'« L'\ {currentL}
12: if L' = () then
13: © £ P2
14: L'+ L
15: end if
16: if SDN € L' then
17: currentL < SDN
18: else
19: currentL < FindLongestUnused(L")
20: end if
21:  endif

22: s < ApplyLNS(currentL, s, M)
23:  (s,s{rga) < TabuSearch(s, M, )
24:  if s;pg4 IS better than s* then

25: S < S{rsa

26: improved < True
27:  else

28: improved < False
29: endif

30: end while

31 Ry« s*

32: return Ry
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Algorithm 6 : Multi-level variable neighborhood search heuristic

. Input: The set of nodes N = {N1,..., N}

. Output: The set of routes R = {R1, ..., Rj| }

s fort=1,..,|T|do
N < AggregationProcedure(Ny) /7 see Algorithm 1
Ry« 0

end for

daysPlanned < 0

. while daysPlanned < |T'| do

© 0o N g R~ w N R

t +— FindBusiestUnplannedDay(R)
M <+ UpdateMaxWorkDuration(¢, R) // see Algorithm 2
R: < VNS(N, M) /7 see Algorithm 5
daysPlanned < daysPlanned + 1

i e e =
w b R o

. end while

s fort=1,....|T| do
R < Expand(R:)
: end for

e

. return R

We first describe the data and parameters used in our tests and then present a sensitivity analysis of the

parameters as well as a comparison between our solutions and Danish Crown’s solutions.

5.1 Dataand parameters

There are data sets for four weeks, each of which consists of six workdays. As an example, Table 1 shows
the total number of orders and the total demand by volume and weight for each workday from 29/09/2008
to 04/10/2008. The length of time window (TW) in this week ranges from 1 hour to 24 hours and the
histogram of the TW length is shown in Figure 5. Approximately 40% of the orders have an 8-hour TW,
most of which have [0.00, 8.00]. Roughly 35% of the orders have 2- to 4- hour time windows in the early
morning, such as [6.00 8.00], [7.00 10.00] and [6.00 10.00]. Around 18% of the customers do not have any
restriction on visiting time and can be visited at any time during the day. This is because Danish Crown has
the electronic keys to access these supermarkets. The vehicle information is provided in Table 2, including
the sizes, the capacities and the numbers of the vehicles. Approximately 10% of the supermarkets have
requirements on the vehicle size. Danish Crown uses approximately 11 internal drivers and at most 14
external drivers every day. Euclidean distances are used in our tests and we assume the vehicle speed is
60km/hour.
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The value of each parameter used in the algorithm is set based on the preliminary tests. The minimum
length (0) for the overlap required between two time windows in order for two nodes to be aggregated is
set to 60 minutes. The capacity parameters «; and x5 are set according to the smallest vehicle, i.e., 7000 (KG)
and 18 (pallets) respectively. The parameter © used in the adaptive allocation strategy in solving the daily
problems is set to 60 minutes. The parameter 6 in the WRN is set to 10%, i.e., 10% of customers are removed
and reinserted again. The parameter A in the ORN is set to 2, meaning that customers in two routes are

removed. The iteration number ; and - for the stop criteria in the TS are set to 350 and 1500, respectively.

Total demand

Date Number of orders (Pallet) (Kg)
29/09/2008 279 329.5 84263.5
30/09/2008 381 439.5125118.6
01/10/2008 365 399.0 124740.5
02/10/2008 364 4345 124740.5
03/10/2008 397 577.0 170938.1
04/10/2008 360 483.0 144057.5

Table 1. Orders from 29/09/2008 to 04/10/2008

Number of orders

10 15 2‘0
Length of TW (hours)

Figure5. The TW length of the customers
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Capacity
Type Number of vehicles (Pallet) (Kg)

Big 9 33 14000
Medium 2 27 10000
Small 14 18 7000

Table 2. Vehicle Resource

5.2 Sensitivity Analysis

The purpose of this section is to assess the behavior of the proposed heuristic and analyze the sensitivity
of the parameters. The analysis can be classified into two categories. The first one focuses on the algorithm
performance on daily problems. We tested the algorithm on six daily instances, including both busy days
and easy days, and examined three aspects of the algorithm: the effectiveness of the node aggregation pro-
cedure, the effectiveness of using two alternative values for ¢ in the UTSA in the VNS, and the effects of
the five large neighborhoods in the shaking phase of the VNS. The second group of tests evaluated the per-
formance of the algorithm on solving weekly problems and provided the following results: a comparison
of two work duration allocation strategies for decomposition and a comparison of the different number of

the special supermarkets that have requirements on vehicle size.
Effectiveness of the aggregation procedure

As mentioned in Section 4, before the solution is constructed, the problem size is first reduced through a
node aggregation procedure in which pairs of nodes with a distance less than or equal to p are considered
to be aggregated into a single supernode. We tested the algorithm with different values of p on six daily
instances. Figure 6 illustrates the convergence of the proposed heuristic for four values of p, 0, 2, 4 and
6. When p equals 0, no aggregation is done. When p equals 2, 4 or 6, the problem size is reduced by ap-
proximately 25%, 35% and 50%, respectively. Table 3 shows the detailed results. Column ’Index’ is the test
descriptor and column "Time’ is the running time in minute for each test, ranging from 3 to 36 minutes. For
each p, the column ’Average solution value’ reports the average solution value z/ on the six daily instances
in test ¢. The column ’Conv.(%)’ shows the relative difference in the average solution value between test
ZP—Z

t — 1 and ¢, calculated as ; - 100, which also indicates the speed of convergence with different values

of p. The column "Gap(%)’ provides the percentage gap between solution value of the aggregated problem

(0" = {2,4,6}) and that of the original problem (p = 0), calculated as -~ - 100. These gaps show how the

solution value is influenced by different level of aggregation, depicted in Figure 7.
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As seen from Table 3 and Figure 6, a higher value of p yields a faster convergence to the solution since
more of the feasible region is cut by the aggressive aggregation. With a short running time, the aggregated
problem leads to a better solution due to an intelligent search in a smaller feasible region. For example,
p = 6 provides better results than p = 0 when the running time is shorter than 20 minutes. However, given
an enough computation time, the aggregated problem is not competitive to the original problem any more
in terms of solution quality. For instance, the solution value provided by p = 0 is consistently better than
that provided by p = 6 when the running time is larger than 20 minutes. A good trade-off between the

running time and solution quality is obtained with p = 2.

Average Average Average Average
Time solution Gap Conv. solution Gap Conv. solution Gap Conv. solution Gap Conv.
Index (minute)  value (%) (%) value (%) (%) value (%) (%) value (%) (%)

1 3 32531 O 29284 -10.0 28109 -13.6 28180 -13.4

2 6 29774 0 -85 27407 -79 -64 26269 -11.8 -6.5 27046 -9.2 -4.0
3 9 28350 0 -48 26421 -68 -3.6 25633 -96 -24 26686 -59 -1.3
4 12 27305 0 -37 25663 -6.0 -29 25496 -6.6 -05 26334 -36 -1.3
5 15 26783 0 -19 24990 -6.7 -26 25187 -6.0 -1.2 26117 -25 -0.8
6 18 26228 0 -21 24723 -57 -11 25046 -45 -06 25944 -11 -07
7 21 25586 0 -24 24442 -45 -11 24992 -23 -0.2 25796 0.8 -0.6
8 24 25341 0 -1.0 24241 -43 -08 24872 -19 -05 25764 1.7 -01
9 27 25109 0 -09 24086 -41 -06 24791 -13 -03 25675 23 -0.3
10 30 24911 0 -0.8 24032 -35 -0.2 24704 -08 -04 25629 29 -0.2
11 33 24643 0 -1.1 23924 -29 -04 24563 -0.3 -06 25570 38 -0.2
12 36 24449 0 -08 23833 -25 -04 24561 05 00 25529 44 -0.2

Table 3. Average solution value of using different levels of aggregation

Effectiveness of using two alternative values for ¢

The parameter ¢ in the stop criteria of UTSA is self-switched between two user defined values ¢ and -
(p1 < 2). We compare the performance of using two ¢ values (i.e., ¢ = {1, p2}) with that of using solely
one o value (i.e., p = 1 Or ¢ = o). Ten random runs on the six daily instances with different running times
are performed. Given a running time ¢, we denote the average solution value with ¢ = 1 by z,, (¢), the av-
erage solution value with ¢ = ¢, by z,, (t), and the average solution value with ¢ = {¢1, w2} bY Z(,, 4,3 (1)
Figure 8 shows the percentage gap between z,, (t) (and z,,(t)) and z;,, .., (t) as a function of running time
t. These gaps can be calculated as f,, (t) = M =100 (and f,,(t) = OIS IO 100). The

2(&017472}(‘5 5(%?1,@2}(15)
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results show that, given an enough computational time (more than 13 minutes), the solution of using two
values of ¢ is consistently better than that of using solely one value. The improvement is approximately
2%.

4 T

-2 | | | | | | |

0 5 10 15 20 25 30 35 40
Running time (minute)

Figure 8. Solution gap in percentage between using two ¢ values and using solely one ¢ value

Effect of the five large neighborhoods in the shaking phase in the VNS

We proposed five neighborhoods in the shaking phase of the VNS, including the WRN, DRN, ORN, SDN
and STN. We evaluated the contribution of each neighborhood in this section and show the effect of combin-
ing the five neighborhoods. In Table 4, column ’Index’ is the test descriptor and column *Time’ is the running
time in minute for each test, ranging from 3 to 36 minutes. For each neighborhood setting L, column ’Aver-
age solution value’ reports the average solution value z} on the six daily instances in test ¢. Column ’'Gap(%)’
presents the percentage gap in the average solution value between using one neighborhood L, and using
five neighborhoods L, calculated as Z'L;—QZI‘L - 100. Row "Average’ provides the overall average value of each

t

column. Figure 9 shows gaps as a function of running time.

From Table 4 and Figure 9, we can see that, among all the five neighborhoods, the SDN is the most effective
one. This is the reason why we give SDN the highest selection probability in the shaking phase as men-
tioned in Section 4. The heuristic with all the five neighborhoods outperforms the heuristic with any single

neighborhood by 0.6% to 3% given an enough computational time.
Effectiveness of the adaptive allocation strategy

We compared the two allocation strategies, even allocation strategy and adaptive allocation strategy, used to
distribute the 37 weekly hours to each workday for the internal drivers. The average solution values on the
four weekly instances are provided in column 'Average solution value’ in Table 5. The column *Gap(%)’ shows

the percentage gap between the solution values using the two strategies. Row ’Average’ shows the overall
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L All WRN DRN ORN SDN STN

Average Average Average Average Average Average
Time solution Gap Solution Gap Solution Gap Solution Gap Solution Gap Solution Gap
Index (minute)  value (%) value (%) value (%) value (%) value (%) value (%)

1 3 29284 0O 29597 1.1 29731 1.5 29731 1.5 29351 0.2 29925 2.2
2 6 27407 0 27733 1.2 27897 1.8 27792 14 27751 1.3 28734 4.8
3 9 26421 0 26542 0.5 27010 2.2 27064 2.4 26812 1.5 27603 4.5
4 12 25663 0 26094 1.7 26169 2.0 26580 3.6 26252 2.3 26664 3.9
5 15 24990 0 25762 3.1 25694 2.8 26060 4.3 25504 2.1 26008 4.1
6 18 24723 0 25565 3.4 25447 2.9 25427 2.8 25194 1.9 25561 3.4
7 21 24442 0 25393 3.9 25225 3.2 25291 35 24714 11 25169 3.0
8 24 24241 0 25063 3.4 24874 2.6 25036 3.3 24395 0.6 24890 2.7
9 27 24086 0O 24848 3.2 24667 2.4 24819 3.0 24284 0.8 24672 2.4
10 30 24032 0 24654 2.6 24582 2.3 24612 2.4 24182 0.6 24467 1.8
11 33 23924 0 24548 2.6 24543 2.6 24521 2.5 24120 0.8 24238 1.3
12 36 23833 0 24420 2.5 24504 2.8 24463 2.6 24003 0.7 24182 1.5

Average 25253.8 0.0 25851.6 24 258619 24 25949.7 2.8 25546.8 1.2 26009.4 3.0

Table 4. Average solution values of using different large neighborhood settings
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Figure 9. Solution gap in percentage between using different large neighborhood settings
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average value of each column. For all the tests, the adaptive allocation strategy consistently performs better

than the even allocation strategy and improves the solution by 4.5% on average.

Time Even allocation strategy Adaptive allocation strategy

(minute) Average solution value Average solution value Gap(%)
10 135104 129201 -4.4
14 128561 124412 -3.2
18 124790 119656 -4.1
22 122670 117304 -4.4
26 121410 115453 -4.9
31 120073 113849 -5.2
36 119289 113011 -5.3
Average 124557 118984 -4.5

Table 5. Average solution values with even allocation strategy and adaptive allocation strategy

Effect of the supermarkets that have requirements on vehicle size

In real life approximately 10% of the supermarkets have requirements on vehicle size, referred to as spe-
cial supermarkets. To analyze the influence of these special supermarkets, in addition to the real-life case
supplied by Danish Crown, we created two additional cases. In the first case we assume there is no special
supermarket and the corresponding results are shown in column 0% of supermarkets’. In the second case,
we randomly added vehicle size requirements to an additional 10% of the supermarkets from the real-life
case so that altogether 20% of supermarkets were special. The test results are presented in Table 6. For each
test, the average solution value, total distance, total duration and number of vehicles used are provided
in column ’Average solution value’, ’Average total distance’, *Average total duration’ and "Number of vehicles’,
respectively. Row ’Average’ shows the overall average value of each column. As we can see from the table,
the number of special supermarkets has a large effect on the solution values. As the proportion of special
supermarkets increases from 0% to 20%, the solution value, total travel distance and total route duration are
increased by 21%, 5.7%, and 8.8%, respectively. More vehicles are required when there are a large number

of special supermarkets.

5.3 Comparison with industrial solution

Danish Crown also provided the routes they planned and executed for the four weekly instances. However,

the only accessible information about their real-life plan is the list of customers served in every route on
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Special 0% of supermarkets 10% of supermarkets 20% of supermarkets

Average Average Averate Number Average Average Averate Number Average Average Averate Number
solution total total of solution total total of solution total total of

Dataset  value distance duration vehicles value distance duration vehicles value distance duration vehicles

Weekl 129571 32188 62341 19 143770 32882 65633 19 159865 33601 68586 19.3
Week?2 90066 28315 55953 16 98332 29260 58563 16.2 117294 30756 61683 17
Week3 91734 28293 56190 16.2 94817 28831 57986 16.2 103418 29617 59727 16.5
Week4 108419 29858 57751 18 115125 30394 60067 18.2 127513 31445 62613 18.7

Average 104947 29663 58058 17.3 113011 30341 60562 17.4 127022 31354 63152 17.9

Table 6. Average solution values with different number of special supermarkets

every day. The exact order in which and the time at which each customer is visited are not available. We
therefore calculated a TSP lower bound on the travel distance for each route using Concorde (Appelgate
et al. (2003)). These lower bounds are provided in column 'LB on travel distance’ in Table 7. The first column
gives the names of the data sets and the second column corresponds to the index of days in each week.
The daily solutions as well as the summarized weekly solutions are provided. We also tested our algorithm
on the same instances. The average solution value and the average travel distance on ten random runs are
presented in column ’Average solution value’ and column ’Average travel distance’. The numbers of vehicles
used in the two solutions are provided in columns ’Number of vehicles’. Column *Gap(%)’ shows the percent-
age gap between travel distance (z) by our method and the lower bound (z7 g) on the travel distance of the
industrial solution, calculated as % -100. The results show that, our solution is superior to the industrial

solution in terms of both the total travel distance and the number of vehicles used.

It also needs to be stressed that the TSP lower bound is a very poor lower bound on the travel distance since
a lot of constraints are not considered in the TSP, such as the time windows, the working regulation and so

on. Therefore, the actual difference between the two solutions is likely to be larger.

6 Conclusion

We have addressed a planning problem with integrated vehicle routing and driver scheduling which arises
from a practical problem of Danish Crown. In this problem, a routing plan, consisting of six days in a week,
has to be made for a fleet of heterogeneous vehicles to deliver the fresh meat to the supermarkets according
to their demands and preferences, such as the visiting time and the preferable vehicle sizes. The route plan
also needs to comply with the drivers’ working regulations, such as the fixed workdays, the fixed starting

time and latest ending time, the maximum weekly working duration, break rule and so on. The objective
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is to minimize the total delivery cost. We have presented a mixed integer linear programming formulation
for the problem and a multi-level variable neighborhood search based heuristic for solving it. The first level
of the proposed heuristic effectively reduces the problem size through a node aggregation procedure based
on the locations, demands, and time windows of the nodes. The second level decomposes the aggregated
weekly planning problem into six daily problems by wisely distributing the internal drivers’ weekly work-
load to each workday and solves the daily problems sequentially by means of a variable neighborhood
search. Two aspects of our VNS were proved to be very effective: the combination of five large neighbor-
hoods in the shaking phase and the alternative usage of a short-term and long-term searching in the local
search. At the last level, the solution of the aggregated problem is expanded to the solution of the origi-
nal problem. The heuristic was implemented and tested on real-life data. Our solution is superior to the

industrial solution in terms of the total travel distance and number of vehicles used.
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MLVNS solution Danish Crown solution

Average Average Number LB on Number

solution  travel of  travel of Gap

Data set Day value distance vehicles distance vehicles (%)
Weekl 0 13532 4365 15.0 5809 20 -24.9
1 21839 5397 16.7 6383 23 -154

2 23859 5518 17.0 6389 23 -13.6

3 22176 5349 17.0 6252 23 -144

4 29805 6018 19.0 6592 24 -8.7

5 32559 6235 19.0 6374 23 -2.2

Total 143770 32882 19 37799 24 -13.0
Week2 0 12498 4032 15.0 6136 20 -34.3
1 16122 4888 15.8 6801 23 -28.1

2 17726 5404 15.5 6392 23 -155

3 15152 4647 15.0 5960 23 -22.0

4 20550 5280 16.0 6142 24 -14.0

5 16284 5008 15.5 6068 23 -175

Total 98332 29260 16 37500 24 -22.0
Week3 0 12630 4074 14.8 5920 20 -31.2
1 17246 4973 15.8 6586 23 -245

2 16650 5259 15.2 6924 23 -24.0

3 14881 4767 15.0 6720 23 -29.1

4 19302 5208 16.0 6862 24 -24.1

5 14107 4551 15.0 6292 23 -27.7

Total 94817 28831 16 39304 24 -26.6
Week4 0 13056 4211 15.0 5966 20 -294
1 14722 4699 15.2 6514 23 -27.9

2 20010 5372 16.0 6417 23 -16.3

3 14960 4673 15.0 6262 23 -25.4

4 28930 5833 18.0 6839 24 -14.7

5 23448 5605 17.0 7080 23 -20.8

Total 115125 30394 18 39078 24 -22.2

Table 7. Comparison between the Danish Crown solution and MLVNS solution
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This paper addresses an integrated vehicle routing and driver scheduling problem arising at the
largest fresh meat producer in Denmark. The problem consists of a one-week planning horizon,
heterogeneous vehicles, and drivers with predefined work regulations. These regulations include,
among other things, predefined workdays, fixed starting time, maximum weekly working duration,
break rule. The objective is to minimize the total delivery cost.

The real-life case study is first introduced and modelled as a mixed integer linear program. A multi-
level variable neighborhood search heuristic is then proposed for the problem. At the first level, the
problem size is reduced through an aggregation procedure. At the second level, the aggregated
weekly planning problem is decomposed into daily planning problems, each of which is solved by a
variable neighborhood search. At the last level, the solution of the aggregated problem is expanded
1o that of the original problem. The method is implemented and tested on real-life data consisting of
up to 2000 orders per week. Computational results show that the aggregation procedure and the
decomposition strategy are very effective in solving this large scale problem, and our solutions are
superior to the industrial solutions given the constraints considered in this work.
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