

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

A multi-level variable neighborhood search heuristic for a practical vehicle routing and
driver scheduling problem

Wen, Min; Krapper, Emil; Larsen, Jesper; Stidsen, Thomas Jacob Riis

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Wen, M., Krapper, E., Larsen, J., & Stidsen, T. K. (2009). A multi-level variable neighborhood search heuristic
for a practical vehicle routing and driver scheduling problem. Kgs. Lyngby: DTU Management. (DTU
Management 2009; No. 9).

http://orbit.dtu.dk/en/publications/a-multilevel-variable-neighborhood-search-heuristic-for-a-practical-vehicle-routing-and-driver-scheduling-problem(55bc1707-4adc-4e9e-9650-872730241971).html

Min Wen
Emil Krapper
Jesper Larsen
Thomas K. Stidsen
June 2009

A multi-level variable neighborhood
search heuristic for a practical vehicle
routing and driver scheduling problem

Report 9.2009

DTU Management Engineering

A multi-level variable neighborhood search heuristic for a practical

vehicle routing and driver scheduling problem

Min Wen ��, Emil Krapper, Jesper Larsen, and Thomas K. Stidsen

Department of Management Engineering, Technical University of Denmark,

Produktionstorvet DTU-Building 426, DK-2800 Kongens Lyngby, Denmark

November 6, 2009

Abstract. This paper addresses an integrated vehicle routing and driver scheduling problem arising

at the largest fresh meat producer in Denmark. The problem consists of a one-week planning horizon,

heterogeneous vehicles, and drivers with predefined work regulations. These regulations include, among

other things, predefined workdays, fixed starting time, maximum weekly working duration, break rule.

The objective is to minimize the total delivery cost.

The real-life case study is first introduced and modelled as a mixed integer linear program. A multi-

level variable neighborhood search heuristic is then proposed for the problem. At the first level, the

problem size is reduced through an aggregation procedure. At the second level, the aggregated weekly

planning problem is decomposed into daily planning problems, each of which is solved by a variable

neighborhood search. At the last level, the solution of the aggregated problem is expanded to that of the

original problem. The method is implemented and tested on real-life data consisting of up to 2000 orders

per week. Computational results show that the aggregation procedure and the decomposition strategy

are very effective in solving this large scale problem, and our solutions are superior to the industrial

solutions given the constraints considered in this work.

Keywords: vehicle routing, driver scheduling, Variable Neighborhood Search, node aggregation.

1 Introduction

In this paper, we consider a Multi-Period Vehicle Routing and Crew Scheduling Problem (MPVRCSP) arising at

the largest fresh meat producer in Denmark, Danish Crown. Danish Crown delivers the fresh meat from

its distribution terminals to the supermarkets all over Denmark. The supermarkets place their orders with

specified demand for different days of the week before the week starts. The distributor then makes a weekly

delivery plan for the drivers and vehicles so that the orders are fulfilled, the drivers’ working regulations

are respected and the total travel cost is minimized.

�� Corresponding author (mw@transport.dtu.dk)

Danish Crown is the largest Danish producer of fresh meat. It slaughters over 20 million pigs and 0.5 million

pieces of livestock each year. Its pork production is the largest in Europe and the second largest in the

world. Danish Crown is also responsible for the delivery of fresh meat to supermarkets all over Denmark

every day. There are two distribution terminals in Kolding and Ringsted, operating independently. Here

we consider the Kolding terminal, which is located in Jutland. It receives more than 2000 orders every week

and delivers meat to over 800 Danish supermarkets across western Denmark. Figure 1 shows the locations

of the customers and of the terminal. The total amount of meat delivered varies from day to day, ranging

from 60 tons to 300 tons. As a result, the need for drivers varies daily as well. Danish Crown has a number

of internal drivers who work on regular workdays with a fixed number of hours every week. For busier

days, Danish Crown needs to hire external drivers to take the routes that can not be covered by the limited

number of internal drivers. Different types of drivers are associated with different costs, the objective is to

minimize the total cost of the delivery.

Jutland

Zealand

Kolding

Funen

Figure 1. Locations of customers and depot (represented by a square) in the Danish Crown case study

2

The literature on the integrated Vehicle Routing and Crew Scheduling Problem (VRCSP) is rather limited.

To our best knowledge, the most relevant work is that of Zaepfel and Boegl (2008). They addressed a weekly

planning problem for postal companies, in which pickup tours and delivery tours must be decided for ve-

hicles and drivers based on variable vehicle capacities and drivers’ working regulations. Similar to our

work, they also considered the driving rules and different types of drivers with different costs and working

regulations. In their work, a solution framework was proposed, which consists of four parts: initializa-

tion, route generation, personnel assignment and solution evaluation. The framework was tested with two

guiding metaheuristics, Tabu Search and Genetic Algorithm. The Tabu Search procedure was found to be

competitive in solving their application. Another integrated vehicle routing and driver scheduling prob-

lem that has been studied in the literature is about the urban mass transit system, in which the buses and

drivers are scheduled to serve a number of trips defined by a timetable (Huisman et al. (2005), Huisman and

Wagelmans (2006), Freling et al. (2003) and Mesquita and Paias (2008)). Most of the solution methods for

the VRCSP in the urban mass transit system are based on Column Generation and Lagrangian Relaxation.

The integrated aircraft routing and crew scheduling problem is also relevant. This problem is solved by

the Benders decomposition in Cordeau et al. (2001b), Mercier and Soumis (2007), Papadakos (2009), which

decomposes the integrated problem into an aircraft routing problem and a crew pairing problem.

The vehicle routing part of our problem can be viewed as a Heterogeneous Vehicle Routing Problem with

Time Windows (HVRPTW) in which a limited number of heterogeneous vehicles, characterized by differ-

ent capacities, are available and the customers have a specified time window for service. The HVRPTW is

usually solved by heuristics. The best known algorithms for this problem include: adaptive large neigh-

borhood search (Pisinger and Ropke (2007)), variable neighborhood search (Paraskevopoulos et al. (2008),

Imran et al. (2009)) and simulated annealing (Li et al. (2007), Braysy et al. (2008)). Choi and Tcha (2007)

proposed an exact method based on column generation for the problem. For a recent literature review, see

Baldacci et al. (2008).

The remainder of this paper is organized as follows. The MPVRCSP arising at the Danish Crown is defined

in Section 2. In Section 3, the problem is formulated as a mixed integer linear program. A multi-level vari-

able neighborhood search method is proposed in Section 4. Section 5 presents the computational results on

the real-life data and conclusions follow in Section 6.

2 Problem Description

The problem is to determine routes for delivering fresh food to a set of supermarkets (or customers) every

day over a one-week planning horizon. The routes are planned for a fleet of heterogeneous vehicles and a

number of drivers with predefined working regulations.

3

A number of practical constraints need to be considered regarding the delivery. First of all, each customer

orders a different amount of meat every day, measured in weight (Kg) and volume (pallets). Each vehicle

has limited capacities both in weight and in volume. Secondly, each customer has a certain time window

for receiving its order. These time windows are based on numerous factors such as working hours of the

employees in the supermarket, city traffic etc. Lastly, certain special customers have requirements on the

vehicle size. This is usually because of small roads or limited parking lot sizes. If an inappropriate vehicle

type is used to serve such a customer, the driver usually needs to park some distance from the supermarket.

This results in additional service time, which is proportional to the number of pallets ordered.

There are two kinds of drivers hired to carry out the delivery: internal and external. The internal drivers

work on the predefined workdays and for no more than a maximum weekly working duration (37 hours)

over a week. Both the internal and external drivers start from given starting times and finish before given

latest ending times. The drivers cannot drive for more than 4.5 hours without a 45-minute break according

to the EU driving legislation.

Several different types of costs are considered in this problem. We assume that the internal drivers have

regular salaries according to their contracts. Hence only the fuel cost of the internal routes are considered,

which depends on the distance travelled and the cost per kilometer. The external drivers are paid at a fixed

price every hour, which covers both the salary for the driver and the vehicle cost. Therefore, the cost of the

external routes is calculated by multiplying the route duration and the cost factor.

The objective of this problem can therefore be translated to minimize the fuel cost of the internal routes

and the cost of the external routes over the planning horizon in such a way that each order must be served

by one vehicle within its time window, vehicle capacities are not exceeded, each driver starts working at a

predefined time and finishes before a given time on every workday, the internal drivers work for no more

than a maximum weekly duration over the planning horizon, and the break rule regarding the driving

legislation is respected.

This problem integrates vehicle routing and driver scheduling. The complexity of this problem can be char-

acterized in many respects: the multiple periods, the heterogeneous vehicles, different types of drivers with

different working regulations and the simultaneous planning of vehicles and drivers. Note that the orders

on different days are fixed. The only constraint connecting the routes on different days is therefore the max-

imum 37 weekly hours for the internal drivers. This means that a certain driving schedule for an internal

driver on one day will affect the maximum duration of the driver on the remaining days. Without this

constraint, this weekly planning problem can be viewed as several independent daily planning problems,

each of which considers the vehicle routing and crew scheduling problem on a single day, namely the daily

4

planning problem. This property is utilized in the solution method described in Section 4, and helps solve

the large size problem effectively and efficiently.

3 Mathematical Formulation

This section presents a mixed integer linear programming formulation for the MPVRCSP. We denote the

planning horizon by T and the set of drivers by D. The set of workdays for driver l ∈ D is denoted by

Tl ⊆ T . The start working time and latest ending time for driver l ∈ D on day t ∈ T are given by gtl and

ht
l , respectively. Let DI and DE denote the set of the internal and external drivers (D = DI ∪DE). For each

internal driver l ∈ DI , let H denote the maximum weekly working duration. We denote the maximum

elapsed driving time without break by F and the duration of a break by G (according to the EU driver

legislation).

Let K denote the set of vehicles. For each vehicle k ∈ K , let Qk and Pk denote the capacity in weight and in

volume, respectively. We assume the number of vehicles equals to the number of drivers. Denote the set of

n customers (/nodes) by N = {1, 2, ..., n}. Denote the depot by {0, n+ 1}. Each vehicle starts from {0} and

terminates at {n+1}. Each customer i ∈ N specifies a set of days to be visited, denoted by Ti ⊆ T . On each

day t ∈ Ti, customer i ∈ N requests service with demand of qti in weight and pti in volume, service duration

dti and time window [ai, bi]. Note that, for the depot i ∈ {0, n+ 1} on day t, we set qti = pti = dti = 0. Denote

the set of preferable vehicles for visiting customer i by Ki (Ki ∈ K) and the extra service time per pallet by

e if a customer is not visited by a preferable vehicle. The travel time between customer i and j is given by

cij . Denote the cost coefficients of the travel time of the internal drivers by A and the working duration of

the external drivers by B.

We define binary variable xt
ijk to be 1 if vehicle k travels from node i to j on day t, binary variable wt

i to be 1

if customer i is not visited by a preferred vehicle on day t. Variable vtik is the time that vehicle k visits node

i on day t. Binary variable ztik indicates whether vehicle k takes a break after serving customer i on day t.

Variable ut
ik is the elapsed driving time for vehicle k at customer i after the previous break on day t. Binary

variable ytlk is set to 1 if vehicle k is assigned to driver l on day t. Variables rtl and stl are the total working

duration and the total travel time for driver l on day t, respectively.

This notation can be summarized as follows:

5

Notation:

Set:

T The set of workdays in the planning horizon,

DI The set of internal drivers,

DE The set of external drivers,

D The set of drivers D = DI ∪DE ,

Tl The set of workdays for driver l ∈ D,

K The set of vehicles,

N The set of customers,

N0 The set of customers and depot N0 = {0, n+ 1} ∪N ,

Ki The set of preferable vehicles for customer i ∈ N ,

Ti The set of days on which customer i ∈ N orders,

Parameter:

Qk The weight capacity of vehicle k ∈ K,

Pk The volume capacity of vehicle k ∈ K,

cij The travel time from node i ∈ N0 to node j ∈ N0,

[ai, bi] The earliest and the latest visit time at node i ∈ N ,

dti The service time of node i ∈ N0 on day t ∈ Ti,

qti The weight demand of node i ∈ N0 on day t ∈ Ti,

pti The volume demand of node i ∈ N0 on day t ∈ Ti,

e The extra service time per pallet when a non-preferable vehicle is used,

[gtl , h
t
l] The start time and the latest ending time of driver l ∈ D on day t ∈ T ,

H The maximum working duration for each internal driver over the planning horizon,

F The maximum elapsed driving time without break,

G The duration of the break for drivers,

A The cost factor on the total travel time of internal drivers,

B The cost factor on the total working duration of the external drivers,

Variables:

xt
ijk Binary variable indicating whether vehicle k ∈ K travels from node i ∈ N0 to j ∈ N0 on day t ∈ T ,

wt
i Binary variable indicating whether customer i ∈ N0 is visited by a non-preferable vehicle on day t ∈ T ,

vtik The time at which vehicle k ∈ K starts service at node i ∈ N0 on day t ∈ T ,

ztik Binary variable indicating whether vehicle k ∈ K takes break after serving node i ∈ N0 on day t ∈ T ,

ut
ik The elapsed driving time of vehicle k ∈ K at node i ∈ N0 after the previous break on day t ∈ T ,

yt
lk Binary variable indicating whether vehicle k ∈ K is assigned to driver l ∈ D on day t ∈ T ,

rtl The total working duration of driver l ∈ D on day t ∈ T ,

stl The total travel distance of driver l ∈ D on day t ∈ T .

6

The mathematical formulation for this problem is presented as follows:

minA ·
∑

l∈DI

∑

t∈Tl

stl +B ·
∑

l∈DE

∑

t∈Tl

rtl (1)

∑

k∈K

∑

j∈N0

xt
ijk = 1 ∀i ∈ N, t ∈ Ti (2)

∑

k∈K\Ki

∑

j∈N0

xt
ijk = wt

i ∀i ∈ N, t ∈ Ti (3)

∑

i∈N

∑

j∈N0

qtix
t
ijk ≤ Qk ∀k ∈ K, t ∈ T (4)

∑

i∈N

∑

j∈N0

ptix
t
ijk ≤ Pk ∀k ∈ K, t ∈ T (5)

∑

j∈N0

xt
0jk = 1 ∀k ∈ K, t ∈ T (6)

∑

i∈N0

xt
ihk −

∑

j∈N0

xt
hjk = 0 ∀h ∈ N, k ∈ K, t ∈ T (7)

∑

i∈N0

xt
i,n+1,k = 1 ∀k ∈ K, t ∈ T (8)

ut
jk ≥ ut

ik + cij −M(1− xt
ijk)−Mztik ∀i, j ∈ N0, k ∈ K, t ∈ T (9)

ut
jk ≥ cij −M(1− xt

ijk) ∀i, j ∈ N, k ∈ K, t ∈ T (10)

ut
ik +

∑

j∈N0

cijx
t
ijk − F ≤ Mztik ∀i ∈ N0, k ∈ K, t ∈ T (11)

vtjk ≥ vtik + dti + e · pti · wt
j + cij +G · ztik −M(1− xt

ijk) ∀i, j ∈ N0, k ∈ K, t ∈ T (12)

bi ≥ vtik ≥ ai ∀i ∈ N, k ∈ K, t ∈ Ti (13)
∑

k∈K

ytlk = 1 ∀l ∈ D, t ∈ Tl (14)

∑

l∈D

ytlk = 1 ∀k ∈ K, t ∈ T (15)

vt0k ≥
∑

l∈D

(gtl · ytlk) ∀k ∈ K, t ∈ T (16)

vtn+1,k ≤
∑

l∈D

(ht
l · ytlk) ∀k ∈ K, t ∈ T (17)

stl ≥
∑

i∈N0

∑

j∈N0

cijx
t
ijk −M(1− ytlk) ∀l ∈ DI , k ∈ K, t ∈ Tl (18)

rtl ≥ vtn+1,k − gtl −M(1− ytlk) ∀l ∈ D, k ∈ K, t ∈ Tl (19)
∑

t∈Tl

rtl ≤ H ∀l ∈ DI (20)

xt
ijk , w

t
i , z

t
ik, y

t
lk ∈ {0, 1} ∀i, j ∈ N0, l ∈ D, k ∈ K, t ∈ T (21)

vtik, u
t
ik, r

t
l , s

t
l ≥ 0 ∀i, j ∈ N0, l ∈ D, k ∈ K, t ∈ T (22)

7

The objective function (1) minimizes weighted sum of the travel time of the internal drivers and the working

duration of the external drivers over the planning horizon.

The constraints can generally be divided into two classes: one focuses on the vehicle routing (constraints

(2-8) and (12-13)) and the remaining emphasizes the driver scheduling.

Constraints (2) state that each customer must be visited by one vehicle on each of its delivery days. Con-

straints (3) define whether each customer is visited by a preferable vehicle. Constraints (4—5) guarantee

that the vehicle capacities are respected in both weight and volume. Constraints (6—8) ensure that each

vehicle must start and terminate at the depot and that the flow is conserved at each customer on each day.

Constraints (9—10) define the elapsed driving time. More specifically, for the vehicle (k) travelling from

customer i to j on day t, the elapsed driving time at j equals the elapsed driving time at i plus the driving

time from i to j (i.e., ut
jk ≥ ut

ik + cij) if the vehicle does not take a break at customer i (i.e., ztik = 0);

Otherwise, if the vehicle takes a break at customer i (i.e., ztik = 1), the elapsed driving time at j will be

constrained by (10) which make sure it is greater than or equal to the travel time between i and j (i.e.,

ut
jk ≥ cij). Constraints (11) guarantee that the elapsed driving time never exceeds an upper limit F by

imposing a break at customer i (i.e., ztik = 1) if driving from customer i to its successor results in a elapsed

driving time greater than F .

Constraints (12) determine the time to start the service at each customer. If j is visited immediately after i,

the time vtjk to start the service at j should be greater than or equal to the service starting time vtik at i plus

its service duration dti, the extra service time e · pti if i is visited by an inappropriate vehicle (i.e., wt
j = 1), the

travel time between the two customers cij , and the break time G if the driver takes a break after serving i

(i.e., ztik = 1). Constraints (13) make sure the services start within the customers’ time window.

Constraints (14) assign each driver a route on each of his/her workday. Constraints (15) make sure each

route on each day is assigned to exactly one driver. Constraints (16—17) ensure that the starting time and

ending time of each route must lie between the start working time and latest ending time of the assigned

driver. Constraints (18) calculate the total travel time for each internal driver. Constraints (19) define the

working duration for each driver on every workday, which equals the time the driver returns to the depot

minus the time he/she starts work. Constraints (20) make sure that the internal drivers work for no more

than a maximum weekly working duration, referred to as 37 week-hour constraints. Constraints (21—22)

define the binary and positive variables used in this formulation.

The formulation contains O(|N |2|K||T |) variables and O(|N |2|K||T |) constraints. Without Constraints (9-

11) and (14-20), the problem can be reduced to a multi-period Heterogeneous Vehicle Routing Problem with

Time Windows, which has already been proved to be NP-hard. Therefore, our problem is also NP-hard.

8

4 Multi-level Variable neighborhood search heuristic

We propose to solve this problem using a heuristic. Firstly, the problem is NP-hard and secondly we fore-

seen that the size of the problems that needs to be solved makes an exact approach prohibitive. The pro-

posed method is named Multi-Level Variable Neighborhood Search heuristic (MLVNS) and illustrated in

Figure 2.

 Level III

Level II

 Level I

Node aggregation

select the busiest unplanned day t

Any unplanned day?

Update the maximum working durations for internal drivers on day t

Vehicle routing and driver scheduling for day t
(variable neighborhood search)

Node segregation

End

Figure 2. The flowchart of the MLVNS.

The MLVNS consists of three levels. The first level reduces the problem size through a node aggregation

procedure. The second level constructs the solution to the aggregated problem. To reduce the computational

overhead, we decompose the weekly planning problem into six daily planning problems, which are then

solved sequentially in a given order. Before a specific daily problem is solved, the maximum daily duration

of each internal driver is updated based on the 37 week-hour constraints and the workload that has been

assigned to the driver on the previously planned days. Given the updated information on the internal

drivers, the daily distribution plan is determined by means of a variable neighborhood search. At the last

level, the solution of the aggregated problem is expanded to a solution for the original problem and the

time to visit each customer is determined.

9

In the remainder of this section, the aggregation procedure is described in Section 4.1. How to update

the maximum daily durations for the internal drivers is described in detail in Section 4.2. The variable

neighborhood search that is applied to solve the daily planning problem is presented in Section 4.3. The

overall method is summarized in Section 4.4.

4.1 Aggregation procedure

The basic idea of the aggregation procedure is to reduce the problem size by combining several nodes (cus-

tomers) to a single supernode. The nodes to be aggregated are selected by analyzing their time windows,

demands, and the travel times between them. Intuitively, it is preferable to visit supermarkets located close

to each other, if possible, by the same vehicle in order to minimize the total travel distance. We hence treat

such supermarkets as one supernode in order to reduce the size of the planning problem.

Our aggregation procedure is an iterative process and focuses on pairs of customers at each iteration, as

shown in Algorithm 1. If two nodes i and j are close enough to each other (i.e., cij ≤ ρ), have sufficient

overlap in time windows (i.e., min{bi, bj} − max{ai, aj} > δ) and the total amount of their orders is no

more than κ1 and κ2 in weight and volume, they are allowed to be aggregated. In each iteration, the pair

of nodes that satisfies the aggregation condition and has the minimum distance is selected to form a su-

pernode, which replaces the two nodes and is treated as a new basic node available for further aggregation

with other basic nodes or supernodes. Suppose at a certain aggregation stage, a supernode h is obtained,

which contains a sequence of basic nodes, denoted as {h1, ..., hf}. The first node h1 is called entry point and

the last node hf the exit point. The entry point and the exit point are used to update the distance between

h and other nodes/supernodes. The demand of the aggregated node is defined by qh =
∑

i∈{1,...,f} qhi

and ph =
∑

i∈{1,...,f} phi . The internal distance of h is calculated as ch =
∑

i∈{1,...,f−1} chi,hi+1 . For sim-

plicity, the earliest start time to serve h is set to the maximum starting times of the nodes included in h,

i.e., ah = maxi∈{1,...,f}ahi . Since certain customers have special requirements on the vehicle size, we define

the internal duration of h visited by vehicle k by dkh, which is the sum of total travel time, total service

time and total additional service time caused by using vehicle k. The internal duration dh of the supernode

is set to dh = maxk∈Kdkh to ensure the feasibility of the solution. The latest visit time of h is defined as

bh = mini∈{1,...,f}(bhi − dh).

Without loss of generality, a basic node is also viewed as a special supernode consisting of only the single

basic node. Therefore, in the preprocessing, we convert each basic node in the node set N ′ to a supernode.

In each iteration, the best pair of nodes (i�, j�) are selected and aggregated to a supernode h by using the

approach mentioned above. We then replace node i� and j� in N ′ by the supernode h. The aggregation

procedure stops when no more nodes can be aggregated.

10

Algorithm 1 : Level I (Aggregation procedure)

1: Input: the set of nodes N

2: Output: the set of Node N ′ after aggregation

3: N ′ ←Preprocessing(N)

4: repeat

5: (i�, j�)← ∅
6: minDist←∞
7: for (i, j) ∈ N ′ do

8: if (cij < ρ)& (min{bi, bj} −max{ai, aj} > δ)& (qi + qj < κ1)& (pi + pj < κ2) then

9: if cij < minDist then

10: (i�, j�)← (i, j)

11: minDist← cij

12: end if

13: end if

14: end for

15: if (i�, j�) �= ∅ then

16: h← Aggregate(i�, j�)

17: N ′ ← N ′ \ {i�, j�}
18: N ′ ← N ′ ∪ {h}
19: end if

20: until (i�, j�) = ∅
21: return N ′

11

The parameters ρ, δ, κ1 and κ2 control the degree of aggregation. Increasing the values of ρ, κ1 and κ2, or

decreasing the value of δ results in more aggregation of nodes. Generally, aggressive aggregation leads to

a problem with small size and quick convergence. However, it also narrows down the feasible region, and

may decrease the solution quality. The effects of the aggregation on solution quality and computational

time are investigated in Section 5.

4.2 Updating driver duration

In order to accelerate the algorithm, we decompose the weekly planning problem into several daily prob-

lems and solve these daily problems sequentially. When decomposing, we only need to consider how to dis-

tribute the 37 weekly hours to each workday of the internal drivers. To respect this constraint, a maximum

daily duration is imposed for each internal driver on each workday. There are several ways to determine

this maximum daily duration.

A simple way is to evenly distribute the 37 hours to each workday, namely an even allocation strategy. This

can be achieved by setting maximum daily duration Ml to 37 hours divided by the number of workdays for

each internal driver l on each workday. In this case the internal drivers will never be assigned for more than

37 working hours over the week. However, since this simple strategy fails to take the significant variation

of daily workload into account, some internal drivers might be idle on days with lower demand, while a

lot of external drivers have to be hired for busier days.

In order to overcome this, we propose another strategy which adaptively determines the maximum daily

duration before each daily plan is made, namely an adaptive allocation strategy. We first sort the days

according to the number of orders and plan the busy days ahead of the quieter days. For a specific day

t, if internal driver l works on day t (i.e., t ∈ Tl), we determine his/her unplanned work duration Wl by

subtracting the total work duration already assigned to driver l on the previous planned days from the 37

hours and determine the number of unplanned workdays Ul for driver l. If day t is the last workday to be

planned for l (i.e., Ul = 1), Ml is set to Wl so that the 37 week-hour constraints are respected. Otherwise, if

Ul > 1, Wl is set to Wl/Ul + Θ, where Wl/Ul is the average daily workload for the remaining unplanned

days, and Θ is a user defined parameter. An appropriate value of Θ gives a degree of flexibility in the

plan and leads to a good utilization of internal drivers on busy days since the daily problems are solved

in descending order of workload. The adaptive allocation strategy is summarized in Algorithm 2 and a

comparison of the two strategies is conducted in Section 5.

12

Algorithm 2 : Level II (Update daily work duration for internal drivers for day t)

1: Input: The planning day t; The set of routes R = {R1, . . . , R|T |}
2: Output: The maximum daily work duration M = {M1, . . . ,M|DI |} for day t

3: for l = 1, . . . , |DI | do

4: Ul ← GetTotalWorkDays(l)

5: Wl ← H

6: for i ∈ T \ {t} do

7: if (Ri �= ∅) &(i ∈ Tl) then

8: σ ← GetPlannedDailyWorkDuration(Ri, l)

9: Wl ←Wl − σ

10: Ul ← Ul − 1

11: end if

12: end for

13: if Ul > 1 then

14: Ml ← Wl/Ul +Θ

15: else

16: Ml ← Wl/Ul

17: end if

18: end for

4.3 Variable Neighborhood Search

The VNS was first introduced by Mladenovic and Hansen (1997) to "exploit systematically the idea of

neighborhood change, both in the descent to local minima and in the escape from the valleys which con-

tains them" (Hansen and Mladenovic (2001), Hansen and Mladenovic (2005)). During the past decade, this

method has been successfully applied to a wide range of rich vehicle routing problems (Paraskevopoulos

et al. (2008), Imran et al. (2009), Hemmelmayr et al. (2009)).

In this work we also develop a VNS to solve the daily planning problem which is an integrated vehicle

routing and driver scheduling problem. The proposed VNS consists of three components: initialization,

a shaking phase, and a local search. An initial solution is constructed and improved iteratively. In each

iteration, one of five large neighborhoods is first exploited in order to diversify the search, referred to as

shaking phase, and a local search is then applied in order to find the local optima. These components and

the overall framework of the VNS are detailed below.

Initialization Our initial solution is generated by means of a sweep heuristic, as shown in Algorithm 3.

We first assign each vehicle a random driver and sort the nodes in an ascending order of the angle they

make with the depot and an arbitrary radius. The nodes are then assigned to the vehicles sequentially.

13

For each unrouted node, it is assigned to the vehicle considered currently if the vehicle capacities and the

corresponding driver’s duration are not exceeded or if the vehicle is the last available vehicle. Otherwise,

the node is assigned to a new vacant vehicle.

Algorithm 3 : Level II (Initialization of VNS)

1: Sort the customers in an ascending order of the angle they make with the depot and an arbitrary radius {1, ..., n}
2: Assign each vehicle a random driver

3: Set the first vehicle k:= 1.

4: for i = 1, ..., n do

5: if insertion of i to k results in violation of capacities or duration constraints then

6: k ← min{k + 1,|K|}.
7: end if

8: Insert i to k so as to minimize the total travel time of k.

9: end for

Local Search The local search in our VNS is performed by the Unified Tabu Search Algorithm (UTSA)

(Cordeau et al. (2001a)). The UTSA allows intermediate infeasible solutions during the search by means of

a penalized objective f(s, t) = c(s, t)+αp(s, t)+βq(s, t)+γd(s, t)+ξw(s, t), where c(s, t) is the delivery cost

on day t, p(s, t) =
∑

k∈K(
∑

i∈N

∑
j∈N0

pix
t
ijk−Pk)

+ and q(s, t) =
∑

k∈K(
∑

i∈N

∑
j∈N0

qix
t
ijk−Qk)

+ are the

total violations of the capacities in weight and in volume on day t, d(s, t) =
∑

k∈K(vtn+1,k −
∑

l∈D ht
l · ytlk)+

is the total violation of the daily duration of all the drivers on day t, and w(s, t) =
∑

i∈N (vtik − bi)
+ is the

total violation of the service time window on day t, where (x)+ = max{0, x}. The coefficients α, β, γ and

ξ are positive self-adjusting penalties. A simple insertion is employed to improve the solution iteratively,

which transfers customers from their original routes to other routes. The UTSA stops when the solution is

not improved for a given number of iterations ϕ.

Shaking phase Five large neighborhoods are proposed for the shaking phase. The first three are based on

the Ruin and Recreate Approach (RRA) (Schrimpf et al. (2000), Pisinger and Ropke (2007)). The basic idea

of the RRA is to diversify the search by removing a number of bad customers from the current solution

according to a removal scheme and then reinsert them into the routes again based on a reinsertion scheme.

All these three neighborhoods use the same reinsertion scheme, i.e., regret heuristic (Potvin and Rousseau

(1993), Ropke and Pisinger (2006)), but different removal schemes.

The first neighborhood uses a worst removal heuristic which selects a certain percentage (θ) of customers

with the largest removal costs (Ropke and Pisinger (2006)). The removal cost of a customer is defined to

14

be the change in the solution value when it is removed from the route. This neighborhood is named the

Worst Removal Neighborhood and denoted by WRN. The second neighborhood removes the customers

covered by the external driver with the shortest working duration, namely the Driver Removal Neighbor-

hood (DRN). The neighborhood helps not only to minimize the cost caused by using the external drivers

but also reduce the number of vehicles used. The third neighborhood, Overlap Removal Neighborhood

(ORN), removes all the customers in those routes that have the largest overlapping areas. The area of a

route is defined as the area of the smallest rectangle that covers the depot and all the customers on that

route. The areas of routes may overlap with each other. We define the overlapping area of each route to be

the sum of its overlapping areas with all the other routes. In the ORN, we sort all the routes in a descending

order of the overlapping area and remove the customers on the first λ routes. Since most of the customers

have wide time windows, reducing the overlapping areas of routes may lead to a better solution. Such an

example is illustrated in Figure 3, where, for simplicity, we consider two vehicles with capacity 4 and seven

customers with unit demand. The solution before reducing the overlapping area is shown in (a). The area

of each route in the solution and the overlapping area are defined in (b). The solution after reducing the

overlapping area is depicted in (c) and the overlapping area is given in (d). As we can see from this small

example, reducing the overlapping area leads to a better solution with smaller travel distance.

After the removal of customers, a regret heuristic, as detailed in Algorithm 4, is applied to reinsert the

removed customer into the routes.

Algorithm 4 : Level II (Regret heuristic for the WRN, DRN and ORN in VNS)

1: NRem is the set of nodes to be inserted into solution s

2: while NRem �= ∅ do

3: for i ∈ NRem do

4: bestICi ← CalculateBestInsertionCost(i, s)

5: secondICi ← CalculateSecondBestInsertionCost(i, s)

6: end for

7: i� ← argmaxi∈NRem(secondICi − bestICi)

8: s← InsertCustomer(i�, s)

9: NRem ← NRem \ {i�}
10: end while

The other two neighborhoods are constructed by a swap move. The fourth neighborhood, Swap Driver

Neighborhood (SDN), swaps the drivers to find a good match between the drivers and the routes in terms

of starting time and ending time. Similarly, the last neighborhood, Swap Truck Neighborhood (STN), swaps

15

vehicles, as shown in Figure 4. In the SDN (/STN), all possible pairs of drivers (/vehicles) are tried and the

pair that leads to the minimum objective value is selected and applied.

To sum up, the five neighborhoods proposed for the shaking phase fall into two categories. The first three,

WRN, DRN, and ORN, emphasize the construction of good routes, whereas the other two, SDN and STN,

focus on assigning the right vehicles and right drivers to the routes. A sensitivity analysis on the effects of

these neighborhoods is conducted in Section 5.

Overlaped
area

(a) Original solution (b) Overlapped area of solution in (a)

(c) New solution (d) Overlapped area of solution in (c)

Figure 3. An example of two solutions with different overlapping areas

1

1 1

1

1
2

2

22

1

2

2 2

2

2
1

1

1

2

1

(a) solution before swapping vehicles (b) solution after swapping vehicles

Figure 4. An example of swapping vehicles

VNS framework The overall framework of the VNS is given in Algorithm 5. Set L = {WRN,DRN,ORN,

SDN,STN} denotes the set of five large neighborhoods used in the shaking phase. Set L′ denotes the set

of available neighborhoods during the search procedure. The VNS starts with the initial solution given by

16

the sweep heuristic and improves the solution iteratively until the stop criteria reached. In each iteration, it

exploits a neighborhood selected from L′ and updates the current solution with a solution from the selected

neighborhood. The UTSA is then applied on the neighboring solution and it stops when the best solution

found so far has not been improved within ϕ iterations. There are two possible values, ϕ1 and ϕ2 (ϕ1 < ϕ2),

for parameter ϕ depending on whether the UTSA is supposed to search thoroughly (i.e., ϕ = ϕ2) or not

(i.e., ϕ = ϕ1). If the best solution found by the UTSA (s�UTSA) is better than the best solution found in the

previous VNS iteration (s�), s� is updated by s�UTSA and the boolean parameter improved is set to True,

meaning that the best solution is improved in the current VNS iteration. Otherwise, improved is set to

False. The VNS stops once a certain time limit τ has been reached.

We now describe how the VNS selects the value of ϕ from {ϕ1, ϕ1} and how it adaptively selects a neighbor-

hood in the shaking phase at each iteration. The parameterϕ is initialized by the small valueϕ1, andL′ by L.

If the best solution (s�) is updated in the previous iteration (i.e., improved = True), the same neighborhood

used in the previous iteration is applied again in the current iteration. Otherwise, if improved = False, the

neighborhood used in the previous iteration is removed from the set of potential neighborhoods L′ and an-

other neighborhood from L′ takes over. If the removal leads to an empty L′, which means the best solution

has not been improved by the last five iterations, we set ϕ to be the large value ϕ2 so that the UTSA will

search thoroughly in future, and reset L′ to be L so that all neighborhoods become available again. As soon

as the best solution is updated, ϕ is set back to ϕ1 and L′ back to L. When selecting a neighborhood from L′,

we first consider the SDN. If the SDN is not in L′, the neighborhood that has not been used for the longest

time is selected. The reason of giving the SDN a higher preference is that the assignment of the right drivers

to the routes is found to be very crucial due to the various starting times of the drivers, as we will show in

Section 5. Besides, the three neighborhoods, WRN, DRN and ORN, as well as the UTSA all emphasize on

the route optimization, therefore a higher selection probability of the SDN balances the optimization efforts

on all aspects of the problem.

4.4 Overall method

The overall MLVNS is summarized in Algorithm 6. Line (3—6), line (7—13) and line (14—16) correspond

to Level I, II and III, respectively.

5 Computational Results

In this section we present the computational experiments on the real-life data provided by Danish Crown.

Our method was programmed in C# and executed on a Pentium 2.66GHz machine and two GB of memory.

17

Algorithm 5 : Level II (VNS framework)

1: Input: The planning day t; The set of customers Nt to be planned on day t; The maximum duration M for internal

drivers on day t.

2: Output: The route plan Rt for day t.

3: improved← False

4: L′ ← L

5: s← SweepHeuristic(Nt)

6: while CPUT ime ≤ τ do

7: if improved then

8: ϕ← ϕ1

9: L′ ← L

10: else

11: L′ ← L′ \ {currentL}
12: if L′ = ∅ then

13: ϕ← ϕ2

14: L′ ← L

15: end if

16: if SDN ∈ L′ then

17: currentL← SDN

18: else

19: currentL← FindLongestUnused(L′)

20: end if

21: end if

22: s← ApplyLNS(currentL, s,M)

23: (s, s�UTSA)← TabuSearch(s,M,ϕ)

24: if s�UTSA is better than s� then

25: s� ← s�UTSA

26: improved← True

27: else

28: improved← False

29: end if

30: end while

31: Rt ← s�

32: return Rt

18

Algorithm 6 : Multi-level variable neighborhood search heuristic

1: Input: The set of nodes N = {N1, . . . , N|T |}
2: Output: The set of routes R = {R1, ..., R|T |}
3: for t = 1, ..., |T | do

4: Nt ← AggregationProcedure(Nt) // see Algorithm 1

5: Rt ← ∅
6: end for

7: daysP lanned← 0

8: while daysP lanned < |T | do

9: t← FindBusiestUnplannedDay(R)

10: M ← UpdateMaxWorkDuration(t,R) // see Algorithm 2

11: Rt ← VNS(Nt,M) // see Algorithm 5

12: daysP lanned← daysP lanned+ 1

13: end while

14: for t = 1, ..., |T | do

15: Rt ← Expand(Rt)

16: end for

17: return R

We first describe the data and parameters used in our tests and then present a sensitivity analysis of the

parameters as well as a comparison between our solutions and Danish Crown’s solutions.

5.1 Data and parameters

There are data sets for four weeks, each of which consists of six workdays. As an example, Table 1 shows

the total number of orders and the total demand by volume and weight for each workday from 29/09/2008

to 04/10/2008. The length of time window (TW) in this week ranges from 1 hour to 24 hours and the

histogram of the TW length is shown in Figure 5. Approximately 40% of the orders have an 8-hour TW,

most of which have [0.00, 8.00]. Roughly 35% of the orders have 2- to 4- hour time windows in the early

morning, such as [6.00 8.00], [7.00 10.00] and [6.00 10.00]. Around 18% of the customers do not have any

restriction on visiting time and can be visited at any time during the day. This is because Danish Crown has

the electronic keys to access these supermarkets. The vehicle information is provided in Table 2, including

the sizes, the capacities and the numbers of the vehicles. Approximately 10% of the supermarkets have

requirements on the vehicle size. Danish Crown uses approximately 11 internal drivers and at most 14

external drivers every day. Euclidean distances are used in our tests and we assume the vehicle speed is

60km/hour.

19

The value of each parameter used in the algorithm is set based on the preliminary tests. The minimum

length (δ) for the overlap required between two time windows in order for two nodes to be aggregated is

set to 60 minutes. The capacity parameters κ1 and κ2 are set according to the smallest vehicle, i.e., 7000 (KG)

and 18 (pallets) respectively. The parameter Θ used in the adaptive allocation strategy in solving the daily

problems is set to 60 minutes. The parameter θ in the WRN is set to 10%, i.e., 10% of customers are removed

and reinserted again. The parameter λ in the ORN is set to 2, meaning that customers in two routes are

removed. The iteration number ϕ1 and ϕ2 for the stop criteria in the TS are set to 350 and 1500, respectively.

Total demand

Date Number of orders (Pallet) (Kg)

29/09/2008 279 329.5 84263.5

30/09/2008 381 439.5 125118.6

01/10/2008 365 399.0 124740.5

02/10/2008 364 434.5 124740.5

03/10/2008 397 577.0 170938.1

04/10/2008 360 483.0 144057.5

Table 1. Orders from 29/09/2008 to 04/10/2008

5 10 15 20
0

20

40

60

80

100

120

140

160

Length of TW (hours)

N
um

be
r

of
 o

rd
er

s

Figure 5. The TW length of the customers

20

Capacity

Type Number of vehicles (Pallet) (Kg)

Big 9 33 14000

Medium 2 27 10000

Small 14 18 7000

Table 2. Vehicle Resource

5.2 Sensitivity Analysis

The purpose of this section is to assess the behavior of the proposed heuristic and analyze the sensitivity

of the parameters. The analysis can be classified into two categories. The first one focuses on the algorithm

performance on daily problems. We tested the algorithm on six daily instances, including both busy days

and easy days, and examined three aspects of the algorithm: the effectiveness of the node aggregation pro-

cedure, the effectiveness of using two alternative values for ϕ in the UTSA in the VNS, and the effects of

the five large neighborhoods in the shaking phase of the VNS. The second group of tests evaluated the per-

formance of the algorithm on solving weekly problems and provided the following results: a comparison

of two work duration allocation strategies for decomposition and a comparison of the different number of

the special supermarkets that have requirements on vehicle size.

Effectiveness of the aggregation procedure

As mentioned in Section 4, before the solution is constructed, the problem size is first reduced through a

node aggregation procedure in which pairs of nodes with a distance less than or equal to ρ are considered

to be aggregated into a single supernode. We tested the algorithm with different values of ρ on six daily

instances. Figure 6 illustrates the convergence of the proposed heuristic for four values of ρ, 0, 2, 4 and

6. When ρ equals 0, no aggregation is done. When ρ equals 2, 4 or 6, the problem size is reduced by ap-

proximately 25%, 35% and 50%, respectively. Table 3 shows the detailed results. Column ’Index’ is the test

descriptor and column ’Time’ is the running time in minute for each test, ranging from 3 to 36 minutes. For

each ρ, the column ’Average solution value’ reports the average solution value z̄ρt on the six daily instances

in test t. The column ’Conv.(%)’ shows the relative difference in the average solution value between test

t− 1 and t, calculated as
z̄ρ
t −z̄ρ

t−1

z̄ρ
t−1

· 100, which also indicates the speed of convergence with different values

of ρ. The column ’Gap(%)’ provides the percentage gap between solution value of the aggregated problem

(ρ′ = {2, 4, 6}) and that of the original problem (ρ = 0), calculated as z̄ρ′
t −z̄ρ

t

z̄ρ
t

· 100. These gaps show how the

solution value is influenced by different level of aggregation, depicted in Figure 7.

21

As seen from Table 3 and Figure 6, a higher value of ρ yields a faster convergence to the solution since

more of the feasible region is cut by the aggressive aggregation. With a short running time, the aggregated

problem leads to a better solution due to an intelligent search in a smaller feasible region. For example,

ρ = 6 provides better results than ρ = 0 when the running time is shorter than 20 minutes. However, given

an enough computation time, the aggregated problem is not competitive to the original problem any more

in terms of solution quality. For instance, the solution value provided by ρ = 0 is consistently better than

that provided by ρ = 6 when the running time is larger than 20 minutes. A good trade-off between the

running time and solution quality is obtained with ρ = 2.

ρ 0 2 4 6

Average Average Average Average

Time solution Gap Conv. solution Gap Conv. solution Gap Conv. solution Gap Conv.

Index (minute) value (%) (%) value (%) (%) value (%) (%) value (%) (%)

1 3 32531 0 29284 -10.0 28109 -13.6 28180 -13.4

2 6 29774 0 -8.5 27407 -7.9 -6.4 26269 -11.8 -6.5 27046 -9.2 -4.0

3 9 28350 0 -4.8 26421 -6.8 -3.6 25633 -9.6 -2.4 26686 -5.9 -1.3

4 12 27305 0 -3.7 25663 -6.0 -2.9 25496 -6.6 -0.5 26334 -3.6 -1.3

5 15 26783 0 -1.9 24990 -6.7 -2.6 25187 -6.0 -1.2 26117 -2.5 -0.8

6 18 26228 0 -2.1 24723 -5.7 -1.1 25046 -4.5 -0.6 25944 -1.1 -0.7

7 21 25586 0 -2.4 24442 -4.5 -1.1 24992 -2.3 -0.2 25796 0.8 -0.6

8 24 25341 0 -1.0 24241 -4.3 -0.8 24872 -1.9 -0.5 25764 1.7 -0.1

9 27 25109 0 -0.9 24086 -4.1 -0.6 24791 -1.3 -0.3 25675 2.3 -0.3

10 30 24911 0 -0.8 24032 -3.5 -0.2 24704 -0.8 -0.4 25629 2.9 -0.2

11 33 24643 0 -1.1 23924 -2.9 -0.4 24563 -0.3 -0.6 25570 3.8 -0.2

12 36 24449 0 -0.8 23833 -2.5 -0.4 24561 0.5 0.0 25529 4.4 -0.2

Table 3. Average solution value of using different levels of aggregation

Effectiveness of using two alternative values for ϕ

The parameter ϕ in the stop criteria of UTSA is self-switched between two user defined values ϕ1 and ϕ2

(ϕ1 < ϕ2). We compare the performance of using two ϕ values (i.e., ϕ = {ϕ1, ϕ2}) with that of using solely

one ϕ value (i.e.,ϕ = ϕ1 or ϕ = ϕ2). Ten random runs on the six daily instances with different running times

are performed. Given a running time t, we denote the average solution value with ϕ = ϕ1 by z̄ϕ1(t), the av-

erage solution value with ϕ = ϕ2 by z̄ϕ2(t), and the average solution value with ϕ = {ϕ1, ϕ2} by z̄{ϕ1,ϕ2}(t).

Figure 8 shows the percentage gap between z̄ϕ1(t) (and z̄ϕ2(t)) and z̄{ϕ1,ϕ2}(t) as a function of running time

t. These gaps can be calculated as fϕ1(t) =
z̄ϕ1(t)−z̄{ϕ1,ϕ2}(t)

z̄{ϕ1,ϕ2}(t)
· 100 (and fϕ2(t) =

z̄ϕ2(t)−z̄{ϕ1,ϕ2}(t)
z̄{ϕ1,ϕ2}(t)

· 100). The

22

0 5 10 15 20 25 30 35
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
x 10

4

Running time (minute)

A
ve

ra
ge

 s
ol

ut
io

n
va

lu
e

ρ = 0
ρ = 2
ρ = 4
ρ = 6

Figure 6. Average solution value as a function of running time using different values of ρ

0 5 10 15 20 25 30 35 40
−15

−10

−5

0

5

Running time (minutes)

G
ap

 (
%

)

ρ = 0

ρ = 2

ρ = 4

ρ = 6

Figure 7. Solution gap in percentage between the aggregated problems and the original problem

23

results show that, given an enough computational time (more than 13 minutes), the solution of using two

values of ϕ is consistently better than that of using solely one value. The improvement is approximately

2%.

0 5 10 15 20 25 30 35 40
−2

−1

0

1

2

3

4

Running time (minute)

G
ap

 (
%

)

fϕ1 (t)

fϕ2 (t)

Figure 8. Solution gap in percentage between using two ϕ values and using solely one ϕ value

Effect of the five large neighborhoods in the shaking phase in the VNS

We proposed five neighborhoods in the shaking phase of the VNS, including the WRN, DRN, ORN, SDN

and STN. We evaluated the contribution of each neighborhood in this section and show the effect of combin-

ing the five neighborhoods. In Table 4, column ’Index’ is the test descriptor and column ’Time’ is the running

time in minute for each test, ranging from 3 to 36 minutes. For each neighborhood setting L, column ’Aver-

age solution value’ reports the average solution value z̄Lt on the six daily instances in test t. Column ’Gap(%)’

presents the percentage gap in the average solution value between using one neighborhood L1 and using

five neighborhoods L, calculated as z̄
L1
t −z̄L

t

z̄L
t

· 100. Row ’Average’ provides the overall average value of each

column. Figure 9 shows gaps as a function of running time.

From Table 4 and Figure 9, we can see that, among all the five neighborhoods, the SDN is the most effective

one. This is the reason why we give SDN the highest selection probability in the shaking phase as men-

tioned in Section 4. The heuristic with all the five neighborhoods outperforms the heuristic with any single

neighborhood by 0.6% to 3% given an enough computational time.

Effectiveness of the adaptive allocation strategy

We compared the two allocation strategies, even allocation strategy and adaptive allocation strategy, used to

distribute the 37 weekly hours to each workday for the internal drivers. The average solution values on the

four weekly instances are provided in column ’Average solution value’ in Table 5. The column ’Gap(%)’ shows

the percentage gap between the solution values using the two strategies. Row ’Average’ shows the overall

24

L All WRN DRN ORN SDN STN

Average Average Average Average Average Average

Time solution Gap Solution Gap Solution Gap Solution Gap Solution Gap Solution Gap

Index (minute) value (%) value (%) value (%) value (%) value (%) value (%)

1 3 29284 0 29597 1.1 29731 1.5 29731 1.5 29351 0.2 29925 2.2

2 6 27407 0 27733 1.2 27897 1.8 27792 1.4 27751 1.3 28734 4.8

3 9 26421 0 26542 0.5 27010 2.2 27064 2.4 26812 1.5 27603 4.5

4 12 25663 0 26094 1.7 26169 2.0 26580 3.6 26252 2.3 26664 3.9

5 15 24990 0 25762 3.1 25694 2.8 26060 4.3 25504 2.1 26008 4.1

6 18 24723 0 25565 3.4 25447 2.9 25427 2.8 25194 1.9 25561 3.4

7 21 24442 0 25393 3.9 25225 3.2 25291 3.5 24714 1.1 25169 3.0

8 24 24241 0 25063 3.4 24874 2.6 25036 3.3 24395 0.6 24890 2.7

9 27 24086 0 24848 3.2 24667 2.4 24819 3.0 24284 0.8 24672 2.4

10 30 24032 0 24654 2.6 24582 2.3 24612 2.4 24182 0.6 24467 1.8

11 33 23924 0 24548 2.6 24543 2.6 24521 2.5 24120 0.8 24238 1.3

12 36 23833 0 24420 2.5 24504 2.8 24463 2.6 24003 0.7 24182 1.5

Average 25253.8 0.0 25851.6 2.4 25861.9 2.4 25949.7 2.8 25546.8 1.2 26009.4 3.0

Table 4. Average solution values of using different large neighborhood settings

0 5 10 15 20 25 30 35 40 45
−1

0

1

2

3

4

5

Running time (minute)

G
ap

 (
%

)

DRN
ORN
WRN
SDN
STN
All

Figure 9. Solution gap in percentage between using different large neighborhood settings

25

average value of each column. For all the tests, the adaptive allocation strategy consistently performs better

than the even allocation strategy and improves the solution by 4.5% on average.

Time Even allocation strategy Adaptive allocation strategy

(minute) Average solution value Average solution value Gap(%)

10 135104 129201 -4.4

14 128561 124412 -3.2

18 124790 119656 -4.1

22 122670 117304 -4.4

26 121410 115453 -4.9

31 120073 113849 -5.2

36 119289 113011 -5.3

Average 124557 118984 -4.5

Table 5. Average solution values with even allocation strategy and adaptive allocation strategy

Effect of the supermarkets that have requirements on vehicle size

In real life approximately 10% of the supermarkets have requirements on vehicle size, referred to as spe-

cial supermarkets. To analyze the influence of these special supermarkets, in addition to the real-life case

supplied by Danish Crown, we created two additional cases. In the first case we assume there is no special

supermarket and the corresponding results are shown in column ’0% of supermarkets’. In the second case,

we randomly added vehicle size requirements to an additional 10% of the supermarkets from the real-life

case so that altogether 20% of supermarkets were special. The test results are presented in Table 6. For each

test, the average solution value, total distance, total duration and number of vehicles used are provided

in column ’Average solution value’, ’Average total distance’, ’Average total duration’ and ’Number of vehicles’,

respectively. Row ’Average’ shows the overall average value of each column. As we can see from the table,

the number of special supermarkets has a large effect on the solution values. As the proportion of special

supermarkets increases from 0% to 20%, the solution value, total travel distance and total route duration are

increased by 21%, 5.7%, and 8.8%, respectively. More vehicles are required when there are a large number

of special supermarkets.

5.3 Comparison with industrial solution

Danish Crown also provided the routes they planned and executed for the four weekly instances. However,

the only accessible information about their real-life plan is the list of customers served in every route on

26

Special 0% of supermarkets 10% of supermarkets 20% of supermarkets

Average Average Averate Number Average Average Averate Number Average Average Averate Number

solution total total of solution total total of solution total total of

Data set value distance duration vehicles value distance duration vehicles value distance duration vehicles

Week1 129571 32188 62341 19 143770 32882 65633 19 159865 33601 68586 19.3

Week2 90066 28315 55953 16 98332 29260 58563 16.2 117294 30756 61683 17

Week3 91734 28293 56190 16.2 94817 28831 57986 16.2 103418 29617 59727 16.5

Week4 108419 29858 57751 18 115125 30394 60067 18.2 127513 31445 62613 18.7

Average 104947 29663 58058 17.3 113011 30341 60562 17.4 127022 31354 63152 17.9

Table 6. Average solution values with different number of special supermarkets

every day. The exact order in which and the time at which each customer is visited are not available. We

therefore calculated a TSP lower bound on the travel distance for each route using Concorde (Appelgate

et al. (2003)). These lower bounds are provided in column ’LB on travel distance’ in Table 7. The first column

gives the names of the data sets and the second column corresponds to the index of days in each week.

The daily solutions as well as the summarized weekly solutions are provided. We also tested our algorithm

on the same instances. The average solution value and the average travel distance on ten random runs are

presented in column ’Average solution value’ and column ’Average travel distance’. The numbers of vehicles

used in the two solutions are provided in columns ’Number of vehicles’. Column ’Gap(%)’ shows the percent-

age gap between travel distance (z̄) by our method and the lower bound (¯zLB) on the travel distance of the

industrial solution, calculated as z̄−z̄LB

z̄LB
·100. The results show that, our solution is superior to the industrial

solution in terms of both the total travel distance and the number of vehicles used.

It also needs to be stressed that the TSP lower bound is a very poor lower bound on the travel distance since

a lot of constraints are not considered in the TSP, such as the time windows, the working regulation and so

on. Therefore, the actual difference between the two solutions is likely to be larger.

6 Conclusion

We have addressed a planning problem with integrated vehicle routing and driver scheduling which arises

from a practical problem of Danish Crown. In this problem, a routing plan, consisting of six days in a week,

has to be made for a fleet of heterogeneous vehicles to deliver the fresh meat to the supermarkets according

to their demands and preferences, such as the visiting time and the preferable vehicle sizes. The route plan

also needs to comply with the drivers’ working regulations, such as the fixed workdays, the fixed starting

time and latest ending time, the maximum weekly working duration, break rule and so on. The objective

27

is to minimize the total delivery cost. We have presented a mixed integer linear programming formulation

for the problem and a multi-level variable neighborhood search based heuristic for solving it. The first level

of the proposed heuristic effectively reduces the problem size through a node aggregation procedure based

on the locations, demands, and time windows of the nodes. The second level decomposes the aggregated

weekly planning problem into six daily problems by wisely distributing the internal drivers’ weekly work-

load to each workday and solves the daily problems sequentially by means of a variable neighborhood

search. Two aspects of our VNS were proved to be very effective: the combination of five large neighbor-

hoods in the shaking phase and the alternative usage of a short-term and long-term searching in the local

search. At the last level, the solution of the aggregated problem is expanded to the solution of the origi-

nal problem. The heuristic was implemented and tested on real-life data. Our solution is superior to the

industrial solution in terms of the total travel distance and number of vehicles used.

Acknowledgments

This work was financially supported by the FoodDTU project. This support is gratefully acknowledged.

Thanks are also due to Jacob Vesterdorf at Danish Crown for providing problem information and the real-

life data.

28

MLVNS solution Danish Crown solution

Average Average Number LB on Number

solution travel of travel of Gap

Data set Day value distance vehicles distance vehicles (%)

Week1 0 13532 4365 15.0 5809 20 -24.9

1 21839 5397 16.7 6383 23 -15.4

2 23859 5518 17.0 6389 23 -13.6

3 22176 5349 17.0 6252 23 -14.4

4 29805 6018 19.0 6592 24 -8.7

5 32559 6235 19.0 6374 23 -2.2

Total 143770 32882 19 37799 24 -13.0

Week2 0 12498 4032 15.0 6136 20 -34.3

1 16122 4888 15.8 6801 23 -28.1

2 17726 5404 15.5 6392 23 -15.5

3 15152 4647 15.0 5960 23 -22.0

4 20550 5280 16.0 6142 24 -14.0

5 16284 5008 15.5 6068 23 -17.5

Total 98332 29260 16 37500 24 -22.0

Week3 0 12630 4074 14.8 5920 20 -31.2

1 17246 4973 15.8 6586 23 -24.5

2 16650 5259 15.2 6924 23 -24.0

3 14881 4767 15.0 6720 23 -29.1

4 19302 5208 16.0 6862 24 -24.1

5 14107 4551 15.0 6292 23 -27.7

Total 94817 28831 16 39304 24 -26.6

Week4 0 13056 4211 15.0 5966 20 -29.4

1 14722 4699 15.2 6514 23 -27.9

2 20010 5372 16.0 6417 23 -16.3

3 14960 4673 15.0 6262 23 -25.4

4 28930 5833 18.0 6839 24 -14.7

5 23448 5605 17.0 7080 23 -20.8

Total 115125 30394 18 39078 24 -22.2

Table 7. Comparison between the Danish Crown solution and MLVNS solution

29

Bibliography

Appelgate, D., Bixby, R., Chvátal, V., and Cook, W. (2003). Concorde tsp solver. available online at

http://www.tsp.gatech.edu/concorde.

Baldacci, R., Battarra, M., and Vigo, D. (2008). Routing a heterogeneous fleet of vehicles. In Golden, B.,

Raghavan, S., and Wasil, E., editors, The vehicle routing problem: Latest advances and new challenges. Springer.

Braysy, O., Dullaert, W., Hasle, G., Mester, D., and Gendreau, M. (2008). An effective multirestart deter-

ministic annealing metaheuristic for the fleet size and mix vehicle-routing problem with time windows.

Transportation Science, 42(3):371–386.

Choi, E. and Tcha, D.-W. (2007). A column generation approach to the heterogeneous fleet vehicle routing

problem. Computers & Operations Research, 34(7):2080–2095.

Cordeau, J., Laporte, G., and Mercier, A. (2001a). A unified tabu search heuristic for vehicle routing prob-

lems with time windows. Journal of the Operational Research Society, 52(8):928–936.

Cordeau, J., Stojkovic, G., Soumis, F., and Desrosiers, J. (2001b). Benders decomposition for simultaneous

aircraft routing and crew scheduling. Transportation Science, 35(4):375–388.

Freling, R., Huisman, D., and Wagelmans, A. (2003). Models and algorithms for integration of vehicle and

crew scheduling. Journal of Scheduling, 6(1):63–85.

Hansen, P. and Mladenovic, N. (2001). Variable neighborhood search: Principles and applications. European

Journal of Operational Research, 130(3):449–467.

Hansen, P. and Mladenovic, N. (2005). Variable neighborhood search. In Burke, E. and Kendall, G., editors,

Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Springer.

Hemmelmayr, V. C., Doerner, K. F., and Hartl, R. F. (2009). A variable neighborhood search heuristic for

periodic routing problems. European Journal of Operational Research, 195(3):791–802.

Huisman, D., Freling, R., and Wagelmans, A. (2005). Multiple-depot integrated vehicle and crew schedul-

ing. Transportation Science, 39(4):491–502.

Huisman, D. and Wagelmans, A. (2006). A solution approach for dynamic vehicle and crew scheduling.

European Journal of Operational Research, 172(2):453–471.

Imran, A., Salhi, S., and Wassan, N. A. (2009). A variable neighborhood-based heuristic for the heteroge-

neous fleet vehicle routing problem. European Journal of Operational Research, 197(2):509–518.

Li, F., Golden, B., and Wasil, E. (2007). A record-to-record travel algorithm for solving the heterogeneous

fleet vehicle routing problem. Computers & Operations Research, 34(9):2734–2742.

Mercier, A. and Soumis, F. (2007). An integrated aircraft routing, crew scheduling and flight retiming model.

Computers & Operations Research, 34(8):2251–2265.

Mesquita, M. and Paias, A. (2008). Set partitioning/covering-based approaches for the integrated vehicle

and crew scheduling problem. Computers & Operations Research, 35(5):1562–1575.

Mladenovic, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research,

24(11):1097–1100.

Papadakos, N. (2009). Integrated airline scheduling. Computers & Operations Research, 36(1, Sp. Iss. SI):176–

195.

Paraskevopoulos, D. C., Repoussis, P. P., Tarantilis, C. D., Ioannou, G., and Prastacos, G. P. (2008). A re-

active variable neighborhood tabu search for the heterogeneous fleet vehicle routing problem with time

windows. Journal of Heuristics, 14(5):425–455.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers & Operations

Research, 34(8):2403–2435.

Potvin, J. and Rousseau, J. (1993). A parallel route building algorithm for the vehicle-routing and scheduling

problem with time windows. European Journal of Operational Research, 66(3):331–340.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup and

delivery problem with time windows. Transportation Science, 40(4):455–472.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., and Dueck, G. (2000). Record breaking optimization

results using the ruin and recreate principle. Journal of Computational Physics, 159(2):139–171.

Zaepfel, G. and Boegl, M. (2008). Multi-period vehicle routing and crew scheduling with outsourcing op-

tions. International Journal of Production Economics, 113(2):980–996.

31

This paper addresses an integrated vehicle routing and driver scheduling problem arising at the
 largest fresh meat producer in Denmark. The problem consists of a one-week planning horizon,
 heterogeneous vehicles, and drivers with predefi ned work regulations. These regulations include,
among other things, predefi ned workdays, fi xed starting time, maximum weekly working duration,
break rule. The objective is to minimize the total delivery cost.

The real-life case study is fi rst introduced and modelled as a mixed integer linear program. A multi-
level variable neighborhood search heuristic is then proposed for the problem. At the fi rst level, the
problem size is reduced through an aggregation procedure. At the second level, the aggregated
weekly planning problem is decomposed into daily planning problems, each of which is solved by a
variable neighborhood search. At the last level, the solution of the aggregated problem is expanded
to that of the original problem. The method is implemented and tested on real-life data consisting of
up to 2000 orders per week. Computational results show that the aggregation procedure and the
decomposition strategy are very effective in solving this large scale problem, and our solutions are
superior to the industrial solutions given the constraints considered in this work.

ISBN 978-87-90855-54-3

DTU Management Engineering

Department of Management Engineering

Technical University of Denmark

Produktionstorvet

Building 424

2800 Kongens Lyngby

Tel. 45 25 48 00

Fax 45 93 34 35

www.man.dtu.dk

	Rap9-2009 2T
	A multi-level variable neighborhood search heuristic for a practical vehicle routing and driver scheduling problem.pdf

