5 research outputs found

    An Ambient Intelligence System for Assisted Living

    Get PDF
    Nowadays, the population's average age is constantly increasing, and thus the need for specialized home assistance is on the rise. Smart homes especially tailored to meet elderly and disabled people's needs can help them maintaining their autonomy, whilst ensuring their safety and well-being. This paper proposes a complete context-aware system for Ambient Assisted Living (AAL), which infers user's actions and context, analyzing its past and current behavior to detect anomalies and prevent possible emergencies. The proposed system exploits Dynamic Bayesian Networks to merge raw data coming from heterogeneous sensors and infer user's behavior and health conditions. A rule-based reasoner is able to detect and predict anomalies in such data, sending appropriate alerts to caregivers and family members. The effectiveness of the proposed AAL system is demonstrated by extensive experimental results carried out in a simulated smart home

    A Risk-Based IoT Decision-Making Framework Based on Literature Review with Human Activity Recognition Case Studies

    Get PDF
    The Internet of Things (IoT) is a key and growing technology for many critical real-life applications, where it can be used to improve decision making. The existence of several sources of uncertainty in the IoT infrastructure, however, can lead decision makers into taking inappropriate actions. The present work focuses on proposing a risk-based IoT decision-making framework in order to effectively manage uncertainties in addition to integrating domain knowledge in the decision-making process. A structured literature review of the risks and sources of uncertainty in IoT decision-making systems is the basis for the development of the framework and Human Activity Recognition (HAR) case studies. More specifically, as one of the main targeted challenges, the potential sources of uncertainties in an IoT framework, at different levels of abstraction, are firstly reviewed and then summarized. The modules included in the framework are detailed, with the main focus given to a novel risk-based analytics module, where an ensemble-based data analytic approach, called Calibrated Random Forest (CRF), is proposed to extract useful information while quantifying and managing the uncertainty associated with predictions, by using confidence scores. Its output is subsequently integrated with domain knowledge-based action rules to perform decision making in a cost-sensitive and rational manner. The proposed CRF method is firstly evaluated and demonstrated on a HAR scenario in a Smart Home environment in case study I and is further evaluated and illustrated with a remote health monitoring scenario for a diabetes use case in case study II. The experimental results indicate that using the framework’s raw sensor data can be converted into meaningful actions despite several sources of uncertainty. The comparison of the proposed framework to existing approaches highlights the key metrics that make decision making more rational and transparent

    An Adaptive Bayesian System for Context-Aware Data Fusion in Smart Environments

    Get PDF
    The adoption of multi-sensor data fusion techniques is essential to effectively merge and analyze heterogeneous data collected by multiple sensors, pervasively deployed in a smart environment. Existing literature leverages contextual information in the fusion process, to increase the accuracy of inference and hence decision making in a dynamically changing environment. In this paper, we propose a context-aware, self-optimizing, adaptive system for sensor data fusion, based on a three-tier architecture. Heterogeneous data collected by sensors at the lowest tier are combined by a dynamic Bayesian network at the intermediate tier, which also integrates contextual information to refine the inference process. At the highest tier, a self-optimization process dynamically reconfigures the sensory infrastructure, by sampling a subset of sensors in order to minimize energy consumption and maximize inference accuracy. A Bayesian approach allows to deal with the imprecision of sensory measurements, due to environmental noise and possible hardware malfunctions. The effectiveness of our approach is demonstrated with the application scenario of the user activity recognition in an Ambient Intelligence system managing a smart home environment. Experimental results show that the proposed solution outperforms static approaches for context-aware multi-sensor fusion, achieving substantial energy savings whilst maintaining a high degree of inference accuracy

    An Adaptive Bayesian System for Context-Aware Data Fusion in Smart Environments

    No full text
    corecore