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Abstract: The Internet of Things (IoT) is a key and growing technology for many critical real-life
applications, where it can be used to improve decision making. The existence of several sources of
uncertainty in the IoT infrastructure, however, can lead decision makers into taking inappropriate
actions. The present work focuses on proposing a risk-based IoT decision-making framework in
order to effectively manage uncertainties in addition to integrating domain knowledge in the deci-
sion-making process. A structured literature review of the risks and sources of uncertainty in IoT
decision-making systems is the basis for the development of the framework and Human Activity
Recognition (HAR) case studies. More specifically, as one of the main targeted challenges, the po-
tential sources of uncertainties in an IoT framework, at different levels of abstraction, are firstly
reviewed and then summarized. The modules included in the framework are detailed, with the
main focus given to a novel risk-based analytics module, where an ensemble-based data analytic
approach, called Calibrated Random Forest (CRF), is proposed to extract useful information while
quantifying and managing the uncertainty associated with predictions, by using confidence scores.
Its output is subsequently integrated with domain knowledge-based action rules to perform deci-
sion making in a cost-sensitive and rational manner. The proposed CRF method is firstly evaluated
and demonstrated on a HAR scenario in a Smart Home environment in case study I and is further
evaluated and illustrated with a remote health monitoring scenario for a diabetes use case in case
study II. The experimental results indicate that using the framework’s raw sensor data can be con-
verted into meaningful actions despite several sources of uncertainty. The comparison of the pro-
posed framework to existing approaches highlights the key metrics that make decision making
more rational and transparent.

Keywords: IoT framework; Machine Learning; uncertainty; Domain Knowledge; human activity
recognition

1. Introduction

Internet of Things (IoT) refers to a network of all physical objects (things) interacting
and sharing information via machine-to-machine (M2M) communications [1, 2]. IoT is the
enabling technology for many real-life applications, e.g., transportation, healthcare, en-
ergy management and agriculture [2,3]. In an IoT setup, a large number of raw data are
collected from different types of sensors and are then transmitted for further processing
through long- and short-range communication technologies [2,4]. The processed data are
analyzed to identify the high-level context and infer useful knowledge, which can then be
used to make critical decisions via actuators. However, the existence of several sources of
uncertainty is a key challenge that has significant impacts on decision making in IoT sys-
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tems [5]. Uncertainty is a general term that is used to describe concepts like incomplete-
ness, imprecision and ambiguity [6]. The existence of uncertainty may lead decision mak-
ers to take inappropriate actions that might have significant impacts, especially in cases
where IoT systems are associated with high-risk decisions [7]. The sources of uncertainty
in IoT-based decision-making include uncertainties associated with data acquisition, data
processing, data analysis and incomplete coverage of a specific domain [8].

In IoT systems, these uncertainties may be caused by the availability of limited bat-
tery and processing power, high security and information exchange requirements, etc. [9].
The complexity of an IoT system increases along with different characteristics of the sys-
tem, such as heterogeneity, scalability, dynamism and timeliness; these factors make it
even harder to manage uncertainty.

In an IoT-based Decision Support System (DSS), Machine Learning (ML) algorithms
are used to identify high-level situations and discover useful knowledge based on histor-
ical data [10]. However, ML algorithms face several key challenges to handle uncertainties
in their predictions [11]. For example, supervised ML algorithms entirely rely on the train-
ing data, which might be incomplete and imprecise due to sensor noise or intermittent
network connection problems [12]. In addition, the absence of an adequate number of
training data and imbalanced class distributions has a great impact on the performance of
the ML algorithms. Normally, the level of confidence associated with a prediction via ML
is not quantified; that is, standard ML algorithms provide only crisp outputs. However,
in high-risk IoT setup situations, it is vital to quantify the confidence associated with each
prediction made via ML and take them into consideration, which may, in turn, affect the
final critical decision making to a large extent [13].

Motivated by the aforementioned challenges, in the present work, we aim to propose
a risk-based IoT decision-making framework for the Human Activity Recognition (HAR)
domain. The objective of the presented work is to reduce the negative impact of uncer-
tainties, minimize risk and improve decision-making in HAR. The framework is “risk-
based” in the sense that it provides a mechanism to prioritize critical IoT functions and
treat an uncertainty as a risk only when it affects the objectives of the HAR use case. The
proposed framework is essentially an integration of data-driven and knowledge-based
approaches, which provides an interesting framework capable of bridging lower-level ac-
tivity recognition and higher-level knowledge for explanation and recommendation, as
well as handling uncertainties. The proposed framework is expected to enhance decision
making in HAR-based applications despite the existence of various sources of uncertainty.
An JoT-based HAR system is the requirement of many real-life applications such as per-
vasive computing, remote health monitoring, smart home environments and Ambient As-
sistive Living (AAL) [14]. In these examples, there is great potential to reduce strain on
healthcare and hospital resources. It could also be used to monitor non-critical patients at
home or those living in rural areas and can enable elderly people to live more inde-
pendently [3].

In a real-life HAR decision-making application, an ML algorithm must not only be
accurate in predicting user’s activities, but it should also provide indications when it is
incorrect. For example, in a HAR-based automated health care system, human interven-
tion is required if a critical health-related activity is predicted below a specified threshold.
Therefore, the ML algorithm should provide a reliable confidence score in its prediction,
which means that the predicted probability should reflect the true probability. Therefore,
a new ensemble-based random forest algorithm, called a Calibrated Random Forest
(CRF), is proposed to handle uncertainty and acquire more reliable predictions, in situa-
tions where a class probability estimation for each prediction is used to quantify uncer-
tainty in the CRF model’s predictions. A probability calibration technique is implemented
to produce well-calibrated class probability estimations so that these estimations can be
directly used as the confidence scores associated with the prediction via ML.



Sensors 2021, 21, 4504

3 0f30

In the present work, an openly available HAR dataset [15] is used to evaluate the
framework and various types of uncertainties have been identified. A remote health mon-
itoring scenario has been developed to monitor the activities of a user with a lifestyle dis-
ease (diabetes in this case). The related activities that influence diabetes from the dataset
have been identified, and the idea is that if a specific activity deviates from its normal
frequency, it can be declared as a symptom of diabetes. Similarly, for remote monitoring
applications, this example scenario depends on accurate predictions from the underlying
IoT infrastructure. Therefore, activities have been identified with confidence scores and
context in order to monitor the user and take appropriate actions.

Generally, the proposed framework offers several key benefits to manage uncertain-
ties and make the decision process more rational in a HAR-based health-related use case.
The specific contributions of this paper are several-fold; firstly, we propose a CRF model
and combine the resulting confidence scores of the CRF with the HAR domain knowledge
and contextual information. Secondly, both the domain knowledge and prediction confi-
dence scores are encoded in IF-THEN rules to support decision making in the diabetes
scenario. Thirdly, the framework proposes a natural way to integrate domain knowledge;
e.g., a threshold defined by the domain expert has been set, and predictions made above
that threshold are trusted. The framework also provides a mechanism to interpret the
model’s behavior and infers situations that can be recognized easily by medical experts.
The results indicate that the framework is able to identify reliable situations that can be
automated in the HAR-based DSS. On the other hand, situations with confidence less than
a threshold are forwarded for human investigation. Finally, based on the inferred situa-
tions, appropriate actions are recommended. A comparison with the existing approach
reveals that the proposed framework provides a mechanism to make decision making
more rational despite the existence of uncertainties in the IoT setup.

The remainder of the paper is organized as follows. Section 2 provides a brief review
of related work. Section 3 presents the details of the proposed framework. The details of
the dataset used in this study are presented in Section 4. Section 4 also presents and dis-
cusses the results of the proposed CRF method. Section 5 provides details of a diabetes
scenario to evaluate the CRF model. Furthermore, Section 6 analyzes and compares the
overall result of the framework. Finally, Section 7 concludes the work and identifies some
future directions.

2. Related Works

IoT is an enabling technology to support situation awareness and decision making in
many real-life applications. However, researchers have identified uncertainty in both the
physical world and in IoT technology as one of the key challenges that limit its application
to support decision-making [3,10]. The quality of data has also been identified as a signif-
icant element for IoT-based decision making in supply chain management [16]. The liter-
ature has argued that for IoT systems to make intelligent decisions the interaction and
communication alone are not enough. The “things” must have the capability to learn,
think and understand; this concept is known as cognitive IoT [17]. In this study, decision
making with uncertain and incomplete information has been described as the key chal-
lenge in building cognitive IoT. Researchers in [7,18] have also identified heterogeneity,
weak semantics, limited resource availability and sensor network malfunction as the key
sources of imprecise, inaccurate and incomplete data in IoT applications. Therefore, a data
semantization [19] technique has been proposed as the key solution to address the chal-
lenges posed by IoT systems. In this approach, domain knowledge information is used to
add semantics to IoT data for making more informed and intelligent decisions. Similarly,
in many IoT systems, sensor data is uncertain due to several reasons, and decision support
systems greatly rely on such data for automated decision making [18,20]. In previous stud-
ies, different approaches have been devised to reduce the impact of uncertainties and re-
duce risks [21-23]. For example, a framework architecture based on domain ontology and
reasoning systems has been presented to resolve uncertainties [12]. The work presented
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in [9] analyzed the IoT characteristics, structure and behavior as sources of uncertainty in
the context of smart buildings. The study identifies some key strategies to overcome un-
certainty including differentiating between significant and insignificant data, rational
planning of business strategy and continuously updating the developing scenario. A
novel IoT medical DSS has been proposed to detect and monitor diabetes patients [24],
where sensors are used to collect blood pressure, heart rate, respiratory rate and glucose
to determine the symptoms. The study handles ambiguity and incompleteness with an
intuitionistic fuzzy set.

The knowledge-driven approaches make use of rich domain knowledge in IoT sys-
tems to build models using knowledge engineering and representation methods. These
knowledge engineering techniques formalize the domain knowledge using logical rea-
soning and ontology-based methods. Another way to exploit the rich domain knowledge
is to develop a rule-based system. For example, a rule-based finite state machine method
has been applied to recognize activities from binary sensors [25]. The results indicate that
the approach outperforms other data-driven approaches. However, one of the drawbacks
of these knowledge-driven approaches is the lack of a mechanism to handle uncertainty
explicitly. Therefore, several studies have proposed to handle uncertainty in the HAR do-
main; for example, the authors of [26,27] have proposed a solution applying Dempster-
Shafer (DS) theory to manage uncertain data generated by sensors. The benefits of using
DS theory provide an opportunity to infer context for an activity even if some sensor data
are noisy or missing. Researchers have exploited the availability of rich domain
knowledge to address shortcomings of insufficient data, as described in [25]. The benefit
of using knowledge-driven approaches is that these techniques do not require training
and can be used immediately after deployment. However, these knowledge-based tech-
niques do not adapt well to the dynamic situations in the HAR environment [14].

Several data-driven ML algorithms, such as Naive Bayes Classifiers (NBC), Decision
Trees (DT), Neural Networks (NN) and Random Forest algorithms (RF), are used to learn
patterns from sensor data and predict an activity [28,29]. These ML algorithms offer some
important benefits for IoT applications including dynamic adaptation and uncertainty
handling as studied in [11]. ML approaches have also been used for making important
decisions in critical scenarios [2,30]. However, ML-based techniques are limited to model
randomness and variability as specific types of uncertainty. For critical applications, the
lack of a mechanism to quantify uncertainty in ML output has been identified [13,31] as
an essential obstacle to making reliable decisions in an IoT setup. In addition, researchers
[21,32] have identified the limited availability of training data and incomplete and impre-
cise sensor data as the main drawbacks of a data-driven approach. Therefore, to improve
the quality of the training data, researchers have applied ontological concepts to raw sen-
sor data to enhance ML performance.

Furthermore, probabilistic ML algorithms offer some key benefits for managing un-
certainty in prediction models and improving decision making, as discussed in [33]. A
probability calibration technique has been proposed [34] for calibrating classifier proba-
bility scores to the probability of disease level in order to develop uncertainty estimates
in clinical decision support systems. A probability calibration workflow for making cost-
sensitive classification decisions has been proposed in [35]. The approach minimizes the
cost of a prediction instead of improving the performance. Similarly, the authors of [36]
have proposed techniques for binary classification that outperform traditional probability
calibration techniques for binary classifiers. Similarly, in the proposed work in this paper,
these techniques also focus on improving the calibration of the model. However, these
techniques lack a mechanism to integrate domain knowledge with probability calibration
metrics, such as thresholding and cost of actions, in cases of making high-risk decisions.
Therefore, the proposed work not only quantifies uncertainty in a ML output but also
integrates domain knowledge with these ML outputs to manage risk in critical decision-
making scenarios.
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Another approach to handle uncertainty is the deployment of a hybrid approach
[37,38], which has been implemented and integrates ML with a fuzzy ontology. A similar
study [11] has extended the domain knowledge approach as input to the ML algorithm to
improve situational awareness. Although these hybrid techniques integrate domain
knowledge with ML, they do not provide a mechanism for managing the risk associated
with actions in a specific scenario. On the contrary, they propose approaches for integrat-
ing domain knowledge with actions to better handle risk and criticality. As it can be noted
from the current literature, various studies have implemented different techniques to ad-
dress the risks associated with decision making in IoT. Additionally, these techniques
have been implemented in an isolated manner. Nevertheless, our proposed framework is
distinct from existing approaches, as it is more structured and explicitly addresses the
risks associated with taking actions by integrating domain knowledge with machine
learning. The other unique features of the framework include quantifying uncertainty in
ML outputs and bringing humans in the loop to deal with more critical situations.

3. A HAR Risk-Based IoT Decision Making Framework

This section presents an overview of the proposed framework, its comparison with a
standardized IoT architecture is also analyzed, and then components and subcomponents
of the IoT-DM framework are explained.

3.1. Framework Ouverview

The proposed risk-based IoT decision-making (denoted as IoT-DM) framework is de-
scribed in Figure 1 and is designed for use in a HAR domain to convert the raw sensor
data into executable actions that can be used in a real-life scenario. IoT-DM is a high-level
model that outlines the basic building blocks of IoT systems and highlights the inter-rela-
tionships between these building blocks. The modular structure of the framework is de-
signed to achieve the objective of converting raw sensor data into meaningful actions. The
data acquisition and processing modules enable the collection of data from heterogeneous
sensors and the preparation of these data for processing. The risk-based analytics module
extracts useful information using ML, and subsequently, the inferred knowledge is used
for decision making. This module is also responsible for quantifying the impact of uncer-
tainties in the data analytics process. Action rules are utilized to combine the ML output
with domain knowledge based on the scenario requirements as shown in Figure 1, where
the data analytics via ML and domain knowledge subcomponents are represented with
green and yellow colors, respectively, while the orange color represents the output action.
The golden color bubbles indicate the types of uncertainties involved in data acquisition,
processing, and analytics. Subsequently, based on the level of risk, actions are taken to
trigger actuators to achieve the required objectives. The human operator is included to
monitor the current situations, infer possible future implications and make decisions that
require nuance and judgment. The final decisions are either implemented in an automatic
manner or through human intervention.
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Figure 1. The proposed IoT-DM framework.

3.2. Mapping IoT-DM Framework to Standard IoT Architecture

Although the proposed IoT-DM framework is deployed for a HAR based e-health
use case in this study, it can also be built into common application support platforms
providing specific services such as model calibration, domain knowledge and action rules
generation. ITU-T (International Telecommunication Union-Telecommunication) is re-
sponsible for issuing recommendations for standardizing telecommunications systems
worldwide [39]. The IoT reference model from ITU-T is a standardized four-layer archi-
tecture that facilitates the IoT implementation for specific systems and use cases. There-
fore, we have mapped the components of the IoT-DM to the ITU-T standardized reference
architecture to facilitate interoperability and simplify and ease development [40]. The
ITU-T reference model is composed of four high-level layers and two layers associated
with these four layers as shown in Figure 2.
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Figure 2. ITU-T IoT Reference Model [39].

Table 1 shows the mapping of components from the proposed [oT-DM to the ITU-T
layers. The application layer contains an IoT application. The components of the IoT-DM
framework such as the Action and Decision Alternative module and its interface to the
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human operator are mapped to this layer. The service support and application support
layer consists of two sub-layers. Generic support capabilities are the common services
such as data processing and data storage that can be used by different IoT applications.
Furthermore, the specific support capabilities sublayer, which deals with the specific re-
quirement of different IoT applications, is the most relevant layer as most of the IoT-DM
components are mapped to generic and specific capabilities as elaborated in Table 1. The
services under specific capabilities can be used for critical applications where reliability
in decision making is required.

Network layer capabilities facilitate both common network connectivity functions
and transport of specific IoT application information. Although there are no explicit com-
ponents from IoT-DM that can be mapped to the network layer, the communication flow
(indicated by arrows) between IoT-DM components is mapped to the network layer. The
device layer provides support for devices to communicate directly with the communica-
tion network via an ad hoc networking facility. This layer supports indirect communica-
tion of devices (wearable, environmental sensors and actuator) through gateway capabil-
ities using ZigBee, Wi-Fi and 3G technology protocols.

Table 1. Mapping of the IoT-DM Framework components to ITU-T reference architecture layers.

IoT-DM Framework Layers ITU-T Layers

Action and Decision Alternative application and interface for human operator.

Application Layer

Generic Capabilities: Modules such as User Profile, Domain knowledge and
Data Processing and submodule Model Selection.

Service Support and Ap-
plication support

Specific Capabilities: Sub modules of Risk-Based Analytics Model Calibration, Layer(Generic Capabili-

Confidence Scores, Domain Knowledge, Action Rules and Action Classifica-

tion.

ties and Gateway Capa-
bilities )

Communication management for Data Acquisition Data Processing and Risk-

Network Layer

Based Analytics Module

Data Acquisition (Environmental and wearable sensors) and Actuator(Re-

Device Layer (Device

minder) Capabilities and Gate-
way Capabilities )

No Direct mapping Management Capabili-
ties

No Direct mapping Security Capabilities

Similarly, the management capabilities layer covers fault management, configuration
management and performance management across all four layers. The security capabili-
ties layer provides authorization, authentication and data confidentiality services to all
four layers. There are no components of IoT-DM that can be mapped to the management
and security capabilities layers of the ITU-T framework. Therefore, this limitation of the
IoT-DM framework must be taken into consideration where these capabilities are critical
for an application.

3.3. Components of IoT-DM Framework and Sources of Uncertainty

This section presents a brief overview of components of the IoT-DM framework and
sources of uncertainty associated with these components.

3.3.1. Data Acquisition and Processing and Sources of Uncertainty

Data acquisition is the process of collecting a large number of data from different
types of sensors, e.g., wearable and environmental sensors [41]. However, the collected
sensor data might be incomplete, imprecise and inaccurate due to sensor noise, transmis-
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sion errors and network connection problems [12]. Data from IoT sensors come in a vari-
ety of data types to perceive the status of “things” ranging from numbers to strings. Het-
erogeneous sensor data increase the chances of errors and make it difficult to combine
data with different formats [18]. The collected raw data are normally of weak semantics
and need to be combined with other sources of information, e.g., contextual information
to support high-level applications [7].

Data processing involves data cleaning and combining data from different sources in
a process known as data fusion [42]. Data cleaning requires removing irrelevant and du-
plicated data while missing data are inserted. Feature selection is the process of identify-
ing a relevant set of features and removing redundant features. Both data fusion and fea-
ture selection involve fuzziness and ambiguity [8] as it is challenging to decide whether a
particular feature belongs to a certain subset. Similarly, it is also hard to select an optimum
set of features with comparatively more discriminative power.

3.3.2. Data Analytics and Sources of Uncertainty

After data are acquired and processed, data analysis techniques are used to extract
useful knowledge, which is then used to make informed decisions [12]. There are multiple
aspects of data analytics encompassing diverse techniques and approaches. ML is the
technique of learning from experience without being explicitly programmed [2]. Super-
vised ML techniques (also known as models) use data to learn patterns from; the learned
model is then used to predict unobserved data—also known as the testing data [14]. How-
ever, the existence of various types of uncertainties makes it challenging to use predictions
made by the ML techniques for precise decision making. An ML technique learns from
the training data; therefore, any potential noise or imprecision in the training data or in
the feature selection process will impact its learning ability and its performance on the
testing data [11]. Likewise, in supervised ML techniques, training data are annotated, and
it is very likely that an instance or observation is assigned to an incorrect class by an error
known as labeling noise or class noise [43]. One of the sources of uncertainty in ML is also
the imbalanced data in a classification, referring to a condition when classes are not
equally represented in the training data for a specific domain [44]. In such situations, ML
techniques normally generalize well for the majority class while it becomes difficult to
predict the minority class accurately.

Due to the above uncertainties, models make imperfect predictions, and as a result,
such predictions are quite different from what is expected, as each ML algorithm learns
from data and performs an optimization to maximize a likelihood (or posterior distribu-
tion) and minimize the error (or loss function). As a result of this optimization, standard
ML algorithms predict a crisp output y [13]. However, in critical application scenarios, it
is crucial to quantify uncertainty, that, is to quantify a model’s confidence in its prediction.
For example, it is critical in an AAL application to accurately identify the medication ac-
tivity as it might involve taking a critical action about the health of the user, e.g., disabling
a reminder service.

3.4. Risk-Based Analytics

This section illustrates the key components and sub-components of the risk-based
analytics module of the IoT-DM framework.

3.4.1. Ensemble-based Data Analytics

One limitation of traditional ML techniques such as DT, SVM, LR and NB for classi-
fication is their lower performance in comparison to ensemble techniques. On the other
hand, deep learning (DL) techniques normally achieve good performance. However, these
techniques are more complex and require a significant amount of data for training to
achieve good results. Additionally, DL also lacks transparency as the predictions are not
explainable to a non-technical user which is required in our case.
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To trade off the benefits and drawbacks of different ML techniques, RF is the more
suitable option as it offers some key advantages in our case. RF is an ensemble ML algo-
rithm that uses the bootstrap technique to make a prediction from multiple decision trees;
this technique reduces the high variance of individual decision trees and thus avoids over-
fitting [45]. We have used this technique in the HAR domain as it helps in reducing the
variance if there is a change in the training data due to a change in sensor values. One of
the challenges of the HAR domain is that similar events are generated for similar activi-
ties, and it is difficult for ML techniques to discriminate between such activities. To over-
come this challenge, RF generates a subsample from the training data and then fits a single
decision tree on each subsample. The predictions from each tree are combined to make
the final prediction through a majority vote. Moreover, RF is a suitable option because in
this work we require reliable probability estimates to generate a confidence score. As the
RF algorithm combines results from a number of decision trees, the probability assigned
to each prediction is more reliable than a single decision tree algorithm.

3.4.2. Probability Calibration to Manage Uncertainty

In ML, instead of predicting a crisp class as output, several classification algorithms
predict the probability of an observation (instance) belonging to each possible class. Such
classifiers predict conditional probability distributions as P(X|Y); for a given sample
P(X|Y), it assigns an output y € Y [46,47], as shown in Equation (1):

y=argmax = P(Y = y|X) 1)
y

The class with the highest probability is the predicted class y and is presented as the
final (crisp) output. NB, DT, SVM, LR and RF are examples of probabilistic ML algorithms
[48], which normally provide probability distributions of predication.

Calibration Techniques

Although an ML algorithm may be able to provide a probability distribution of pred-
ication, the predicted probabilities may not match the observed probability or the true
probability of an event. Therefore, the predicted probabilities cannot be used directly as
the confidence scores. Instead, the predicted probability can be modified to better repre-
sent the true probability estimates [47]. The process of adjusting the predicted probability
is known as calibration. The goal of the calibration technique is to minimize the difference
between the predicted and true probabilities.

p(yIx) =pylx) )

p is the predicted probability of an ML algorithm for an outcome given x, and p is
the true probability. As indicated in Equation (2), equal probabilities mean a perfect cali-
bration.

Certain models, such as LR, inherently generate well-calibrated probabilities as they
optimize the conditional probability P(X|Y) (also known as log loss) directly in the train-
ing phase and therefore usually do not require calibration [33]. However, many classifi-
cation algorithms including NB classifier, DT and RF algorithms generate misleading
probability distributions and therefore require calibration. The DT algorithm generates
distorted probabilities due to high bias and high variance when it tries to produce pure
leaves. NB assumes feature independence and forces probabilities to extremes (either 1 or
0) [49]. As RF uses multiple trees and it is difficult for all trees to generate 0 or 1 probabil-
ities, since these trees are trained on different subsets of data, the RF algorithm pushes the
probabilities to the center (away from either 0 or 1) as it averages the probabilities from
multiple trees with high variance.
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In high-risk IoT applications, where risk is involved with decision making, it is im-
portant to see the confidence score of the prediction. Ultimately, decision making will take
this confidence score of the prediction into account. The mistakes predicted with high
probability (overconfidence) and correct prediction with low probabilities (under confi-
dence) can be investigated through domain knowledge.

Platt Scaling (Sigmoid) and Isotonic Regression (IR) are the two techniques com-
monly used for probability calibration [50,51]. Platt Scaling fits a logistic regression model
on the probability estimates generated by an algorithm such as RF to achieve calibration.
Platt Scaling generates probabilities in the range of [0-1] and is directly applicable to bi-
nary class problems but can be extended to multiclass problems using a one-vs.-rest ap-
proach. Although originally proposed to scale the output of an SVM, it also produces good
results for boosted models and NB Classifiers [46].

IR is a useful non-parametric calibration technique for many classification models
[50]. This technique does not assume anything about the mapping function of a model
and therefore performs better than Platt Scaling in several cases. The performance of IR is
not constrained by the mapping function of a model as long as the function is monoton-
ically increasing. Both Platt Scaling and IR use a separate validation set or cross-validation
to avoid overfitting. This means that the data used for calibration should not be used for
training the model [46].

Evaluation of Calibration

In binary class, probability calibration can be evaluated using the reliability diagram.
This diagram plots the true probability against the predicted probability of a model [51].
However, reliability diagrams are not suitable for multiclass setups. Therefore, log loss
and Brier score are proposed as the scoring rules to evaluate the calibration of ML models
in a multiclass scenario.

Log loss is commonly used as a scoring rule to evaluate a model’s uncertainty [52].
The distance between the actual and predicted probabilities is measured on a logarithmic
scale and is then used to penalize the probability. The higher the distance between the
actual and predicted probabilities, the higher the loss, and a log loss of 0 indicates perfect
calibration. The log loss for a single sample is calculated as:

—log P(ytlyp) = —(ytlog(yp) + (1 — yt) log(1 — yp)) 3)

where yt is the true label and is represented by either 0 or 1 and yp is the estimated prob-
ability when ytis equal to a true class or 1. The Brier score is a scoring metric that evaluates
the predicted probabilities of a model [53]. It computes the mean squared error between
predicted probabilities and the actual probabilities and can be calculated for multiclass

problems as:
N R
Z Z (fti — oti)? 4)
t=1

i=1

=2~

Similarly, to log loss, the brier score is always between 0 and 1, where a score of 0
indicates perfect calibration. Well-calibrated probabilities can be interpreted as confidence
levels of an ML algorithm.

3.4.3. Probability Calibration and Rational Decision Making

Predicting calibrated probabilities offers some key benefits to making IoT application
decision making more rational and cost-sensitive. Probability calibration provides a
method to set a threshold, and only predictions made above that threshold can be trusted
to make a rational decision in a given scenario [54,55]. Well-calibrated probabilities also
make decision making cost-sensitive by calculating the expected cost of taking an action.
For example, if L(k, I’c)is the cost or the loss function and y = k is the true prediction, and
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the ML algorithm predicts k, then the expected cost associated with decision making can
be calculated as follows:

Yk P(y =klx) L (k k) ®)

If we obtain a well-calibrated estimation, then a better estimate of the loss (k”) can be
attained to minimize the expected loss associated with taking an action. The loss or cost
associated with making a decision can also be minimized by estimating the cost of absten-
tion, L(k, abstain).

Well-calibrated probability estimates provide a way of interpretation in HAR, such
that an activity can be interpreted in human language. In some cases, probability calibra-
tion can improve the accuracy of a classifier by adjusting the probability threshold used
by the classifier for splitting data.

3.5. Integration of Data Analytics and Domain Knowledge for IoT Systems

In an IoT setup, ML algorithms mostly rely on learning from data, yet data are not
the only source of learning. In addition, some domain knowledge is nearly always avail-
able along with the data [56]. Although domain knowledge is used implicitly as part of
the ML process (e.g., feature engineering), it is required to get insights into the specific
domain explicitly. It has become important in IoT systems to acquire domain knowledge,
e.g., to identify objectives and understand the context of the problem and potential solu-
tions. Uncertainties that impact the objectives of a specific domain are known as risks [57],
and uncertainties should not be treated equally. There might be many sources of uncer-
tainties in IoT-based systems but it does not necessarily mean a high risk, since a real risk
to society and individuals might exist only in few critical cases. In HAR-based AAL, the
domain knowledge included is to identify contextual information, e.g., the name, descrip-
tion, duration, time, location and aim of an activity performed by the user [41]. Further-
more, it is also required to identify low-level information, e.g., the sequence and transi-
tional state of an activity, and high-level information, e.g., the objective and criticality of
an activity in a given scenario.

In IoT infrastructure, one of the major sources of uncertainty is the incomplete cov-
erage of domain information [10] as it is not possible to cover every aspect of the domain.
For example, HAR is the domain that involves learning and identifying complex human
behavior consisting of sequential and overlapping actions [42]. Humans perform activities
in different ways depending on their personal preferences; for many activities, it is also
not clear what the exact start and end times are [58]. Similarly, interleaved activities per-
formed by users in a dynamic manner ultimately lead to ambiguity, and it becomes chal-
lenging to infer high-level context.

Risk analysis in IoT setups is used to identify and understand the value of data, the
criticality of operations and the scalability of any failures. The goal is to prioritize valuable
data and critical functions so that they can be managed with high standards and special
care [59]. To reduce the impact of uncertainties in ML predictions, domain knowledge can
be combined with the probability estimates of predictions made by ML algorithms. The
proposed framework also provides a mechanism to integrate the domain knowledge with
confidence scores obtained from ML Predictions and encode it into IF-THEN action rules.

3.6. Action Rules and Decision Alternatives

After identifying useful patterns, rules are generated to produce reliable and accurate
actions. Such rules encode IF-THEN conditions that are used to trigger recommended ac-
tions. The domain knowledge in a given scenario can be modeled through these rules with
the probability estimate of prediction. Rules can also be generated to classify the actions
that should be sent directly to the decision support system and automated, while certain
actions that involve criticality and uncertainty at the same time can be forwarded for hu-
man investigation.
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One of the major advantages of IoT systems is in their autonomy, since they can help
to make decisions automatically without human intervention. However, from a risk anal-
ysis perspective, an IoT system must provide a higher degree of human intervention and
control for critical assets and operations to reduce risk.

After perceiving the environment through sensors and identifying associated risks in
an IoT setup, the next step is to trigger actions using actuators [41]. When a situation is
inferred, for example in HAR, whether a “Medication” activity has taken place or not,
then a reminder service (as an actuator) can be enabled or disabled accordingly.

4. Case Study I: HAR in the Smart Home

This section details a case study in a Smart Home environment with the focus on
evaluating the performance of the proposed CRF model within the IoT-DM framework,
using the open-source benchmark dataset.

4.1. UCAmI Data Set

The dataset used in this case study to assess the proposed framework is from the first
UCAmI Cup challenge [15], which was collected by the University of Jaen Ambient Intel-
ligence (UJAmI) smart lab. The researchers were invited to use their tools and techniques
to analyze the HAR dataset and present their results. An area of approximately 25 square
meters was divided into five regions: entrance, kitchen, living room, workplace and a bed-
room with an integrated bathroom, as shown in Figure 3. To capture human—environment
interactions, heterogenous data from binary, proximity, accelerometer and floor sensors
were used. Figure 3 also shows the location and deployment of the binary and proximity
sensors as these two types of sensors have been considered for this study.

MO01 Door

TVOTV 1-TV controller

SM1 Motion sensor-Kitchen
SM3 Motion sensor-bathroom
SM4 Motion sensor—-bedroom
SM5 Motion sensor-sofa
DO1 Refrigerator

D02 Microwave

D03 Wardrobe

D04 Cupboard cups

D05 Dishwasher

D07 Top WC

D08 Closet

D09 Washing machine

D10 Pantry

HO1 Kettle

€01 Medication

C02 Fruit platter

C03 Cutlery

C04 Pots

CO5 Water bottle

€07 Remote XBOX

€08 Trash

€09 Tap

€10 Tank

€12 Laundry basket

C13 Pyjamas drawer

C14 Bed 140 94

€15 Kitchen faucet

$09 Pressure sofa

2-Book
3-Entrance door
4-Medicine box
5-Food cupboard
6-Fridge

7-Pot drawer
8-Water bottle
9-Garbage can
10-Wardrobe door
11-Pyjama drawer
12-Bed
13-Bathroom tap
14-Toothbrush
15-Laundry basket

Figure 3. Location of the binary and proximity sensors in the UJAml smart lab

A set of 30 binary sensors were deployed, generating binary output together with a
timestamp. Three types of binary sensors were used, including magnetic contact, motion
and pressure sensors. Magnetic sensors detect the status of an object such as a door, where
an “open” message is sent when two pieces of the sensor are separated and a “closed”
message is sent when the pieces are put together. Motion sensors detect whether a user
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has moved in or out of range, and depending on the context, a “Movement” or “No Move-
ment” message is sent. Pressure sensors are attached to textile layers to detect the presence
and absence of pressure and generate a “Pressure” or “No Pressure” message accordingly.

A set of 15 BLE sensors were used to record the proximity data and the smart watch
worn by the user reads the signals from the BLE beacon and receives the Received Signal
Strength (RSSI). A greater value of RSSI received by the smart watch implies a smaller
distance between the user and the BLE beacons. As the user goes away from the BLE bea-
con the value of the RSSI decreases.

A total of 24 activities performed by a 24-year-old male student were captured over
a period of 10 days. The user performed 246 instances of activity, and the dataset was
partitioned into morning, afternoon and evening sections, as shown in Table 2. The num-
ber of instances was obtained for each activity after segmenting them into 5-s windows.

Table 2. Activities and number of instances for each activity recorded in the UCAmI Cup dataset.

ID Name Instances ID Name Instances
Act0l Take Medication 240 Act13 Leave smart lab 80
Act02  Prepare Break- 390 Actl4 Visitor to smart lab 14

fast
Act03 Prepare lunch 984 Actl5  Put waste in the bin 298
Act04 Prepare dinner 402 Actl6 Wash hands 144
Act05 Breakfast 588 Actl7 Brush teeth 540
Act06 Lunch 738 Actl8 Use the toilet 144
Act07 Dinner 582 Act19 Wash dishes 96
Act08 Eat a snack 78 Act20 Put washing in ma- 96
chine
Act09 Watch TV 642 Act21 Work at the table 379
Act10 Enter smart lab 97 Act22 Dressing 432
Actll Play a video- 180 Act23 Go to bed 92
game
Actl2  Relax on the sofa 859 Act24 Wake up 222

4.2. Sources of Uncertainty in UCAmI Dataset

This section presents several sources of uncertainty that were identified by the re-
searchers working with the dataset [25,44], which cause some challenges for the ML algo-
rithms and might impact the accuracy of predictions of an activity, which ultimately might
lead the decision makers to make inaccurate decisions.

High number of classes: The total number of classes in the dataset is 24, which can be
deemed as a high number. As mentioned earlier, in such situations, ML algorithms usu-
ally require a large number of data to accurately predict a high number of classes. Simi-
larly, several activities are closely related as they are performed at the same location and
have similar sensor value profiles. For example, Act02 (prepare breakfast), Act 03 (prepare
lunch) and Act04 (prepare dinner) are performed at the same location with similar sensor
reading profiles. The high number of classes was one of the reasons for the low accuracy
that was reported by the participant at the UCAmI cup challenge [60].

Imbalanced classes: In the UCAmI dataset, all the classes are not represented equally,
as indicated by the distribution of instances for each class in Table 1. This causes the ML
algorithms to favor the majority class and ignore the minority class. In the dataset, some
activities such as Actl14 (visitor to the smart lab) and Act08 (eat a snack) are underrepre-
sented, with only 14 and 78 instances, respectively. On the other hand, activities like Act03
(prepare lunch) and Act12 (relax on the sofa) are overrepresented classes, with 984 and
859 instances, respectively.
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Data shifts: Data shift is a situation when testing and training inputs and outputs have
different distributions [61]. In an IoT setup, such situations occur when the sensor data
representing a class in the training is quite different from the sensor data in the testing.
Data shifts impact the performance of an ML algorithm as they learn from the data and
try to predict instances that have not been learned from the training data. This problem
becomes more serious when data shift situations exist together with an imbalanced class
distribution. This issue was reported by researchers of UCAmI cup challenge as a major
factor in the low performance [62]. For example, the input and output distribution of
Act09 (watch TV) and Actl2 (Relax on the sofa) are quite different in the training and
testing data. Furthermore, Act09 and Actl12 have imbalanced class distributions in the
training and testing sets.

Missing data: In an IoT system, sensor data might not be available due to a malfunc-
tion of the sensor or a network connection problem. In UCAmI data, researchers have
reported situations where data from the sensors are not available [25]. For example, Act10
(enter smart lab) has been performed by users in the afternoon segment of day 6, yet sen-
sor M01 (door contact sensor) has not been triggered.

Noise in data: In the IoT setup, it is common for sensors to send unusual and extreme
values, and this may occur due to sensor problems [12]. Upon investigation of the binary
sensors, it can be observed that the C14 bed pressure sensor keeps detecting pressure de-
spite the user having left the bed and started another activity. Similarly, in the evening,
the TV contact sensor TVO keeps sending an “open” message even when the user is not
watching TV. This may be because the user left the TV remote detached from the second
half of the sensor. As described earlier, BLE sensors rely on the RSSI value, where the
greater the value of RSSI, the smaller the distance between the user and the BLE beacon.
However, due to some factors in the environment, e.g., walls, it might send lower RSSI
values and might mistakenly indicate that the user has moved away from the BLE beacon.

Labeling errors: In supervised ML, it is typically required to obtain ground truth and
annotate data, as labeling errors (or class noise) occur when an instance is assigned to an
incorrect class [56]. In the UCAmI dataset, an example of labeling error is the absence of a
label for Actl4 (visit the smart lab). On day 3, in the evening segment, the door contact
sensor M01 was triggered [25], but Act14 was missed and was not labeled. Similarly, in
the day 6, morning section, the binary sensor M01 was triggered with “open” and then
“closed” status, and yet no labels are available for the sensor data. However, it is quite
possible that the user performed Act13, leave the smart lab, and Act10, enter the smart lab.

Heterogeneity: Usually, in an IoT setup, information from one source of sensor is not
enough to infer high-level context in intelligent applications such as HAR [7]. Therefore,
information from multimodal sensors is combined. As different types of sensors generate
data at different frequencies and in different formats, this may give rise to an uncertain
situation, as data from different sources are required to be transformed into a single for-
mat. For example, in the dataset, it can be observed that binary sensors generate data in
binary format, and proximity sensors generate data in numeric format. The process of
fusion also impacts the segmentation process and might impact the performance of the
ML algorithm if it is not handled with care, as shown in the subsequent section.

Dynamic sensor events: HAR is usually considered as a classification task; however,
some aspects of HAR are not like a simple classification problem. Firstly, HAR generates
sensor events in sequence, and as such, these events are not independent [63]. In fact, an
event is related to subsequent events in time and space. Secondly, the boundaries between
classes are not clear as these activities are similar in function and generate similar sensor
events. Additionally, sensor events generated to represent an activity could also represent
a transition between two activities. For example, as shown in Figure 4, SM4 (bedroom
motion sensor) and C14 (bed pressure sensor) generate very similar events for Act24
(wake up) and Actl8 (use the toilet). Although the bathroom motion sensor (SM3) and
tank sensor (C10) represent Act18, these sensors generate similar sensor events during the
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transition from Act24 to Act18. Furthermore, similar sensor events are generated by SM4,
CO08 (trash sensor) and MO01 (door sensor) across idle, Act24 and Act18 activities.

11.09:11

11:09:31
11:.09:31

Idle Act24 Actl8

11:09:32
11:09:41
11:09:43
11:09:53
11:09:56
11:13:18
11:13:40
11:14:58
11:14:58
11:14:59
11:15:.01
11:15:57
11:16:12
11:16:18
11:16:22
11:16:22
11:16:30
11:16:30
11:16:34

——> Time ——»

Figure 4. An example of sensor events and activities from the UCAmI dataset morning section of
day 1, red and green colors indicate the status of the sensors as OFF and ON respectively.

4.3. Data Processing

This section presents and explains techniques to prepare UCAmI data for ML algo-
rithms. It includes data pre-processing, data fusion, segmentation and feature selection.

4.3.1. Data Pre-Processing

For the purpose of this case study, data from two data sources, namely binary sensors
and proximity sensors, were combined. It was also observed that while processing binary
sensors, 28 of the 30 sensors were triggered in the dataset. As described earlier, binary
sensors and proximity sensors generate data in different formats. As binary sensors gen-
erate data in a categorical format, it was decided to represent the binary data as either 1
or 0. For example, the door sensor (M01) was represented as 1 with an “open” status and
0 with a “closed” status. A similar scheme was deployed for all binary sensors and sensor
values, with inactive states also represented as 0. On the contrary, BLE sensors generate
data in a numeric format in the range of —45 to —106, the data in this range were divided
into three groups of low, medium and high, since each group encompasses a range of
continuous values and it also helps in reducing the noise caused by environmental factors
[64]. As many ML algorithms work only with numeric data instead of categorical data,
low, medium and high groups were represented as 1, 2 and 3, respectively. Finally, 64
percent of the data set was selected as the training data and the rest was used as the testing
data.

4.3.2. Data Synchronization

After initial data preparation, the “Timestamp” of each reading from both binary and
proximity sensors was aligned and missing data (due to alignment process) were consid-
ered as unavailable and represented as 0. As a result of data synchronization, 28 binary
sensors and 15 BLE sensors were combined to represent 43 features. Furthermore, each
observation was assigned to an activity based on “DateBegin” and “DateEnd”, such that
each record represents an activity that was performed during that time. Additionally, a
“Time” feature is included to represent morning, afternoon and evening routines with
values of 1, 2 and 3, respectively, so that a total of 44 features were generated.
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4.3.3. Data Segmentation

The stream of data generated by binary and proximity sensors were segmented into
5-s fixed time windows. In time-based segmentation, the sequence of sensor events is di-
vided into consecutive equal size time intervals [65]. It is crucial to select the optimal seg-
mentation window as it affects the feature selection and the performance of ML algo-
rithms. As the time interval includes sensor events representing the current activity, se-
lecting too-small time intervals might include just a fraction of an activity. On the contrary,
large intervals might include sensor events representing several activities. Therefore, ex-
periments were performed with window sizes of 5, 10, 20 and 30 s, and it was found that
a 5-s window for binary and proximity data mostly produced good results in terms of
accuracy.

4.3.4.. Feature Selection

Feature selection is the process of selecting relevant features and removing redun-
dant features. The goal of the feature selection process is to improve the computational
efficiency and remove features that might be irrelevant to improve the generalization of
the model [41]. A Sequential Forward Selection (SFS) method [66] was applied to select
the optimum number of features. SFS is a greedy search algorithm that adds one feature
at a time, evaluating the performance of the classifier until the optimal number of features
is reached. SFS is a wrapper method of feature selection that uses a model to evaluate and
select the best subset of features. The dataset contains 44 features, and most of the values
are zeros, such datasets are known as sparse matrices. Generally, a sparse matrix makes
inefficient and excessive use of memory. Therefore, SES is used as it is computationally
more efficient because the training is performed on a relatively small subset of features.
As shown in Table 3, the number of features was reduced from 44 to 15 using the SFS
method, with an accuracy of approximately 86 percent. The RF model was used as the
classifier in this case.

Table 3. List of selected features using the SFS.

Garbage- Laundry Bas- Medicine Box Toothbrush Bathroom Tap
CAN (GO) ket (LB) (MB) (TB) (BT) SM1 SM3 SM4
TV-Controller Fridee Wardrobe = Water Bottle Entrance Door Bed Time
(TC) & Door (WD) (WB) (ED)

4.4.  Data Analytics for HAR

This section presents the results of the ensemble RF model. This includes the details
of the model calibration and its evaluation metrics. Furthermore, the results of the CRF
model are explained using feature importance, the classification reported and a confusion
matrix.

4.4.1. Calibrated Random Forest (CRF) for Classification

As proposed in the IoT framework, an ensemble RF algorithm is suggested for class
predication, which was implemented using the Python scikit-learn library [48]. Firstly,
hyperparameter tuning was carried out to optimize the performance of the RF model us-
ing the GridSearchCV() API. A number of experiments were conducted to tune the n_es-
timators, max_features, max_depth and criterion parameters. However, maximum accu-
racy (78%) was achieved using the default parameters. Therefore, the default parameters
were used with the number of trees set to 100 and the class weights set to “balanced”. In
the balanced class weight model, the RF assigns weights to classes inversely proportional
to the number of classes in the training data, as explained in the following equation:

n

wj = kn, (6)
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where w; is the weight of class j, n is the total number of instances, n; is the number of
instances in class j, and k is the total number of classes. This measure was taken to address
the high imbalanced class distribution in the UCAmI dataset as mentioned earlier. The
model has been deployed without any calibration and is referred to as the uncalibrated
RF model. The goal of the RF model is to analyze the UCAmI dataset and predict an ac-
tivity with a probability estimate that represents the true probability of that activity. For
this purpose, the scikit-learn API CalibratedClassifierCV was used to implement and com-
pare the state-of-the-art calibration methods. The CalibratedClassifierCV API can be im-
plemented in two ways.

1. A fitted (trained) model is passed, and in this case, the parameter cv is set to
“prefit”. In this mode, it is important to keep the data used for training and calibration
disjoint to avoid overfitting. Therefore, a separate validation set is required that can be
used for calibration only.

2. Anunfitted (untrained) model is passed and the parameter cv is set to the num-
ber of folds. In this mode one fold is used for training, while subsequent folds are used for
calibration.

We have used the API in the second mode as we want to use the maximum number
data for training and avoid generating an extra validation set. In this mode, first, an unfit-
ted instance of the RF model was generated with the parameters mentioned above in Sub-
Section 4.4.1. Subsequently, the RF model was passed as a base estimator to the API, and
the cv parameter was set to the default number of folds, i.e., 5. Furthermore, an isotonic
regression technique was designed in a one-vs.-rest (OVR) manner for 24 classes. Isotonic
regression makes no assumptions about the probabilities generated by the uncalibrated
RF and fits a monotonically increasing function for the predicted probabilities. Conse-
quently, the resultant calibrated RF (CRF) is used to predict activities associated with the
confidence score, which is useful and will be integrated further with domain knowledge
to make decisions. The evaluation and comparison of the CRF has been discussed in the
next section. The pseudocode of the CRF is given below.

Pseudocode for the proposed CRF model

Input: A training set S:= (x1,y1),...,(xn,yn) , A validation set V :=
(x1,y1),...,(xn,yn) , A fitted Model clf, number of cross validations cv =n, and
calibration method = isotonic

Output: train score, log loss, brier score
1 Procedure: Calculating Accuracy and Calibration scores

2 Function CalibratedClassifierCV(clf, cv = n,method = Isotonic)
3 For i in range(n)

4. Randomly partition S into:

5. Train_set(i)

6 Calibration_set(i+1)

7 Train clf on train_set(i)

8 Calibrate model on Calibration_set(i+1)

9. Return Model calibrated_clf

10. Function Calculate calibration(calibrated_clf)

11. Apply Calibrated_clf.scores to V
12. Apply Calibrated_clf.logloss to V
13. Apply Calibrated_clf.brier toV

14. Return train score, log loss, brier
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4.4.2. CRF Results Evaluation and Discussion

The uncertainty evaluation metrics (log loss and Brier score) were used to evaluate
the calibration of the CRF model in a multiclass classification setup. The accuracy of the
model was also considered for evaluation as it is not always true that better calibration
results in greater accuracy. The CRF was compared to other ML models including uncal-
ibrated RF, LR and RF calibrated with sigmoid scaling, and the results are presented in
Figure 5. The uncalibrated RF model (represented as U_RF) has achieved an accuracy of
78 percent with a log loss of 0.76 and a Brier score of 0.30. Logistic regression (LR) is con-
sidered a benchmark model as it inherently generates well-calibrated probabilities and
usually does not require calibration. Therefore, the scikit-learn version of the LR algorithm
was deployed to evaluate its performance against the CRF. However, the assessment sug-
gests that LR has performed inadequately with an accuracy of only 64 percent and a high
log loss and Brier score of 1.06 and 0.49, respectively. The comparison analysis of the Brier
score for the calibrated RF using a sigmoid function indicates no change, yet log loss was
reduced to 0.68. Finally, the best calibration and performance were achieved using the
CRF with an accuracy of 80 percent, log loss of 0.51 and Brier score of 0.27, which shows
a high decrease in log loss and a moderate decrease in Brier score. This is due to the fact
that Brier score takes the uncertainty of the data into account and as the level of noise in
the dataset is quite high.

1.2

1

0.8

0.6

0.4

0.2

0
U_RF LR

M Log loss Brier Score Accuracy

CRF RF_Sigmoid

Figure 5. Comparison of the calibration scores and accuracy of the uncalibrated RF, LR and CRF.

Both Brier Score and log loss are methods to evaluate and diagnose the difference
between predicted probabilities and true probabilities. The evaluation metrics results in-
dicate that the CRF generates more calibrated probabilities compared to other benchmark
ML models. Therefore, the CRF calibrated probabilities lead to better-quality predictions,
which can be used as confidence scores for decision making. Furthermore, the CRF confi-
dence scores offer some key benefits for IoT applications as summarized below

e The CRF model does not only indicate when it is accurate, but it also indicates
when it is likely to be incorrect in its prediction. For example, the CRF helps to
indicate if a critical activity (e.g., medication) has been predicted confidently or
not. This property of the CRF helps to improve decision making in real-world
applications.

e The CRF enables human operators to use their natural cognitive instruction and
interpret the predictions of the RF model. Therefore, the CRF establishes the trust
of a user compared to other black-box models, whose predictions are often diffi-
cult to interpret. For example, it is quite simple for a human operator to draw
different conclusions and subsequently make two different decisions when a
medication activity is predicted with a reliability of 0.2 and 0.8.

e The CRF predictions can also be integrated with domain knowledge; for exam-
ple, a probability distribution of 0.6 and 0.4 represents medication and dinner
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activities, respectively. This might represent a transition to/from one activity to
another.

e The CRF also provides a mechanism to set thresholds for critical activities; for
example, a medication activity will be considered reliable only if the predicted
probability exceeds 0.8.

5. Case Study II: Diabetes Disease Scenario for Demonstration of the IoT Decision
Framework

This section presents the details of a diabetes lifestyle disease scenario to demonstrate
and evaluate the benefits of the proposed CRF model. Apart from the HAR for identifying
diabetes disease, the focus is on evaluating and illustrating how to integrate predictions
generated by CRF with the domain knowledge and then provide recommended actions.

5.1. Diabetic as a Lifestyle Disease Use Case

HAR could be helpful for caregivers and medical experts in recognizing and moni-
toring irregular and unhealthy patient activities. Monitoring lifestyle activities can be use-
ful for identifying lifestyle diseases at early stages or can even enable doctors to manage
and prevent such diseases [41,67]. One such disease is diabetes, which is associated with
symptoms like frequent eating, increased hunger, fatigue, and increased urination. In such
chronic diseases, taking medicine on time is also very important for treatment, and an
inaccurate identification of medication activity may disable the medication reminder ser-
vice which could pose a serious threat to the health of the user. Furthermore, in such an
application, the goal of the activity recognition algorithm is to identify an activity, such as
eating, and if it deviates from a normal frequency (defined by the medical expert), then it
can be presented as a symptom of diabetes [67]. The accuracy of such an application en-
tirely depends on the correct identification of an activity. Therefore, it is required to un-
derstand both the accurate and inaccurate predictions with their associated confidence
scores; otherwise, a misbehaving ML model might lead the medical expert to make an
inappropriate decision. For example, if an eating activity is incorrectly identified as sitting,
the DSS will identify it as a symptom of diabetes and will mislead the medical experts into
making an inaccurate decision. In such a scenario it is not only crucial to rely only on
activities that have been identified with a high degree of confidence, but it is also im-
portant to recognize incorrect identification of activities due to data noise or classification
error.

In this scenario, we will firstly evaluate the proposed IoT decision framework to iden-
tify the symptoms of diabetes and the activities associated with those symptoms. Table 4
shows the symptoms and treatment (medication) of diabetes and their corresponding ac-
tivities selected from the UCAmI dataset as instances of the breakfast activity (as a type of
eating activity).

Table 4. Selected activities from the UCAmI dataset for a diabetes use case.

Symptoms and Treatment of Dia-

UCAmI Activities
betes
Medication Act01 (take medication)
Frequent eating Act08 (eat a snack)
Increased hunger Act05 (breakfast), Act06 (lunch) and Act07 (dinner)
Fatigue (frequent sleeping) Act23 (waking up) and Act24 (sleeping)

Increased urination (frequent toi-

leting) Act18 (use the toilet)
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For the purposes of illustration, a confidence score of 0.8 has been used as a threshold
to differentiate more reliable breakfast instances, any instance lower than this set thresh-
old will be analyzed in its context (location, transition and timing) as transition to/from
the breakfast activity. Any instance of breakfast activity is identified as noise or prediction
error if it is below the threshold and is out of context.

5.2. Rational Decision Making For Diabetes Use Case

This section demonstrates the benefits of the CRF for rational decision making for the
diabetes use case.

5.2.1. High-Risk Decisions Based on the Confidence Threshold

As the medical experts and caregivers use the current activity predicted by an ML
algorithm to monitor the status of a user for diabetes, this involves making certain critical
decisions (actions) about the health and safety of the user. These critical decisions involve
sending reminders for medication, disabling the reminder service, instructions to con-
tinue or stop medication or even invoking emergency services if there is a high risk to the
user. To make critical decisions in the diabetes use case, an activity predicted by ML with
the confidence level provided is far more acceptable or convincing instead of just a crisp
prediction under high uncertainties. This means that the medical expert can define thresh-
olds and make decisions based on these thresholds. For example, a threshold (a =
0.8) can be set, and any instance predicted to be medication activity with the confidence
score above this threshold can be considered as a medication activity; otherwise, further
analysis or investigation is required. Table 5 shows examples of predicated and actual
instances of the medication activity with the corresponding confidence scores. The “Ac-
tual” column represents the ground truth, and the “Predicted” column represents the ac-
tivity predicted by the CRF model. The rest of the columns represent an activity and its
corresponding confidence score. The last column indicates the confidence status of a pre-
dicted activity and whether it is above or below the threshold.

Table 5. Examples of instances predicted to be medication activity with their confidence scores.

Actual Predicted Act0l Act06 Act07 Actl? Actl9 Confidence Status

Act01 Act01 0.88 0 0.07 0 0.01 Above Threshold
Act01 Act01 2.51 0 0 0.1 0.38  Above Threshold
Act01 Act01 0.98 0 0 0 0 Above Threshold
Act01 Act01 0.99 0 0 0 0 Above Threshold
Act01 Act01 0.5 0 0.39 0.07 0 Above Threshold
Act01 Act01 0.61 0 0.38 0 0 Above Threshold
Act01 Act01 0.99 0 0 0 0 Above Threshold
Act01 Act06 0.3 0.69 0 0 0 Above Threshold

The recommended action in such a scenario is to automatically process all predictions
of CRF in the decision support system as reliable when the confidence score is above 80%
(e.g., the 1st, 3rd, 4th and 7th instances in Table 4). The medication activity or any other
activity that is predicted with less than 80% confidence can be further analyzed (e.g., the
second, fifth, sixth and nineth instances in Table 4). That is, the following action based on
the IF-THEN rule using Equation (2):

Action: if p(y(medication)|x) = a, then automate; else investigate.

The first step in the above analysis, however, is to determine the confidence score of

medication and other activities, which is achieved via the CRF.
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5.2.2. Cost-Sensitive Decision Making

Decision making in a cost-sensitive way is required when the cost of making a deci-
sion is not equal. For example, when y = k and K'is the model’s prediction, then L(k, k) is
the loss received if y = k. The expected cost of predicting K is calculated using Equation
(5). Table 6 shows the cost, where a negative cost indicates an instance with the confidence
score of a prediction below the threshold.

Table 6. Examples of instances predicted to be medication activity with their associated costs.

Actual Predicted Act01 Act06 Act07 Actl7? Actl9 Cost
Act01 Act01 0.88 0 0.07 0 0.01 0.8

Act01 Act01 2.51 0 0 0.1 0.38 -0.29
Act01 Act01 0.98 0 0 0 0 0.12
Act01 Act01 0.99 0 0 0 0 0.13
Act01 Act01 0.5 0 0.39 0.07 0 0.3

Act01 Act01 0.61 0 0.38 0 0 -0.19
Act01 Act01 0.99 0 0 0 0 0.13
Act01 Act06 0.3 0.69 0 0 0 -0.5

Similarly, if we want to abstain then L(k, abstain) is the loss if we abstain, while the
true answer is k (medication), if (medication (0.7), abstain). In such situations, the loss of
abstention is calculated, for example, we can calculate the loss of abstention when the med-
ication activity is predicted with a confidence score of 0.7. This mechanism provides a trade-
off between the different actions in situations when the cost of decisions is unequal.

5.2.3. Interpretability

A probability estimate of the class distribution provides a natural and easy way of
interpreting the results. This property of the proposed model enables medical experts and
caregivers to understand and predict the cause of a decision made by the model. Table 6
presents an example of instances and their interpretations. The human operator can ana-
lyze the situation and take the probability distribution of activities predicted for an in-
stance to form a judgment. For example, it is clear from the interpretability statement of
the last instance in Table 7 that the confidence score of the prediction of this medication
instance (0.3) is below the threshold. However, from the contextual information (e.g.,
Act06 0.69 and Act01 0.30 confidence) medical experts can infer that this is in fact the tran-
sition to/from a medication activity to an eating lunch activity.

Table 7. Examples of instances predicted to be medication activity with their interpretations.

Actual Predicted Act01 Act06 Act07 Actl7 Actl9 Interpretations
Probability of medication ac-
Act01 Act01 0.88 0 0.07 0 0.01  tivity is 0.88, while probabil-

ity of dinner activity is 0.07
Probability of medication ac-
tivity is 0.51, while probabil-

Act01 Act01 0.51 0 0 0 0.10 . . . ..
ity of washing dishes activity
is 0.10
Probability of medication ac-
Act01 Act01 0.50 0 0.39 0.07 0 tivity is 0.50, while probabil-

ity of dinner activity is 0.39

Probability of medication ac-
Act01 Act06 0.30 0.69 0 0 0 tivity is 0.30, while probabil-
ity of lunch activity is 0.69.
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5.2.4. Domain Knowledge Integration

Similarly, domain knowledge, such as the sequence of activities, locations and times,

can be integrated with the probability estimates of a predicted activity in order to improve
decision making. As shown in Table 8,

1.

Instance numbers 1, 4 and 5 indicate that medication (Act01) has been predicted above
the set threshold and has not been confused with another activity. Therefore, these
predicted activities are declared as reliable.

In Instance 2, the medication activity has been misclassified as Act19 (washing dishes);
however, investigating this particular instance indicates that a transition from Act19
to Act01 is actually taking place. Now, taking domain knowledge (transition) into
consideration, it can be inferred that the user is coming from Act19 towards Act01
with a confidence of 39 percent.

Instance 6 highlights that Act01 has been predicted below the set threshold with a
confidence score of 0.51 and Actl19 has a probability distribution of 0.38. Therefore,
this instance has been inferred as transitional.

Instance 7 indicates that Act05 (Breakfast) has a probability of 0.47 and with a 0.52
probability that it is Act02 (Preparing breakfast). Both activities have approximately
the same probability, because they take place in the same location (Kitchen) at a sim-
ilar time in a sequence such that “Preparing breakfast” is followed by the actual
“Breakfast” activity. Domain knowledge (location, similar sensor readings, sequence
and time) can be combined with the probability distribution of Instance 7, and it can
be inferred that these are transition activities from “Preparing breakfast” to “Break-
fast”.

Similarly, investigating Instance 9 shows that Act18 (Toileting) has been predicted
with a probability of 0.52 and Act24 (Waking up) with probability of 0.47. Using the
domain knowledge, it can be inferred that the user normally goes to the toilet after
waking up, so it is a transition between these two activities.

Similar transitions can be observed between Actl8 and Act 20 (as indicated by In-
stance 11); however, in Instance 3, it can be clearly seen that Act01 and Act18 have
been misclassified with high confidence of 0.98 and therefore, it can be inferred as
noise according to the set threshold.

Table 8. An example list of activities and their status based on the domain knowledge.

Pr
No Actual dicted

e~

Act01 Act02 Act05 Act06 Act07 Act08 Actl7 Actl8 Actl9 Act20 Act22 Act24 Status

1 Act0l Act0l 0.97 0 0 0 0.02 0 0 0 0 0 0 0 Reliable
2  Act0l Actl9 0.39 0 0 0 0 0 0 0 0.6 0 0 0 Transitional
3 Act0l Act06 0.01 0 0 0.98 0 0 0 0 0 0 0 0 Noise
4 Act0l Act0l 0.99 0 0 0 0 0 0 0 0 0 0 0 Reliable
5 Act0l Act01 0.88 0 0 0 0.07 0 0 0 0.01 0 0 0 Reliable
6 Act0l Act0l 052 0 0 0 0 0 0.1 0 0.38 0 0 0 Transitional
7 Act05 Act02 0 0.52 0.47 0 0 0 0 0 0 0 0 0 Transitional
8 Act05 Act05 0 0.08 0.83 0 0 0 0.08 0 0 0 0 0 Reliable
9 Act018 Actl8 0 0 0 0 0 0 0.52 0 0.47 Transitional
10 Act018 Actl?7 0 0 0 0 0 095 0.95 0 0 0.02 0 Noise
11 Act018 Act20 0 0 0 0 0.21 0.07 0 0.71 0 0 Transitional

It can be observed that the probability estimates are also helpful in indicating the

behavior of the model, in cases where it has overconfidently misclassified an activity (e.g.,
above a threshold of 0.6) or under-confidently identified a true prediction (e.g., below a
threshold of 0.6). If such situations are learned from continuous monitoring, then this be-
havior can be modeled in decision making. For example, in Table 7, it can be identified
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that Instance 3 has been misclassified as Act06 overconfidently, but in the case of Instance
6, the medication activity (Act01) has been identified underconfidently.

5.3. Identifying Reliable and Non-reliable Activities for Diabetes Use Case

Based on the results from setting thresholds, interpreting predicted activities and in-
tegrating domain knowledge, three categories of instances of an activity have been iden-
tified for the diabetes use case: Reliable_Instances, which include the actual reliable in-
stances of an activity; Transitional_Instances, which include those instances having a con-
fidence score less than «a yet are accurate and represent the transition to/from one activity
to another; and Nosiy_Instances, which include instances that represent noise due to vari-
ous sources of uncertainty in the dataset.

Figure 6 presents an analysis of the resultant distribution of instances based on the
three categories. It can be observed that the majority of the instances are identified as re-
liable except for the Eat a Snack activity. This is because the majority of the instances of
the Snack activity have been misclassified and should not be used in the decision-making
process. The yellow line highlights the total number of instances that belong to each ac-
tivity. The average distribution of all activities indicates that approximately 53.38 percent
are reliable, 42.59 percent are transitional and only 4.03 percent are noise.

‘@"&\ 06\\ «\Q}\ @‘\’D e& \’Q\ &
NS N & Q © @ &
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W & v
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Figure 6. Distribution of reliable, transitional and noisy instances for a diabetes use case.

These results indicate that the application of the CRF model successfully differenti-
ates reliable activities where an action can be taken with minimal risk. Additionally, only
4.03 percent of overall instances are forwarded to the human operator to investigate;
therefore, the human operator is not overloaded with information.

5.4. Recommended Actions Rules for the Diabetes Use Case

This section introduces the action rules and how these rules can be used to recom-
mend action considering the three types of categories identified as reliable, transitional
and noise. For the purposes of this study, the first author of the paper performed the role
of an expert to recommend action.

5.4.1. Notations for Action Rules

The confidence level, which has been indicated with o as the threshold and set as 0.8,
is subjective, and an alternative value can be chosen depending on the requirement of the
real application domain. f is the lower range of confidence, and any instance predicted
equal or less than that will not be taken into consideration for decision making directly.
Likewise, it is also a subjective score and has been set to 0.1 (10 percent) in the proposed
scenario.
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A(Mad) is the medication (Md) activity and represents the treatment activity (A4) for
the diabetes use case. Similarly, A(Snack) is Act08 and represents a frequent eating case
as a symptom of diabetes. A(eBreakfast, elunch, edinner) represents eating € activities as
breakfast, lunch and dinner. A(Go_bed) and A(Wake_up) represent Act24 (Go to bed) and
wake up activities, respectively. SA(A1, A2, A3 ... An) are sequential activities (SA), and
these are activities which either come before or after the actual activity. For example, med-
ication activity may occur before watching TV and after dinner. In this case, these two
activities are declared as SA activities. Max_n and Min_n are the maximum or minimum
number of instances that might be associated with a confidence score. For example, six
instances of medication activity mean (6 * 5s = 305s) as a 5-s window is used for seg-
mentation. Pb is the predicted probability of an instance of an activity, for example, med-
ication (Ph = 0.8) means that predicted activity is medication and Pb is its associated
probability.

5.4.2. List of Actions

Various actions have been developed depending on the predictions, their probabili-
ties and the contextual information and are shown in Table 9. These actions are recom-
mended to reduce the impact of incorrect predictions made by the CRF technique.

Table 9. List of recommended actions for diabetes use case and their descriptions.

Actions Description
Action(automate) Automate actions predicted equal or greater than the
high threshold (no human intervention).
Action(Disable or Enable Reminder) If required enable the reminder service for the user.
Action(Send, . pingerand Confirm_activity) If an activity is not predicted with required confi-

dence, then ask the user to confirm if an activity has
been taken place or not.

Action(abstain) This action involves “wait and see” and abstain from
an action.
Action(Human_intervention) This involves human intervention and the situation
will be assessed using human judgment.
Action(raise_Alarm) If an emergency situation arises, e.g., the user does

not take medication continuously for few days.

5.4.3. Generating Action Rules

An action rule defines the specific actions to take when certain conditions are met. A
basic action rule uses an IF-THEN statement to associate a condition (if) with an action
(then). The rules presented in this section integrate the confidence scores of the CRF with
domain knowledge that provides some conditions (e.g., the type of activity and its se-
quence order) in the antecedent part of the rule. The consequent part of the rule comprises
a recommended action. The rule states which action to perform when the conditions
(could be a combination of several conditions) are true. A list of some action rules is given
below for the purpose of illustration.

Rule 1:

IF the predicted instance as a probability distribution {(A(Md), al), (A(Snack), a2),
(A(eBreakfast, elunch, edinner), a3), (A(Go_bed), a4), (A(wake_up), a5), and if ai (i =
1,...,5)}is equal to or greater than o, THEN the corresponding activity is declared as re-
liable.

THEN Action(Automata) and Action(Disable Reminder)
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Description of the rule: the sum of « from all the treatment activities must be equal
to 1. If « is less than the threshold (0.8 in this case), the rule will not be executed and the
condition will be passed to the next rule.

Rule 2:

IF the predicted instance as a probability distribution {(A(Md), al), (A(Snack), a2),
(A(eBreakfast, elunch, edinner), a3), (A(Go_bed), a4), (A(wake_up), ab), and if ai (i =
1,..,5)}is less than a and greater than f and Pb of SA(ay, a,, as ...a,)) is greater than f,
THEN the corresponding activity is declared as (transition, Pb).

Action: Action(abstain)
Description of the rule: the rule identifieS the transition activities that are less than the
threshold (0.8) and greater than 8 (Pb less than 0.01 is considered insignificant ), such that
they cannot be declared as reliable. In this case, the rule will declare the activity as transi-
tional with its corresponding probability estimate. This rule is generated to separate tran-
sitional activities from reliable activities.
Rule2A: IF the predicted instance as a probability distribution: {(SA(4;, a; ), SA(4;, a3),
SA(43, a3) ... SA(4,, a,) is greater than {( A(Md), «l), ( A(Snack), a2),
(A(eBreakfast, elunch, edinner) , a3), (A(Go_bed) , a4), (A(wake_up) , a5), and if ai (i =
1,...,5)} THEN the corresponding activity is declared as true (Pb).

Action: Action(abstain)
Description of the rule: The same condition applies as that of Rule 2 except that only
transitional activities (SA) are displayed where the probability is greater than any treat-
ment activity and its associated probability.
Rule 3: IF the predicted instance as a probability distribution {(SA(A;, «@;), SA(4,, a3),
SA(A3, a3)...SA(4,, a,)is followed by (Min_5) and probability distribution {(A(Md),
al), (A(Snack), a2), (A(eBreakfast, elunch, edinner) , a3), (A(Go_bed) , a4), (A(wake_up)
,ad), and if ai (i = 1,...,5))}is greater than a, THEN corresponding activity is declared
as reliable.

Action: Action(automat) and Action(Disable reminder)

Description of the rule: This rule is developed to ensure that individual reliable instances
(above o) will only be considered reliable if followed by at least six (Min_5 = 3- seconds)
instances. This rule ensures the individual reliable instances (that might occur due to noise
in the data) are filtered out.
Rule 4. IF the predicted instance as a probability distribution: {(SA(4;, ay),
SA(A, a, ), SA(As, az)....SA(4,, a)isnot followed by (Min_5) and probability
distribution {( A(Md), al), (A(Snack), a2), (A(eBreakfast,elunch,edinner) , «3),
(A(Go_bed) , a4), (A(wake_up) , a5), and if ai (i = 1,...,5))} is greater than o, THEN the
corresponding activity is declared as unreliable.

Action: Action(Send,emingerand Confirm_activity)
Description of the rule: the description is similar to that of rule 3, except that it identifies
individual reliable instances if they are not followed by six reliable instances, since they
will be declared as noise.
Rule 5. IF the predicted instance as a probability distribution {(A(Md), al), (A(Snack), a2),
(A(eBreakfast, elunch, edinner), a3), (A(Go_bed), a4), (A(wake_up), ab), and if ai (i =
1,..,5))} is not equal to Rule 1, Rule 2, Rule 3 and Rule 4, THEN the corresponding ac-
tivity is declared as noise.
Action: Action(Human_intervention)

Description of the rule: Any instances that do not fulfill conditions described in rules 1,
2, 3 and 4 will be executed using rule 5, and the assumption is that such instances are
noisy.

The above action rules provide a mechanism to execute the actions either automati-
cally or via a human operator as a recommendation.
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6. IoT-DM Framework Results Analysis

To compare and evaluate the overall results of the [oT-DM framework, a traditional
activity-monitoring framework for diabetes has been considered; this is presented in [67].
In this study, for the diabetes use case, it was observed that the model has inaccurately
identified the inhabitant as having symptoms of diabetes for 3 days with an accuracy of
83.4%. For example, the proposed model misclassified the “eating” activity as “idle”, and
as a result of this misclassification, 17.6 percent of depression instances were incorrectly
identified for the user. This traditional framework lacks the ability to identify the reason
behind misclassified instances of the diabetic activity. Although the framework enables
automation, there is no method to identify only reliable instances of an activity. Further-
more, human operators deal with crisp output and therefore are not able to understand a
model’s behavior, which is essential for taking critical actions. The lack of aforementioned
capabilities in the traditional framework will mislead the medical expert into taking inap-
propriate actions as it does not provide any mechanism to identify risk in the decision-
making process. On the other hand, the proposed IoT risk-based framework provides sev-
eral metrics to avoid taking inappropriate actions for a similar diabetes use case, as shown
in Table 10. The framework enables decision makers to deploy action in a cost-sensitive
manner and interpret the model predictions to understand why the model is correct or
incorrect about its predictions. Furthermore, it also provides a method for humans in the
loop to rely on reliable instances of activity for taking an action. The necessary details of
these matrices have been discussed and demonstrated in subsections of Section 5 for a
diabetes use case.

Table 10. Comparison of the proposed risk-based IoT framework with the traditional framework.

Ability to make
Accurac Decision Mak- Interpretabil- Misclassifica- Confidence of Humanin- Automa-
y ing Cost Sensi- ity tion reason output vestigation tion
tive
P d
ropose Yes Yes Yes Yes Yes Yes Yes
Framework
Traditional
racitiona Yes No No No No No Yes
Framework

7. Conclusions and Future Work

Our detailed review of related research has shown that IoT systems can be used for
reliable decision making despite the existence of several sources of uncertainty. The out-
put of the literature review has been summarized and presented in the form of risk-based
framework for decision making in IoT systems. The particular focus of this paper is on
managing the underlying sources of uncertainty in IoT systems during the data analytics
process and then integrating domain knowledge with ML outputs. We can then use action
rules for recommendation and decision support. It was also observed that the well-cali-
brated CRF method not only supports the quantification of uncertainty in the predictions
of an ML model but also provides a natural way to integrate it with domain knowledge.
As a result, the integration of domain knowledge, such as the context of an activity, ena-
bles us to identify the real activity performed using a thresholding method. Additionally,
if an activity has been predicted below the threshold, it can be explained in human-un-
derstandable terms. Subsequently, the decision maker can use the confidence scores to
compute the cost associated with a decision. It was also found that the outputs of the ML
algorithm can be encoded with rich contextual information to change an uncertainty into
an opportunity. The proposed IF-THEN action rules were found to be useful for adding
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semantics to the predictions, which is usually required in intelligent ubiquitous applica-
tions, such as HAR. The results from the framework indicate that raw sensor data was
converted into meaningful actions despite several sources of uncertainty. It was demon-
strated that in the diabetes scenario the framework identified 53.38 percent as reliable in-
stances, 42.59 percent as transitional and 4.03 percent as noisy instances. It was also shown
that actions are not taken in isolation but rather are tightly coupled with ML outputs and
domain information in the consequent part of the rules. To reduce the impact of inappro-
priate actions, the framework has included human involvement in cases of high-risk de-
cisions. The comparison of the proposed framework to an existing approach highlighted
the key metrics that make decision-making more rational and transparent.

The work in this paper is an initial attempt to survey the current literature and im-
prove decision-making in IoT setups and its scope is limited in a few aspects. Firstly, the
approach integrates rich domain knowledge in a simplified way and lacks the use of for-
mal knowledge representation methods, such as the development of an ontology. Sec-
ondly, currently, the rules are generated in a static way which might not be suitable when
high levels of dynamicity and scalability are required. Additionally, the generated rules
are not capable of capturing fuzziness in the decision making. Therefore, in future work,
we aim to apply fuzzy rules to address this shortcoming. We also aim to evaluate the
framework within different domains and with more heterogeneous datasets to further
establish the viability of the framework for IoT systems.
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