2,958 research outputs found

    Real-time motion planning methods for autonomous on-road driving: state-of-the-art and future research directions

    Get PDF
    Currently autonomous or self-driving vehicles are at the heart of academia and industry research because of its multi-faceted advantages that includes improved safety, reduced congestion, lower emissions and greater mobility. Software is the key driving factor underpinning autonomy within which planning algorithms that are responsible for mission-critical decision making hold a significant position. While transporting passengers or goods from a given origin to a given destination, motion planning methods incorporate searching for a path to follow, avoiding obstacles and generating the best trajectory that ensures safety, comfort and efficiency. A range of different planning approaches have been proposed in the literature. The purpose of this paper is to review existing approaches and then compare and contrast different methods employed for the motion planning of autonomous on-road driving that consists of (1) finding a path, (2) searching for the safest manoeuvre and (3) determining the most feasible trajectory. Methods developed by researchers in each of these three levels exhibit varying levels of complexity and performance accuracy. This paper presents a critical evaluation of each of these methods, in terms of their advantages/disadvantages, inherent limitations, feasibility, optimality, handling of obstacles and testing operational environments. Based on a critical review of existing methods, research challenges to address current limitations are identified and future research directions are suggested so as to enhance the performance of planning algorithms at all three levels. Some promising areas of future focus have been identified as the use of vehicular communications (V2V and V2I) and the incorporation of transport engineering aspects in order to improve the look-ahead horizon of current sensing technologies that are essential for planning with the aim of reducing the total cost of driverless vehicles. This critical review on planning techniques presented in this paper, along with the associated discussions on their constraints and limitations, seek to assist researchers in accelerating development in the emerging field of autonomous vehicle research

    Trajectory planning based on adaptive model predictive control: Study of the performance of an autonomous vehicle in critical highway scenarios

    Get PDF
    Increasing automation in automotive industry is an important contribution to overcome many of the major societal challenges. However, testing and validating a highly autonomous vehicle is one of the biggest obstacles to the deployment of such vehicles, since they rely on data-driven and real-time sensors, actuators, complex algorithms, machine learning systems, and powerful processors to execute software, and they must be proven to be reliable and safe. For this reason, the verification, validation and testing (VVT) of autonomous vehicles is gaining interest and attention among the scientific community and there has been a number of significant efforts in this field. VVT helps developers and testers to determine any hidden faults, increasing systems confidence in safety, security, functional analysis, and in the ability to integrate autonomous prototypes into existing road networks. Other stakeholders like higher-management, public authorities and the public are also crucial to complete the VTT process. As autonomous vehicles require hundreds of millions of kilometers of testing driven on public roads before vehicle certification, simulations are playing a key role as they allow the simulation tools to virtually test millions of real-life scenarios, increasing safety and reducing costs, time and the need for physical road tests. In this study, a literature review is conducted to classify approaches for the VVT and an existing simulation tool is used to implement an autonomous driving system. The system will be characterized from the point of view of its performance in some critical highway scenarios.O aumento da automação na indústria automotiva é uma importante contribuição para superar muitos dos principais desafios da sociedade. No entanto, testar e validar um veículo altamente autónomo é um dos maiores obstáculos para a implantação de tais veículos, uma vez que eles contam com sensores, atuadores, algoritmos complexos, sistemas de aprendizagem de máquina e processadores potentes para executar softwares em tempo real, e devem ser comprovadamente confiáveis e seguros. Por esta razão, a verificação, validação e teste (VVT) de veículos autónomos está a ganhar interesse e atenção entre a comunidade científica e tem havido uma série de esforços significativos neste campo. A VVT ajuda os desenvolvedores e testadores a determinar quaisquer falhas ocultas, aumentando a confiança dos sistemas na segurança, proteção, análise funcional e na capacidade de integrar protótipos autónomos em redes rodoviárias existentes. Outras partes interessadas, como a alta administração, autoridades públicas e o público também são cruciais para concluir o processo de VTT. Como os veículos autónomos exigem centenas de milhões de quilómetros de testes conduzidos em vias públicas antes da certificação do veículo, as simulações estão a desempenhar cada vez mais um papel fundamental, pois permitem que as ferramentas de simulação testem virtualmente milhões de cenários da vida real, aumentando a segurança e reduzindo custos, tempo e necessidade de testes físicos em estrada. Neste estudo, é realizada uma revisão da literatura para classificar abordagens para a VVT e uma ferramenta de simulação existente é usada para implementar um sistema de direção autónoma. O sistema é caracterizado do ponto de vista do seu desempenho em alguns cenários críticos de autoestrad

    Cloud Robotics and Autonomous Vehicles

    Get PDF
    Recently, a good amount of research has been focused on the development of the autonomous vehicles. Autonomous vehicles possess great potential in numerous challenging applications, for example, autonomous armoured fighting vehicles, automated highway systems, etc. To enable the usage of autonomous vehicles in such challenging applications, it is important to ensure the safety, efficiency, reliability and robustness of the system. Most of the existing implementations of the autonomous vehicles operate as standalone systems limited to onboard capabilities (computations, memory, data, etc.), which limit their potential and performance in real-world applications. The advent of the Internet and emerging advances in the cloud infrastructure suggests new methodologies where vehicles are not limited to onboard capabilities. Processing is also performed remotely on cloud to support different operations and to increase the proficiency of decision-making. This chapter surveys the research to date in the evolution of autonomous vehicles, cloud and cloud-enabled autonomous vehicles, with the limitations of existing systems, research challenges and possible future directions. The chapter can help new researchers in the field to understand and evaluate different approaches for the design of the autonomous vehicular systems

    Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions

    Get PDF
    Open access articleCurrently autonomous or self-driving vehicles are at the heart of academia and industry research because of its multi-faceted advantages that includes improved safety, reduced congestion,lower emissions and greater mobility. Software is the key driving factor underpinning autonomy within which planning algorithms that are responsible for mission-critical decision making hold a significant position. While transporting passengers or goods from a given origin to a given destination, motion planning methods incorporate searching for a path to follow, avoiding obstacles and generating the best trajectory that ensures safety, comfort and efficiency. A range of different planning approaches have been proposed in the literature. The purpose of this paper is to review existing approaches and then compare and contrast different methods employed for the motion planning of autonomous on-road driving that consists of (1) finding a path, (2) searching for the safest manoeuvre and (3) determining the most feasible trajectory. Methods developed by researchers in each of these three levels exhibit varying levels of complexity and performance accuracy. This paper presents a critical evaluation of each of these methods, in terms of their advantages/disadvantages, inherent limitations, feasibility, optimality, handling of obstacles and testing operational environments. Based on a critical review of existing methods, research challenges to address current limitations are identified and future research directions are suggested so as to enhance the performance of planning algorithms at all three levels. Some promising areas of future focus have been identified as the use of vehicular communications (V2V and V2I) and the incorporation of transport engineering aspects in order to improve the look-ahead horizon of current sensing technologies that are essential for planning with the aim of reducing the total cost of driverless vehicles. This critical review on planning techniques presented in this paper, along with the associated discussions on their constraints and limitations, seek to assist researchers in accelerating development in the emerging field of autonomous vehicle research

    Interaction-Aware Motion Planning for Automated Vehicles

    Get PDF
    Die Bewegungsplanung für automatisierte Fahrzeuge (AVs) in gemischtem Verkehr ist eine herausfordernde Aufgabe. Hierbei bezeichnet gemischter Verkehr, Verkehr bestehend aus von Menschen gefahrenen Fahrzeugen sowie automatisierten Fahrzeugen. Um die Komplexität der Aufgabe zu reduzieren, verwenden state-of-the-art Planungsansätze oft die vereinfachende Annahme, dass das zukünftige Verhalten umliegender Fahrzeuge unabhängig vom Plan des AVs vorhergesagt werden kann. Während die Trennung von Prädiktion und Planung für viele Verkehrssituationen eine hilfreiche Vereinfachung darstellt, werden hierbei Interaktionen zwischen den Verkehrsteilnehmern ignoriert, was besonders in interaktiven Verkehrssituationen zu suboptimalem, übermäßig konservativem Fahrverhalten führen kann. In dieser Arbeit werden zwei interaktionsbewusste Bewegungsplanungsalgorithmen vorgeschlagen, die in der Lage sind übermäßig konservatives Fahrverhalten zu reduzieren. Der Kernaspekt dieser Algorithmen ist, dass Prädiktion und Planung gleichzeitig gelöst werden. Mit diesen Algorithmen können anspruchsvolle Fahrmanöver, wie z. B. das Reißverschlussverfahren in dichtem Verkehr, durchgeführt werden, die mit state-of-the-art Planungsansätzen nicht möglich sind. Der erste Algorithmus basiert auf Methoden der Multi-Agenten-Planung. Interaktionen zwischen Verkehrsteilnehmern werden durch Optimierung gekoppelter Trajektorien mittels einer gemeinsamen Kostenfunktion approximiert. Das Kernstück des Algorithmus ist eine neuartige Multi-Agenten-Trajektorienplanungsformulierung, die auf gemischt-ganzzahliger quadratischer Programmierung (MIQP) basiert. Die Formulierung garantiert global optimale Lösungen und ist somit in der Lage das kombinatorische Problem zu lösen, welches kontinuierliche Methoden auf lokal optimale Lösungen beschränkt. Desweiteren kann durch den vorgestellten Ansatz ein manöverneutrales Verhalten erzeugt werden, das Manöverentscheidungen in ungewissen Situationen aufschieben kann. Der zweite Ansatz formuliert Interaktionen zwischen einem menschlichen Fahrer und einem AV als ein Stackelberg-Spiel. Im Gegensatz zu bestehenden Arbeiten kann der Algorithmus allgemeine nichtlineare Zustands- und Eingabebeschränkungen berücksichtigen. Desweiteren führen wir Mechanismen zur Integration von Kooperation und Rücksichtnahme in die Planung ein. Damit wird übermäßig aggressives Fahrverhalten verhindert, was in der Literatur als ein Problem interaktionsbewusster Planungsmethoden identifiziert wurde. Die Wirksamkeit, Robustheit und Echtzeitfähigkeit des Algorithmus wird durch numerische Experimente gezeigt

    A Tightly Coupled Bi-Level Coordination Framework for CAVs at Road Intersections

    Full text link
    Since the traffic administration at road intersections determines the capacity bottleneck of modern transportation systems, intelligent cooperative coordination for connected autonomous vehicles (CAVs) has shown to be an effective solution. In this paper, we try to formulate a Bi-Level CAV intersection coordination framework, where coordinators from High and Low levels are tightly coupled. In the High-Level coordinator where vehicles from multiple roads are involved, we take various metrics including throughput, safety, fairness and comfort into consideration. Motivated by the time consuming space-time resource allocation framework in [1], we try to give a low complexity solution by transforming the complicated original problem into a sequential linear programming one. Based on the "feasible tunnels" (FT) generated from the High-Level coordinator, we then propose a rapid gradient-based trajectory optimization strategy in the Low-Level planner, to effectively avoid collisions beyond High-level considerations, such as the pedestrian or bicycles. Simulation results and laboratory experiments show that our proposed method outperforms existing strategies. Moreover, the most impressive advantage is that the proposed strategy can plan vehicle trajectory in milliseconds, which is promising in realworld deployments. A detailed description include the coordination framework and experiment demo could be found at the supplement materials, or online at https://youtu.be/MuhjhKfNIOg

    Cooperative Trajectory Planning for Automated Vehicles

    Get PDF
    corecore