18 research outputs found

    RANSAC-Based Planar Point Cloud Segmentation Enhanced by Normal Vector and Maximum Principal Curvature Clustering

    Get PDF
    Planar feature segmentation is an essential task for 3D point cloud processing, finding many applications in various fields such as robotics and computer vision. The Random Sample Consensus (RANSAC) is one of the most common algorithms for the segmentation, but its performance, as given by the original form, is usually limited due to the use of a single threshold and interruption of similar planar features presented close to each other. To address these issues, we present a novel point cloud processing workflow which aims at developing an initial segmentation stage before the basic RANSAC is performed. Initially, normal vectors and maximum principal curvatures for each point of a given point cloud are analyzed and integrated. Subsequently, a subset of normal vectors and curvature is utilized to cluster planes with similar geometry based on the region growing algorithm, serving as a coarse but fast segmentation process. The segmentation is therefore refined with the RANSAC algorithm which can be now performed with higher accuracy and speed due to the reduced interference. After the RANSAC process is applied, resultant planar point clouds are built from the sparse ones via a point aggregation process based on geometric constraints. Four datasets (three real and one simulated) were used to verify the method. Compared to the classic segmentation method, our method achieves higher accuracy, with an RMSE from fitting equal to 0.0521 m, along with a higher recall of 93.31% and a higher F1-score of 95.38%

    Automated Extraction of Road Information from Mobile Laser Scanning Data

    Get PDF
    Effective planning and management of transportation infrastructure requires adequate geospatial data. Existing geospatial data acquisition techniques based on conventional route surveys are very time consuming, labor intensive, and costly. Mobile laser scanning (MLS) technology enables a rapid collection of enormous volumes of highly dense, irregularly distributed, accurate geo-referenced point cloud data in the format of three-dimensional (3D) point clouds. Today, more and more commercial MLS systems are available for transportation applications. However, many transportation engineers have neither interest in the 3D point cloud data nor know how to transform such data into their computer-aided model (CAD) formatted geometric road information. Therefore, automated methods and software tools for rapid and accurate extraction of 2D/3D road information from the MLS data are urgently needed. This doctoral dissertation deals with the development and implementation aspects of a novel strategy for the automated extraction of road information from the MLS data. The main features of this strategy include: (1) the extraction of road surfaces from large volumes of MLS point clouds, (2) the generation of 2D geo-referenced feature (GRF) images from the road-surface data, (3) the exploration of point density and intensity of MLS data for road-marking extraction, and (4) the extension of tensor voting (TV) for curvilinear pavement crack extraction. In accordance with this strategy, a RoadModeler prototype with three computerized algorithms was developed. They are: (1) road-surface extraction, (2) road-marking extraction, and (3) pavement-crack extraction. Four main contributions of this development can be summarized as follows. Firstly, a curb-based approach to road surface extraction with assistance of the vehicle’s trajectory is proposed and implemented. The vehicle’s trajectory and the function of curbs that separate road surfaces from sidewalks are used to efficiently separate road-surface points from large volume of MLS data. The accuracy of extracted road surfaces is validated with manually selected reference points. Secondly, the extracted road enables accurate detection of road markings and cracks for transportation-related applications in road traffic safety. To further improve computational efficiency, the extracted 3D road data are converted into 2D image data, termed as a GRF image. The GRF image of the extracted road enables an automated road-marking extraction algorithm and an automated crack detection algorithm, respectively. Thirdly, the automated road-marking extraction algorithm applies a point-density-dependent, multi-thresholding segmentation to the GRF image to overcome unevenly distributed intensity caused by the scanning range, the incidence angle, and the surface characteristics of an illuminated object. The morphological operation is then implemented to deal with the presence of noise and incompleteness of the extracted road markings. Fourthly, the automated crack extraction algorithm applies an iterative tensor voting (ITV) algorithm to the GRF image for crack enhancement. The tensor voting, a perceptual organization method that is capable of extracting curvilinear structures from the noisy and corrupted background, is explored and extended into the field of crack detection. The successful development of three algorithms suggests that the RoadModeler strategy offers a solution to the automated extraction of road information from the MLS data. Recommendations are given for future research and development to be conducted to ensure that this progress goes beyond the prototype stage and towards everyday use

    LIO-PPF: Fast LiDAR-Inertial Odometry via Incremental Plane Pre-Fitting and Skeleton Tracking

    Full text link
    As a crucial infrastructure of intelligent mobile robots, LiDAR-Inertial odometry (LIO) provides the basic capability of state estimation by tracking LiDAR scans. The high-accuracy tracking generally involves the kNN search, which is used with minimizing the point-to-plane distance. The cost for this, however, is maintaining a large local map and performing kNN plane fit for each point. In this work, we reduce both time and space complexity of LIO by saving these unnecessary costs. Technically, we design a plane pre-fitting (PPF) pipeline to track the basic skeleton of the 3D scene. In PPF, planes are not fitted individually for each scan, let alone for each point, but are updated incrementally as the scene 'flows'. Unlike kNN, the PPF is more robust to noisy and non-strict planes with our iterative Principal Component Analyse (iPCA) refinement. Moreover, a simple yet effective sandwich layer is introduced to eliminate false point-to-plane matches. Our method was extensively tested on a total number of 22 sequences across 5 open datasets, and evaluated in 3 existing state-of-the-art LIO systems. By contrast, LIO-PPF can consume only 36% of the original local map size to achieve up to 4x faster residual computing and 1.92x overall FPS, while maintaining the same level of accuracy. We fully open source our implementation at https://github.com/xingyuuchen/LIO-PPF.Comment: IROS 202

    Road Surface Defect Detection -- From Image-based to Non-image-based: A Survey

    Full text link
    Ensuring traffic safety is crucial, which necessitates the detection and prevention of road surface defects. As a result, there has been a growing interest in the literature on the subject, leading to the development of various road surface defect detection methods. The methods for detecting road defects can be categorised in various ways depending on the input data types or training methodologies. The predominant approach involves image-based methods, which analyse pixel intensities and surface textures to identify defects. Despite their popularity, image-based methods share the distinct limitation of vulnerability to weather and lighting changes. To address this issue, researchers have explored the use of additional sensors, such as laser scanners or LiDARs, providing explicit depth information to enable the detection of defects in terms of scale and volume. However, the exploration of data beyond images has not been sufficiently investigated. In this survey paper, we provide a comprehensive review of road surface defect detection studies, categorising them based on input data types and methodologies used. Additionally, we review recently proposed non-image-based methods and discuss several challenges and open problems associated with these techniques.Comment: Survey paper

    Road Surface Defect Detection—From Image-Based to Non-Image-Based: A Survey

    Get PDF
    Ensuring traffic safety is crucial, which necessitates the detection and prevention of road surface defects. As a result, there has been a growing interest in the literature on the subject, leading to the development of various road surface defect detection methods. The methods for detecting road defects can be categorised in various ways depending on the input data types or training methodologies. The predominant approach involves image-based methods, which analyse pixel intensities and surface textures to identify defects. Despite popularity, image-based methods share the distinct limitation of vulnerability to weather and lighting changes. To address this issue, researchers have explored the use of additional sensors, such as laser scanners or LiDARs, providing explicit depth information to enable the detection of defects in terms of scale and volume. However, the exploration of data beyond images has not been sufficiently investigated. In this survey paper, we provide a comprehensive review of road surface defect detection studies, categorising them based on input data types and methodologies used. Additionally, we review recently proposed non-image-based methods and discuss several challenges and open problems associated with these techniques

    A review on deep learning techniques for 3D sensed data classification

    Get PDF
    Over the past decade deep learning has driven progress in 2D image understanding. Despite these advancements, techniques for automatic 3D sensed data understanding, such as point clouds, is comparatively immature. However, with a range of important applications from indoor robotics navigation to national scale remote sensing there is a high demand for algorithms that can learn to automatically understand and classify 3D sensed data. In this paper we review the current state-of-the-art deep learning architectures for processing unstructured Euclidean data. We begin by addressing the background concepts and traditional methodologies. We review the current main approaches including; RGB-D, multi-view, volumetric and fully end-to-end architecture designs. Datasets for each category are documented and explained. Finally, we give a detailed discussion about the future of deep learning for 3D sensed data, using literature to justify the areas where future research would be most valuable.Comment: 25 pages, 9 figures. Review pape

    Road Information Extraction from Mobile LiDAR Point Clouds using Deep Neural Networks

    Get PDF
    Urban roads, as one of the essential transportation infrastructures, provide considerable motivations for rapid urban sprawl and bring notable economic and social benefits. Accurate and efficient extraction of road information plays a significant role in the development of autonomous vehicles (AVs) and high-definition (HD) maps. Mobile laser scanning (MLS) systems have been widely used for many transportation-related studies and applications in road inventory, including road object detection, pavement inspection, road marking segmentation and classification, and road boundary extraction, benefiting from their large-scale data coverage, high surveying flexibility, high measurement accuracy, and reduced weather sensitivity. Road information from MLS point clouds is significant for road infrastructure planning and maintenance, and have an important impact on transportation-related policymaking, driving behaviour regulation, and traffic efficiency enhancement. Compared to the existing threshold-based and rule-based road information extraction methods, deep learning methods have demonstrated superior performance in 3D road object segmentation and classification tasks. However, three main challenges remain that impede deep learning methods for precisely and robustly extracting road information from MLS point clouds. (1) Point clouds obtained from MLS systems are always in large-volume and irregular formats, which has presented significant challenges for managing and processing such massive unstructured points. (2) Variations in point density and intensity are inevitable because of the profiling scanning mechanism of MLS systems. (3) Due to occlusions and the limited scanning range of onboard sensors, some road objects are incomplete, which considerably degrades the performance of threshold-based methods to extract road information. To deal with these challenges, this doctoral thesis proposes several deep neural networks that encode inherent point cloud features and extract road information. These novel deep learning models have been tested by several datasets to deliver robust and accurate road information extraction results compared to state-of-the-art deep learning methods in complex urban environments. First, an end-to-end feature extraction framework for 3D point cloud segmentation is proposed using dynamic point-wise convolutional operations at multiple scales. This framework is less sensitive to data distribution and computational power. Second, a capsule-based deep learning framework to extract and classify road markings is developed to update road information and support HD maps. It demonstrates the practical application of combining capsule networks with hierarchical feature encodings of georeferenced feature images. Third, a novel deep learning framework for road boundary completion is developed using MLS point clouds and satellite imagery, based on the U-shaped network and the conditional deep convolutional generative adversarial network (c-DCGAN). Empirical evidence obtained from experiments compared with state-of-the-art methods demonstrates the superior performance of the proposed models in road object semantic segmentation, road marking extraction and classification, and road boundary completion tasks

    Range Flow: New Algorithm Design and Quantitative and Qualitative Analysis

    Get PDF
    Optical flow computation is one of the oldest and most active research fields in computer vision and image processing. It encompasses the following areas: motion estimation, video compression, object detection and tracking, image dominant plane extraction, movement detection, robot navigation, visual odometry, traffic analysis, and vehicle tracking. Optical flow methods calculate the motion between two image frames. In 2D images, optical flow specifies how far each pixel moves between adjacent frames; in 3D images, it specifies how much each voxel moves between adjacent volumes in the dataset. Since 1980, several algorithms have successfully estimated 2D and 3D optical flow. Notably, scene flow and range flow are special cases of 3D optical flow. Scene flow is the 3D optical flow of pixels on a moving surface. Scene flow uses disparity and disparity gradient maps computed from a stereo sequence and the 2D optical flow of the left and right images in the stereo sequence to compute 3D motion. Range flow is similar to scene flow, but is calculated from depth map sequences or range datasets. There is clear overlap between the algorithms that compute scene flow and range flow. Therefore, we propose new insights that can help range flow algorithms to advance to the next stage. We propose new insights into range flow algorithms by enhancing them to allow large displacements using a hierarchical framework with warping technique. We applied robust statistical formulations to generate robust and dense flow to overcome motion discontinuities and reduce the outliers. Overall, this thesis focuses on the estimation of 2D optical flow and 3D range flow using several algorithms. In addition, we studied depth data gained from different sensors and cameras. These cameras provided RGB-D data that allowed us to compute 3D range flow in two ways: using depth data only, or by combining intensity with depth data to improve the flow. We implemented well-known local approaches LK [1] and global HS [2]algorithms and recast them in the proposed framework to estimate 2D and 3D range flow [3]. Furthermore, combining local and global algorithm (CLG) proposed by Bruhn et al. [4,5] as well as Brox et al. [6] method are implemented to estimate 2D optical flow and 3D range flow. We tested and evaluated these implemented approaches both qualitatively and quantitatively in two different motions (translation and divergence) using several real datasets acquired using Kinect V2, ZED camera, and iPhone X (front and rear) Cameras. We found that CLG and Brox methods gave the best results in our datasets using Kinect V2, ZED and front camera in iPhone X sequences

    Image-based Semantic Segmentation of Large-scale Terrestrial Laser Scanning Point Clouds

    Get PDF
    Large-scale point cloud data acquired using terrestrial laser scanning (TLS) often need to be semantically segmented to support many applications. To this end, various three-dimensional (3D) methods and two-dimensional (i.e., image-based) methods have been developed. For large-scale point cloud data, 3D methods often require extensive computational effort. In contrast, image-based methods are favourable from the perspective of computational efficiency. However, the semantic segmentation accuracy achieved by existing image-based methods is significantly lower than that achieved by 3D methods. On this basis, the aim of this PhD thesis is to improve the accuracy of image-based semantic segmentation methods for TLS point cloud data while maintaining its relatively high efficiency. In this thesis, the optimal combination of commonly used features was first found, and an efficient manual feature selection method was proposed. It was found that existing image-based methods are highly dependent on colour information and do not provide an effective means of representing and utilising geometric features of scenes in images. To address this problem, an image enhancement method was developed to reveal the local geometric features in images derived by the projection of point cloud coordinates. Subsequently, to better utilise neural network models that are pre-trained on three-channel (i.e., RGB) image datasets, a feature extraction method (LC-Net) and a feature selection method (OSTA) were developed to reduce the higher dimension of image-based features to three. Finally, a stacking-based semantic segmentation (SBSS) framework was developed to further improve segmentation accuracy. By integrating SBSS, the dimension-reduction method (i.e. OSTA) and locally enhanced geometric features, a mean Intersection over Union (mIoU) of 76.6% and an Overall Accuracy (OA) of 93.8% were achieved on the Semantic3D (Reduced-8) benchmark. This set the state-of-the-art (SOTA) for the semantic segmentation accuracy of image-based methods and is very close to the SOTA accuracy of 3D method (i.e., 77.8% mIoU and 94.3% OA). Meanwhile, the integrated method took less than 10% of the processing time (52.64s versus 563.6s) of the fastest SOTA 3D method
    corecore