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Abstract: 

Planar feature segmentation is an essential task for 3D point cloud processing, finding many applications in various fields such as 

robotics and computer vision. The Random Sample Consensus (RANSAC) is one of the most common algorithms for the 

segmentation, but its performance, as given by the original form, is usually limited due to the use of a single threshold and 

interruption of similar planar features presented close to each other. To address these issues, we present a novel point cloud 

processing workflow which aims at developing an initial segmentation stage before the basic RANSAC is performed. Initially, 

normal vectors and maximum principal curvatures for each point of a given point cloud are analyzed and integrated. Subsequently, a 

subset of normal vectors and curvature is utilized to cluster planes with similar geometry based on the region growing algorithm, 

serving as a coarse but fast segmentation process. The segmentation is therefore refined with the RANSAC algorithm which can be 

now performed with higher accuracy and speed due to the reduced interference. After the RANSAC process is applied, resultant 

planar point clouds are built from the sparse ones via a point aggregation process based on geometric constraints. Four datasets 

(three real and one simulated) were used to verify the method. Compared to the classic segmentation method, our method achieves 

higher accuracy, with an RMSE from fitting equal to 0.0521 m, along with a higher recall of 93.31% and a higher F1-score of 

95.38%. 

1. Introduction

Light Detection and Ranging (LiDAR, renowned for its ability 

to promptly generate detailed three-dimensional (3D) spatial 

data. With the advancement of hight-precision LiDAR sensors, 

an increasing array of fields are incorporating this technology, 

such as autonomous vehicles (Li and Ibanez-Guzman, 2020 , 

Zhao et al., 2020), cultural heritage management (Chan et al., 

2011 , Rodríguez-Gonzálvez et al., 2017 , Chan et al., 2021, 

Teppati Losè et al., 2022), mobile robotics (Weiss and Biber, 

2011 , Yang et al., 2022), and smart cities (Garnett and Adams, 

2018 , Ortega et al., 2021). Three-dimensional point clouds, as 

a data type for recording LiDAR measurements, require 

extensive post-processing in which the plane segmentation is 

one of most significant processing operations.  

Plane segmentation algorithms can be broadly categorized into 

two types: parameter-based methods and clustering-based 

methods (Wu et al., 2019). For parameter-based methods, the 

RANSAC algorithm (Fischler and Bolles, 1981) is one of the 

most frequently-used due to its robustness. It operates by 

iteratively selecting random points to construct initial planes, 

then extracting the best-fitting plane by comparing the number 

of points falling on each plane. Kurban et al. (2015) utilized 

RANSAC algorithm to segment point cloud obtained from 

Kinect sensor. Qian and Ye (2014) combine the Normalized 

Cross-Correlation technique with the RANSAC algorithm to 

swiftly and accurately identify planar surfaces in complex 3D 

scenes. Li and Shan (2022) utilizes the RANSAC algorithm to 

identify and extract multiple primitive shapes or structures that 

collectively represent a building. While this approach can 

reduce the influence of outliers, it often requires considerable 

time to identify the correct plane and can sometimes segment 

numerous inaccurate planes in complex scenes, such as those 

involving stairways point cloud (Awwad et al., 2010). 

Nonetheless, the clustering-based methods group points that are 

close in both normal vectors and spatial positions. For example, 

Xu et al. (2019) employed an improved density clustering 

algorithm to group points together, facilitating the identification 

and fitting of planes in the point cloud data.  

Sağlam et al. (2020) segmented the point cloud data into 

patches using K-means clustering and then refining these non-

planar patches into plane segments. These methods typically 

cluster points based on either spatial proximity or normal 

vectors at a time, often requiring a secondary segmentation step. 

Region growing algorithm (Gorte, 2002 , Tóvári and Pfeifer, 

2005 , Nurunnabi et al., 2012) is another clustering-based plane 

segmentation method that can simultaneously consider both 

spatial and normal vector information. However, it currently 

faces challenges related to slow computational speed and the 

selection of an appropriate seed point strategy (Wu et al., 2019). 

In order to accelerate the speed of the point-based region 

growing and to enhance the precision of the original RANSAC 

algorithm for plane segmentation in complex scenes, we present 

a comprehensive workflow that it begins with an initial 

segmentation operation on downsampled point clouds, 

employing a seed point selection strategy based on finding the 

minimum value of the maximum principal curvature. Following 

this initial segmentation, the algorithm uses the obtained 

information to perform the secondary segmentation on the 

original point cloud data with RANSAC algorithm and distance 

and normal vector constrained clustering. 

2. Method

Firstly, local regions' normal vectors and maximal principal 

curvature are estimated by constructing a K-d tree structure 

(Friedman et al., 1977) to search for the adjacent points of each 

point. The normal vectors are estimated by calculating the three 

principal components of the local point cloud and taking the 
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direction of the third principal component as its estimate. 

Subsequently, a downsampling operation is employed to 

accelerate the coarse segmentation of the subsequent region 

growing algorithm. Since a portion of the planar points has 

already been clustered, the RANSAC algorithm can more 

rapidly identify the correct plane through random point 

selection and obtain the corresponding plane parameters. 

Finally, based on the obtained plane parameters, the distance 

from the original point cloud before downsampling to each 

plane is calculated. The final segmentation of the planar point 

cloud is obtained through constraints based on distance and 

normal vectors. The described workflow is shown in Figure 1.  

 

 

Figure 1. Workflow of our method. 

 

 

2.1 Normal Vector and Maximum Principal Curvature 

The local adjacent points obtained by K-d tree searching 

algorithm is fitted to the surface to estimate the normal vector 

and maximum principal curvature. Principal Component 

Analysis (PCA) is employed to calculate the three principal 

components for each local region of the point cloud (Jolliffe, 

2002). Based on the planar characteristics, the eigenvector 

corresponding to the smallest eigenvalue represents the 

direction with the least information, which is perpendicular to 

the local plane and can be used as an estimation for the normal 

vector (Hoppe et al., 1992). 

 

The normal curvature of a point is the degree of curvature of the 

intersection curve between the surface and a plane, which 

passes through that point and is perpendicular to the tangent 

plane. The planes that meet the above conditions are countless, 

and the principal curvatures are the two curvatures among them 

that represent the maximum and minimum degrees of curvature 

(Figure 2). The maximum principal curvature (Gray, 1997) is 

incorporated into our method.  

 

After performing a least squares quadratic surface fitting (Eq. 1) 

to the adjacent point cloud, Gaussian curvature and mean 

curvature (Gray, 1997) can be obtained using the Eq. (2-3), and 

subsequently solving the Eq. (4-5) yields the maximum 

principal curvature. 

 

Figure 2. Principal curvature viewed from two different angles. 
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where G, M are Gaussian curvature and mean curvature 

respectively, ki denotes principal curvature. 

 

2.2 Region Growing based on Geometric Parameters 

The region growing algorithm can be used to aggregate points 

with similar normal vectors and proximity in distance. This 

algorithm fundamentally begins from a set of seed points and 

progressively incorporates adjacent points into the region of 

these seed points, guided by specific criteria. The process 

continues until certain predetermined stopping conditions are 

met. The key to the region growing algorithm’s effectiveness 

lies in the strategies employed for selecting seed points and 

defining criteria for the inclusion of adjacent points. 

 

For planar point clouds, the degree of curvature is 

approximately zero, and the normal vectors are similar 

throughout the same plane. Consequently, curvature can be 

adopted as a criterion for selecting seed points, and the angle 

between normal vectors (Ө) can serve as a condition for growth. 

In this paper, the point with the smallest maximum principal 

curvature is selected as the seed point and the angle between the 

normal vectors serves as the growth condition. The complete 

workflow can be seen in Figure 3. 
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Figure 3. Workflow of region growing for geometric parameters. 

 

 

2.3 Segmentation Result Evaluation 

The accuracy of the final segmented planar will be assessed 

using the root mean square error (RMSE) of the parameters 

fitted through least squares method (Eberly, 2000), and the 

average precision, recall, F1-score of the segmented point 

clouds for multiple planes. This evaluation will be conducted on 

simulated stairway data. The equation as follow: 
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where N is the number of planes, Pij and Pij′ respectively 

represent the fitted and true values of the j-th parameter of the i-

th plane, TPi represents the number of points correctly classified 

as belonging to plane i, FNi represents the number of points 

incorrectly classified as not belonging to plane i, FPi represents 

the number of points incorrectly classified as belonging to class 

i.  

 

3. Experiments 

We applied our method to point clouds from four different 

scenes, and compared it with classic RANSAC plane 

segmentation and region growing methods in terms of visual 

effects and computational speed. quantitative accuracy. 

Additionally, the segmentation results of each method were 

quantitatively evaluated using a simulated stairway point cloud 

data. 

 

The experimental data for this study consists of point cloud data 

from four different scenes: (1) A room point cloud at a 

university, acquired by a Trimble SX 10 scanner, consisting of 

538099 points (Figure 4a). (2) A simulated straight stairway 

point cloud, composed by stitching together seven rectangular 

cuboid point clouds with 0.01 m Gaussian noise, consisting of 

167556 points (Figure 4b). (3) A spiral stairway point cloud at a 

university, obtained by a Trimble SX 10 scanner, consisting of 

526706 points (Figure 4c). (4) An electric tower body point 

cloud, collected by a Faro Focus3D scanner, consisting of 

569667 points (Figure 4d). 

  
(a) (b) 

 
 

(c) (d) 

Figure 4. (a) Scene 1: a room at the university (real point cloud). 

(b) Scene 2: a straight stairway (simulated point cloud). (c) Scene 

3: a spiral stairway at a university (real point cloud). (d) Scene 4: a 

electric tower body (real point cloud). 

 

 

4. Results 

4.1 Preliminary Plane Segmentation 

In the scenes with planes, the distribution of normal vectors 

presents a clustered state (Figure 5). However, due to the 

influence of point cloud noise and errors in the normal vector 

estimation method, especially significant at the edges of planes, 

the planar points clustered by region growing often has 

omissions (Figure 6). 

 

 

Figure 5. Normal sphere (such as Scene 1). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Preliminary Plane Segmentation Results of Region 

Growing (Different colours represent different planes). (a) 

Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4. 

 

 

4.2 Final Plane Segmentation 

During the RANSAC algorithm process, iterative searches are 

conducted to find planar points, and the preliminarily 

segmented planar points can enable it to fit rapidly. Finally, 

based on the information of the fitted planes, coupled with 

constraints on the point-to-plane distance and normal vectors, 

complete planar points are segmented from the original dense 

point cloud. Figure 7 are the final segmented results of our 

method.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Final segmented point cloud (Different colours 

represent different planes). (a) Scene 1. (b) Scene 2, (c) Scene 3. 

(d) Scene 4. 

 

 

4.3 Comparison 

The classic RANSAC method and region growing method were 

used to segment the point clouds of these four scenes, and the 

results are shown in Figure 8. Additionally, the operating 

speeds of different methods were compared, and the results are 

presented in Table 1. 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 8. The results of classic RANSAC. (a) Scene 1. (c) Scene 

2. (e) Scene 3. (g) Scene 4. The results of classic region 

growing. (b) Scene 1. (d) Scene 2. (f) Scene 3. (h) Scene 4. 

 

It is evident that the RANSAC method tends to segment 

numerous inaccurate planes, such as the window frame in Scene 

1 and the inclined planes in Scene 2 and Scene 3. For the 

region-growing algorithm, the segmentation result for Scene 2 

is quite good, but there were some errors in Scene 1 and 3. For 

instance, in Scene 1, the mutually perpendicular left plane and 

bottom plane were segmented as a single plane, while in Scene 

3, multiple steps were segmented as one plane, which are 

mainly due to the inaccurate estimation of normal vectors. In 

the case of the most complex Scene 4, although all three 

methods exhibit some confusions, our method demonstrates a 

slightly lower error rate in terms of visual effectiveness. 

 

Table 1. Operating Speed of Different Methods. 

 Scene 1 Scene 2 Scene 3 Scene 4 

No. of points 538099 167556 526706 569667 

No. of planes 9 16 30 >30 

TRANSAC (s) 2.04 13.79 248.27 298.05 

TRG (s) 671.72 418.57 9252.51 30201.46 

TOur (s) 46.95 6.61 112.08 107.28 

 

In comparison to these two methods, our approach exhibits 

superior segmentation results visually. In terms of speed, the 

region growing algorithm is the slowest because it requires 

iterative searching of adjacent points for growth. Since our 

method also employs the region growing algorithm, its 

operating speed is not as fast as the RANSAC method when 

dealing with a large number of point clouds. Additionally, an 

increase in the number of point clouds will lead to longer times 

for calculating curvature and normal vectors. However, the use 

of a K-d tree can accelerate this process to a certain extent. Due 

to the fact that the speed of RANSAC also depends on the 

number of planes in the scenes, our algorithm achieves a reverse 

exceedance in speed when processing scenes with multiple 

planes such as Scene 2, 3 and 4, where it is faster by 7.18 s, 

136.19 s and 190.77 s, respectively. Compared to the region 

growing algorithm, the speed of our method is significantly 

faster, being respectively 624.77 s, 411.96 s, 9140.43 s and 

30094.18s quicker in Scene 1, 2, 3 and 4. 

 

Due to the generation of numerous inaccurate segmented planes 

by RANSAC in the simulated stair point cloud, quantitative 

accuracy evaluation was conducted exclusively for our method 

and the region growing algorithm. The results of accuracy 

evaluation are shown in Table 2. Our method demonstrated 

higher accuracy, achieving an average RMSE of 0.0521 m, 

which is superior to the region growing algorithm at 0.116 m. 

Although our method is approximately 1% lower in precision 

compared to region growing, our recall and F1-score are higher 

by 3.86% and 1.68%, respectively. This indicates that our 

method exhibits fewer cases of both error and missed 

segmentations, demonstrating its robustness. 

 

Table 2. RMSE of plane parameters for different methods. 

 RG Ours 

Average RMSE (m) 0.1681 0.0521 

Precision (%) 98.52 97.54 

Recall (%) 89.45 93.31 

F1-score (%) 93.76 95.38 

 

At the end of this paper, we replaced the RANSAC algorithm 

with the least squares method to fit the plane on the 

preliminarily segmented point cloud, in order to validate the 

necessity and superiority of the RANSAC method in our 

method. Due to the sensitivity of the least squares method to 

noise, there exists a problem of parameter bias in the fitting 

process, leading to errors in plane segmentation, as illustrated in 

the first stair shown in Figure 9b. 

 
(a) (b) 

Figure 9. (a) Region-growing-RANSAC segmentation result for 

Scene 2. (b) Region-growing-least-squares segmentation result 

for Scene 2. 

 

 

5. Conclusion 

This paper proposes an algorithm that clusters points with 

similar normal vectors and spatial proximity in a downsampled 

point cloud to enhance the subsequent RANSAC-based plane 

segmentation process. The algorithm is both fast and accurate, 

addressing the efficiency issues of region-growing algorithms 

and the problem of inaccurate segmented plane generation in 

classic RANSAC algorithms. Furthermore, the algorithm offers 

a strategy for selecting seed points for the region-growing 
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algorithm based on the minimal value of the maximum principal 

curvature. Through comparative experiments applying three 

different methods to four different scenes, our approach 

demonstrates the best visual effects and superior computational 

efficiency. Additionally, it exhibits the highest accuracy in 

terms of RMSE, recall, and F1-score, achieving 0.0521m, 

93.31%, and 95.38%, respectively. The results indicate the 

superiority of our workflow in terms of execution speed and 

accuracy. Our study integrates normal vector clustering 

constraints into plane segmentation algorithms, leveraging the 

strengths of both region-growing and RANSAC techniques. 

This fusion aims to enhance the robustness of plane 

segmentation methods, providing a directional reference for 

research in this field. 
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