17 research outputs found

    An Abstract Analysis of the Probabilistic Termination of Programs

    Full text link
    Abstract. It is often useful to introduce probabilistic behavior in programs, either because of the use of internal random generators (probabilistic algorithms), either because of some external devices (networks, physical sensors) with known statistics of behavior. Previous works on probabilistic abstract interpretation have addressed safety properties, but somehow neglected probabilistic termination. In this paper, we propose a method to automatically prove the probabilistic termination of programs using exponential bounds on the tail of the distribution. We apply this method to an example and give some directions as to how to implement it. We also show that this method can also be applied to make unsound statistical methods on average running times sound.

    Synthesizing Probabilistic Invariants via Doob's Decomposition

    Full text link
    When analyzing probabilistic computations, a powerful approach is to first find a martingale---an expression on the program variables whose expectation remains invariant---and then apply the optional stopping theorem in order to infer properties at termination time. One of the main challenges, then, is to systematically find martingales. We propose a novel procedure to synthesize martingale expressions from an arbitrary initial expression. Contrary to state-of-the-art approaches, we do not rely on constraint solving. Instead, we use a symbolic construction based on Doob's decomposition. This procedure can produce very complex martingales, expressed in terms of conditional expectations. We show how to automatically generate and simplify these martingales, as well as how to apply the optional stopping theorem to infer properties at termination time. This last step typically involves some simplification steps, and is usually done manually in current approaches. We implement our techniques in a prototype tool and demonstrate our process on several classical examples. Some of them go beyond the capability of current semi-automatic approaches

    Liveness of Randomised Parameterised Systems under Arbitrary Schedulers (Technical Report)

    Full text link
    We consider the problem of verifying liveness for systems with a finite, but unbounded, number of processes, commonly known as parameterised systems. Typical examples of such systems include distributed protocols (e.g. for the dining philosopher problem). Unlike the case of verifying safety, proving liveness is still considered extremely challenging, especially in the presence of randomness in the system. In this paper we consider liveness under arbitrary (including unfair) schedulers, which is often considered a desirable property in the literature of self-stabilising systems. We introduce an automatic method of proving liveness for randomised parameterised systems under arbitrary schedulers. Viewing liveness as a two-player reachability game (between Scheduler and Process), our method is a CEGAR approach that synthesises a progress relation for Process that can be symbolically represented as a finite-state automaton. The method is incremental and exploits both Angluin-style L*-learning and SAT-solvers. Our experiments show that our algorithm is able to prove liveness automatically for well-known randomised distributed protocols, including Lehmann-Rabin Randomised Dining Philosopher Protocol and randomised self-stabilising protocols (such as the Israeli-Jalfon Protocol). To the best of our knowledge, this is the first fully-automatic method that can prove liveness for randomised protocols.Comment: Full version of CAV'16 pape

    How long, O Bayesian network, will I sample thee? A program analysis perspective on expected sampling times

    Get PDF
    Bayesian networks (BNs) are probabilistic graphical models for describing complex joint probability distributions. The main problem for BNs is inference: Determine the probability of an event given observed evidence. Since exact inference is often infeasible for large BNs, popular approximate inference methods rely on sampling. We study the problem of determining the expected time to obtain a single valid sample from a BN. To this end, we translate the BN together with observations into a probabilistic program. We provide proof rules that yield the exact expected runtime of this program in a fully automated fashion. We implemented our approach and successfully analyzed various real-world BNs taken from the Bayesian network repository

    Stochastic Invariants for Probabilistic Termination

    Full text link
    Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page

    Algorithmic Analysis of Qualitative and Quantitative Termination Problems for Affine Probabilistic Programs

    Full text link
    In this paper, we consider termination of probabilistic programs with real-valued variables. The questions concerned are: 1. qualitative ones that ask (i) whether the program terminates with probability 1 (almost-sure termination) and (ii) whether the expected termination time is finite (finite termination); 2. quantitative ones that ask (i) to approximate the expected termination time (expectation problem) and (ii) to compute a bound B such that the probability to terminate after B steps decreases exponentially (concentration problem). To solve these questions, we utilize the notion of ranking supermartingales which is a powerful approach for proving termination of probabilistic programs. In detail, we focus on algorithmic synthesis of linear ranking-supermartingales over affine probabilistic programs (APP's) with both angelic and demonic non-determinism. An important subclass of APP's is LRAPP which is defined as the class of all APP's over which a linear ranking-supermartingale exists. Our main contributions are as follows. Firstly, we show that the membership problem of LRAPP (i) can be decided in polynomial time for APP's with at most demonic non-determinism, and (ii) is NP-hard and in PSPACE for APP's with angelic non-determinism; moreover, the NP-hardness result holds already for APP's without probability and demonic non-determinism. Secondly, we show that the concentration problem over LRAPP can be solved in the same complexity as for the membership problem of LRAPP. Finally, we show that the expectation problem over LRAPP can be solved in 2EXPTIME and is PSPACE-hard even for APP's without probability and non-determinism (i.e., deterministic programs). Our experimental results demonstrate the effectiveness of our approach to answer the qualitative and quantitative questions over APP's with at most demonic non-determinism.Comment: 24 pages, full version to the conference paper on POPL 201

    A Calculus for Amortized Expected Runtimes

    Get PDF
    We develop a weakest-precondition-style calculus à la Dijkstra for reasoning about amortized expected runtimes of randomized algorithms with access to dynamic memory — the aert calculus. Our calculus is truly quantitative, i.e. instead of Boolean valued predicates, it manipulates real-valued functions. En route to the aert calculus, we study the ert calculus for reasoning about expected runtimes of Kaminski et al. [2018] extended by capabilities for handling dynamic memory, thus enabling compositional and local reasoning about randomized data structures. This extension employs runtime separation logic, which has been foreshadowed by Matheja [2020] and then implemented in Isabelle/HOL by Haslbeck [2021]. In addition to Haslbeck’s results, we further prove soundness of the so-extended ert calculus with respect to an operational Markov decision process model featuring countably-branching nondeterminism, provide extensive intuitive explanations, and provide proof rules enabling separation logic-style verification for upper bounds on expected runtimes. Finally, we build the so-called potential method for amortized analysis into the ert calculus, thus obtaining the aert calculus. Soundness of the aert calculus is obtained from the soundness of the ert calculus and some probabilistic form of telescoping. Since one needs to be able to handle changes in potential which can in principle be both positive or negative, the aert calculus needs to be — essentially — capable of handling certain signed random variables. A particularly pleasing feature of our solution is that, unlike e.g. Kozen [1985], we obtain a loop rule for our signed random variables, and furthermore, unlike e.g. Kaminski and Katoen [2017], the aert calculus makes do without the need for involved technical machinery keeping track of the integrability of the random variables. Finally, we present case studies, including a formal analysis of a randomized delete-insert-find-any set data structure [Brodal et al. 1996], which yields a constant expected runtime per operation, whereas no deterministic algorithm can achieve this
    corecore